miri/shims/native_lib/trace/
child.rs

1use std::cell::RefCell;
2use std::ptr::NonNull;
3use std::rc::Rc;
4
5use ipc_channel::ipc;
6use nix::sys::{mman, ptrace, signal};
7use nix::unistd;
8use rustc_const_eval::interpret::InterpResult;
9
10use super::CALLBACK_STACK_SIZE;
11use super::messages::{Confirmation, StartFfiInfo, TraceRequest};
12use super::parent::{ChildListener, sv_loop};
13use crate::alloc::isolated_alloc::IsolatedAlloc;
14use crate::shims::native_lib::MemEvents;
15
16/// A handle to the single, shared supervisor process across all `MiriMachine`s.
17/// Since it would be very difficult to trace multiple FFI calls in parallel, we
18/// need to ensure that either (a) only one `MiriMachine` is performing an FFI call
19/// at any given time, or (b) there are distinct supervisor and child processes for
20/// each machine. The former was chosen here.
21///
22/// This should only contain a `None` if the supervisor has not (yet) been initialised;
23/// otherwise, if `init_sv` was called and did not error, this will always be nonempty.
24static SUPERVISOR: std::sync::Mutex<Option<Supervisor>> = std::sync::Mutex::new(None);
25
26/// The main means of communication between the child and parent process,
27/// allowing the former to send requests and get info from the latter.
28pub struct Supervisor {
29    /// Sender for FFI-mode-related requests.
30    message_tx: ipc::IpcSender<TraceRequest>,
31    /// Used for synchronisation, allowing us to receive confirmation that the
32    /// parent process has handled the request from `message_tx`.
33    confirm_rx: ipc::IpcReceiver<Confirmation>,
34    /// Receiver for memory acceses that ocurred during the FFI call.
35    event_rx: ipc::IpcReceiver<MemEvents>,
36}
37
38/// Marker representing that an error occurred during creation of the supervisor.
39#[derive(Debug)]
40pub struct SvInitError;
41
42impl Supervisor {
43    /// Returns `true` if the supervisor process exists, and `false` otherwise.
44    pub fn is_enabled() -> bool {
45        SUPERVISOR.lock().unwrap().is_some()
46    }
47
48    unsafe fn protect_pages(
49        pages: impl Iterator<Item = (NonNull<u8>, usize)>,
50        prot: mman::ProtFlags,
51    ) -> Result<(), nix::errno::Errno> {
52        for (pg, sz) in pages {
53            unsafe { mman::mprotect(pg.cast(), sz, prot)? };
54        }
55        Ok(())
56    }
57
58    /// Performs an arbitrary FFI call, enabling tracing from the supervisor.
59    /// As this locks the supervisor via a mutex, no other threads may enter FFI
60    /// until this function returns.
61    pub fn do_ffi<'tcx>(
62        alloc: &Rc<RefCell<IsolatedAlloc>>,
63        f: impl FnOnce() -> InterpResult<'tcx, crate::ImmTy<'tcx>>,
64    ) -> InterpResult<'tcx, (crate::ImmTy<'tcx>, Option<MemEvents>)> {
65        let mut sv_guard = SUPERVISOR.lock().unwrap();
66        // If the supervisor is not initialised for whatever reason, fast-return.
67        // As a side-effect, even on platforms where ptracing
68        // is not implemented, we enforce that only one FFI call
69        // happens at a time.
70        let Some(sv) = sv_guard.as_mut() else { return f().map(|v| (v, None)) };
71
72        // Get pointers to all the pages the supervisor must allow accesses in
73        // and prepare the callback stack.
74        let alloc = alloc.borrow();
75        let page_size = alloc.page_size();
76        let page_ptrs = alloc
77            .pages()
78            .flat_map(|(pg, sz)| {
79                // Convert (page, size) pair into list of pages.
