miri/alloc_addresses/reuse_pool.rs
1//! Manages a pool of addresses that can be reused.
2
3use rand::Rng;
4use rustc_abi::{Align, Size};
5
6use crate::concurrency::VClock;
7use crate::helpers::ToUsize as _;
8use crate::{MemoryKind, MiriConfig, ThreadId};
9
10const MAX_POOL_SIZE: usize = 64;
11
12/// The pool strikes a balance between exploring more possible executions and making it more likely
13/// to find bugs. The hypothesis is that bugs are more likely to occur when reuse happens for
14/// allocations with the same layout, since that can trigger e.g. ABA issues in a concurrent data
15/// structure. Therefore we only reuse allocations when size and alignment match exactly.
16#[derive(Debug)]
17pub struct ReusePool {
18 address_reuse_rate: f64,
19 address_reuse_cross_thread_rate: f64,
20 /// The i-th element in `pool` stores allocations of alignment `2^i`. We store these reusable
21 /// allocations as address-size pairs, the list must be sorted by the size and then the thread ID.
22 ///
23 /// Each of these maps has at most MAX_POOL_SIZE elements, and since alignment is limited to
24 /// less than 64 different possible values, that bounds the overall size of the pool.
25 ///
26 /// We also store the ID and the data-race clock of the thread that donated this pool element,
27 /// to ensure synchronization with the thread that picks up this address.
28 pool: Vec<Vec<(u64, Size, ThreadId, VClock)>>,
29}
30
31impl ReusePool {
32 pub fn new(config: &MiriConfig) -> Self {
33 ReusePool {
34 address_reuse_rate: config.address_reuse_rate,
35 address_reuse_cross_thread_rate: config.address_reuse_cross_thread_rate,
36 pool: vec![],
37 }
38 }
39
40 /// Call this when we are using up a lot of the address space: if memory reuse is enabled at all,
41 /// this will bump the intra-thread reuse rate to 100% so that we can keep running this program as
42 /// long as possible.
43 pub fn address_space_shortage(&mut self) {
44 if self.address_reuse_rate > 0.0 {
45 self.address_reuse_rate = 1.0;
46 }
47 }
48
49 fn subpool(&mut self, align: Align) -> &mut Vec<(u64, Size, ThreadId, VClock)> {
50 let pool_idx: usize = align.bytes().trailing_zeros().to_usize();
51 if self.pool.len() <= pool_idx {
52 self.pool.resize(pool_idx + 1, Vec::new());
53 }
54 &mut self.pool[pool_idx]
55 }
56
57 pub fn add_addr(
58 &mut self,
59 rng: &mut impl Rng,
60 addr: u64,
61 size: Size,
62 align: Align,
63 kind: MemoryKind,
64 thread: ThreadId,
65 clock: impl FnOnce() -> VClock,
66 ) {
67 // Let's see if we even want to remember this address.
68 // We don't remember stack addresses since there's so many of them (so the perf impact is big).
69 if kind == MemoryKind::Stack || !rng.random_bool(self.address_reuse_rate) {
70 return;
71 }
72 let clock = clock();
73 // Determine the pool to add this to, and where in the pool to put it.
74 let subpool = self.subpool(align);
75 let pos = subpool.partition_point(|(_addr, other_size, other_thread, _)| {
76 (*other_size, *other_thread) < (size, thread)
77 });
78 // Make sure the pool does not grow too big.
79 if subpool.len() >= MAX_POOL_SIZE {
80 // Pool full. Replace existing element, or last one if this would be even bigger.
81 let clamped_pos = pos.min(subpool.len() - 1);
82 subpool[clamped_pos] = (addr, size, thread, clock);
83 return;
84 }
85 // Add address to pool, at the right position.
86 subpool.insert(pos, (addr, size, thread, clock));
87 }
88
89 /// Returns the address to use and optionally a clock we have to synchronize with.
90 pub fn take_addr(
91 &mut self,
92 rng: &mut impl Rng,
93 size: Size,
94 align: Align,
95 kind: MemoryKind,
96 thread: ThreadId,
97 ) -> Option<(u64, Option<VClock>)> {
98 // Determine whether we'll even attempt a reuse. As above, we don't do reuse for stack addresses.
99 if kind == MemoryKind::Stack || !rng.random_bool(self.address_reuse_rate) {
100 return None;
101 }
102 let cross_thread_reuse = rng.random_bool(self.address_reuse_cross_thread_rate);
103 // Determine the pool to take this from.
104 let subpool = self.subpool(align);
105 // Let's see if we can find something of the right size. We want to find the full range of
106 // such items, beginning with the first, so we can't use `binary_search_by_key`. If we do
107 // *not* want to consider other thread's allocations, we effectively use the lexicographic
108 // order on `(size, thread)`.
109 let begin = subpool.partition_point(|(_addr, other_size, other_thread, _)| {
110 *other_size < size
111 || (*other_size == size && !cross_thread_reuse && *other_thread < thread)
112 });
113 let mut end = begin;
114 while let Some((_addr, other_size, other_thread, _)) = subpool.get(end) {
115 if *other_size != size {
116 break;
117 }
118 if !cross_thread_reuse && *other_thread != thread {
119 // We entered the allocations of another thread.
120 break;
121 }
122 end += 1;
123 }
124 if end == begin {
125 // Could not find any item of the right size.
126 return None;
127 }
128 // Pick a random element with the desired size.
129 let idx = rng.random_range(begin..end);
130 // Remove it from the pool and return.
131 let (chosen_addr, chosen_size, chosen_thread, clock) = subpool.remove(idx);
132 debug_assert!(chosen_size >= size && chosen_addr % align.bytes() == 0);
133 debug_assert!(cross_thread_reuse || chosen_thread == thread);
134 // No synchronization needed if we reused from the current thread.
135 Some((chosen_addr, if chosen_thread == thread { None } else { Some(clock) }))
136 }
137}