80                let start = pg.expose_provenance().get();
81                (0..sz.strict_div(alloc.page_size()))
82                    .map(move |i| start.strict_add(i.strict_mul(page_size)))
83            })
84            .collect();
85        let raw_stack_ptr: *mut [u8; CALLBACK_STACK_SIZE] =
86            Box::leak(Box::new([0u8; CALLBACK_STACK_SIZE])).as_mut_ptr().cast();
87        let stack_ptr = raw_stack_ptr.expose_provenance();
88        let start_info = StartFfiInfo { page_ptrs, stack_ptr };
89
90        // Unwinding might be messed up due to partly protected memory, so let's abort if something
91        // breaks inside here.
92        let res = std::panic::abort_unwind(|| {
93            // Send over the info.
94            // NB: if we do not wait to receive a blank confirmation response, it is
95            // possible that the supervisor is alerted of the SIGSTOP *before* it has
96            // actually received the start_info, thus deadlocking! This way, we can
97            // enforce an ordering for these events.
98            sv.message_tx.send(TraceRequest::StartFfi(start_info)).unwrap();
99            sv.confirm_rx.recv().unwrap();
100            // We need to be stopped for the supervisor to be able to make certain
101            // modifications to our memory - simply waiting on the recv() doesn't
102            // count.
103            signal::raise(signal::SIGSTOP).unwrap();
104
105            // SAFETY: We have coordinated with the supervisor to ensure that this memory will keep
106            // working as normal, just with extra tracing. So even if the compiler moves memory
107            // accesses down to after the `mprotect`, they won't actually segfault.
108            unsafe {
109                Self::protect_pages(alloc.pages(), mman::ProtFlags::PROT_NONE).unwrap();
110            }
111
112            let res = f();
113
114            // SAFETY: We set memory back to normal, so this is safe.
115            unsafe {
116                Self::protect_pages(
117                    alloc.pages(),
118                    mman::ProtFlags::PROT_READ | mman::ProtFlags::PROT_WRITE,
119                )
120                .unwrap();
121            }
122
123            // Signal the supervisor that we are done. Will block until the supervisor continues us.
124            // This will also shut down the segfault handler, so it's important that all memory is
125            // reset back to normal above. There must not be a window in time where accessing the
126            // pages we protected above actually causes the program to abort.
127            signal::raise(signal::SIGUSR1).unwrap();
128
129            res
130        });
131
132        // SAFETY: Caller upholds that this pointer was allocated as a box with
133        // this type.
134        unsafe {
135            drop(Box::from_raw(raw_stack_ptr));
136        }
137        // On the off-chance something really weird happens, don't block forever.
138        let events = sv
139            .event_rx
140            .try_recv_timeout(std::time::Duration::from_secs(5))
141            .map_err(|e| {
142                match e {
143                    ipc::TryRecvError::IpcError(_) => (),
144                    ipc::TryRecvError::Empty =>
145                        panic!("Waiting for accesses from supervisor timed out!"),
146                }
147            })
148            .ok();
149
150        res.map(|v| (v, events))
151    }
152}
153
154/// Initialises the supervisor process. If this function errors, then the
155/// supervisor process could not be created successfully; else, the caller
156/// is now the child process and can communicate via `do_ffi`, receiving back
157/// events at the end.
158///
159/// # Safety
160/// The invariants for `fork()` must be upheld by the caller, namely either:
161/// - Other threads do not exist, or;
162/// - If they do exist, either those threads or the resulting child process
163///   only ever act in [async-signal-safe](https://www.man7.org/linux/man-pages/man7/signal-safety.7.html) ways.
164pub unsafe fn init_sv() -> Result<(), SvInitError> {
165    // FIXME: Much of this could be reimplemented via the mitosis crate if we upstream the
166    // relevant missing bits.
167
168    // On Linux, this will check whether ptrace is fully disabled by the Yama module.
169    // If Yama isn't running or we're not on Linux, we'll still error later, but
170    // this saves a very expensive fork call.
171    let ptrace_status = std::fs::read_to_string("/proc/sys/kernel/yama/ptrace_scope");
172    if let Ok(stat) = ptrace_status {
173        if let Some(stat) = stat.chars().next() {
174            // Fast-error if ptrace is fully disabled on the system.
175            if stat == '3' {
176                return Err(SvInitError);
177            }
178        }
179    }
180
181    // Initialise the supervisor if it isn't already, placing it into SUPERVISOR.
182    let mut lock = SUPERVISOR.lock().unwrap();
183    if lock.is_some() {
184        return Ok(());
185    }
186
187    // Prepare the IPC channels we need.
188    let (message_tx, message_rx) = ipc::channel().unwrap();
189    let (confirm_tx, confirm_rx) = ipc::channel().unwrap();
190    let (event_tx, event_rx) = ipc::channel().unwrap();
191    // SAFETY: Calling sysconf(_SC_PAGESIZE) is always safe and cannot error.
192    let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) }.try_into().unwrap();
193    super::parent::PAGE_SIZE.store(page_size, std::sync::atomic::Ordering::Relaxed);
194
195    unsafe {
196        // TODO: Maybe use clone3() instead for better signalling of when the child exits?
197        // SAFETY: Caller upholds that only one thread exists.
198        match unistd::fork().unwrap() {
199            unistd::ForkResult::Parent { child } => {
200                // If somehow another thread does exist, prevent it from accessing the lock
201                // and thus breaking our safety invariants.
202                std::mem::forget(lock);
203                // The child process is free to unwind, so we won't to avoid doubly freeing
204                // system resources.
205                let init = std::panic::catch_unwind(|| {
206                    let listener = ChildListener::new(message_rx, confirm_tx.clone());
207                    // Trace as many things as possible, to be able to handle them as needed.
208                    let options = ptrace::Options::PTRACE_O_TRACESYSGOOD
209                        | ptrace::Options::PTRACE_O_TRACECLONE
210                        | ptrace::Options::PTRACE_O_TRACEFORK;
211                    // Attach to the child process without stopping it.
212                    match ptrace::seize(child, options) {
213                        // Ptrace works :D
214                        Ok(_) => {
215                            let code = sv_loop(listener, child, event_tx, confirm_tx).unwrap_err();
216                            // If a return code of 0 is not explicitly given, assume something went
217                            // wrong and return 1.
218                            std::process::exit(code.0.unwrap_or(1))
219                        }
220                        // Ptrace does not work and we failed to catch that.
221                        Err(_) => {
222                            // If we can't ptrace, Miri continues being the parent.
223                            signal::kill(child, signal::SIGKILL).unwrap();
224                            SvInitError
225                        }
226                    }
227                });
228                match init {
229                    // The "Ok" case means that we couldn't ptrace.
230                    Ok(e) => return Err(e),
231                    Err(p) => {
232                        eprintln!(
233                            "Supervisor process panicked!\n{p:?}\n\nTry running again without using the native-lib tracer."
234                        );
235                        std::process::exit(1);
236                    }
237                }
238            }
239            unistd::ForkResult::Child => {
240                // Make sure we never get orphaned and stuck in SIGSTOP or similar
241                // SAFETY: prctl PR_SET_PDEATHSIG is always safe to call.
242                let ret = libc::prctl(libc::PR_SET_PDEATHSIG, libc::SIGTERM);
243                assert_eq!(ret, 0);
244                // First make sure the parent succeeded with ptracing us!
245                signal::raise(signal::SIGSTOP).unwrap();
246                // If we're the child process, save the supervisor info.
247                *lock = Some(Supervisor { message_tx, confirm_rx, event_rx });
248            }
249        }
250    }
251    Ok(())
252}
253
254/// Instruct the supervisor process to return a particular code. Useful if for
255/// whatever reason this code fails to be intercepted normally.
256pub fn register_retcode_sv(code: i32) {
257    let mut sv_guard = SUPERVISOR.lock().unwrap();
258    if let Some(sv) = sv_guard.as_mut() {
259        sv.message_tx.send(TraceRequest::OverrideRetcode(code)).unwrap();
260        sv.confirm_rx.recv().unwrap();
261    }
262}