rustc_builtin_macros/deriving/generic/mod.rs
1//! Some code that abstracts away much of the boilerplate of writing
2//! `derive` instances for traits. Among other things it manages getting
3//! access to the fields of the 4 different sorts of structs and enum
4//! variants, as well as creating the method and impl ast instances.
5//!
6//! Supported features (fairly exhaustive):
7//!
8//! - Methods taking any number of parameters of any type, and returning
9//! any type, other than vectors, bottom and closures.
10//! - Generating `impl`s for types with type parameters and lifetimes
11//! (e.g., `Option<T>`), the parameters are automatically given the
12//! current trait as a bound. (This includes separate type parameters
13//! and lifetimes for methods.)
14//! - Additional bounds on the type parameters (`TraitDef.additional_bounds`)
15//!
16//! The most important thing for implementors is the `Substructure` and
17//! `SubstructureFields` objects. The latter groups 5 possibilities of the
18//! arguments:
19//!
20//! - `Struct`, when `Self` is a struct (including tuple structs, e.g
21//! `struct T(i32, char)`).
22//! - `EnumMatching`, when `Self` is an enum and all the arguments are the
23//! same variant of the enum (e.g., `Some(1)`, `Some(3)` and `Some(4)`)
24//! - `EnumDiscr` when `Self` is an enum, for comparing the enum discriminants.
25//! - `StaticEnum` and `StaticStruct` for static methods, where the type
26//! being derived upon is either an enum or struct respectively. (Any
27//! argument with type Self is just grouped among the non-self
28//! arguments.)
29//!
30//! In the first two cases, the values from the corresponding fields in
31//! all the arguments are grouped together.
32//!
33//! The non-static cases have `Option<ident>` in several places associated
34//! with field `expr`s. This represents the name of the field it is
35//! associated with. It is only not `None` when the associated field has
36//! an identifier in the source code. For example, the `x`s in the
37//! following snippet
38//!
39//! ```rust
40//! struct A {
41//! x: i32,
42//! }
43//!
44//! struct B(i32);
45//!
46//! enum C {
47//! C0(i32),
48//! C1 { x: i32 }
49//! }
50//! ```
51//!
52//! The `i32`s in `B` and `C0` don't have an identifier, so the
53//! `Option<ident>`s would be `None` for them.
54//!
55//! In the static cases, the structure is summarized, either into the just
56//! spans of the fields or a list of spans and the field idents (for tuple
57//! structs and record structs, respectively), or a list of these, for
58//! enums (one for each variant). For empty struct and empty enum
59//! variants, it is represented as a count of 0.
60//!
61//! # "`cs`" functions
62//!
63//! The `cs_...` functions ("combine substructure") are designed to
64//! make life easier by providing some pre-made recipes for common
65//! threads; mostly calling the function being derived on all the
66//! arguments and then combining them back together in some way (or
67//! letting the user chose that). They are not meant to be the only
68//! way to handle the structures that this code creates.
69//!
70//! # Examples
71//!
72//! The following simplified `PartialEq` is used for in-code examples:
73//!
74//! ```rust
75//! trait PartialEq {
76//! fn eq(&self, other: &Self) -> bool;
77//! }
78//!
79//! impl PartialEq for i32 {
80//! fn eq(&self, other: &i32) -> bool {
81//! *self == *other
82//! }
83//! }
84//! ```
85//!
86//! Some examples of the values of `SubstructureFields` follow, using the
87//! above `PartialEq`, `A`, `B` and `C`.
88//!
89//! ## Structs
90//!
91//! When generating the `expr` for the `A` impl, the `SubstructureFields` is
92//!
93//! ```text
94//! Struct(vec![FieldInfo {
95//! span: <span of x>,
96//! name: Some(<ident of x>),
97//! self_: <expr for &self.x>,
98//! other: vec![<expr for &other.x>],
99//! }])
100//! ```
101//!
102//! For the `B` impl, called with `B(a)` and `B(b)`,
103//!
104//! ```text
105//! Struct(vec![FieldInfo {
106//! span: <span of i32>,
107//! name: None,
108//! self_: <expr for &a>,
109//! other: vec![<expr for &b>],
110//! }])
111//! ```
112//!
113//! ## Enums
114//!
115//! When generating the `expr` for a call with `self == C0(a)` and `other
116//! == C0(b)`, the SubstructureFields is
117//!
118//! ```text
119//! EnumMatching(
120//! 0,
121//! <ast::Variant for C0>,
122//! vec![FieldInfo {
123//! span: <span of i32>,
124//! name: None,
125//! self_: <expr for &a>,
126//! other: vec![<expr for &b>],
127//! }],
128//! )
129//! ```
130//!
131//! For `C1 {x}` and `C1 {x}`,
132//!
133//! ```text
134//! EnumMatching(
135//! 1,
136//! <ast::Variant for C1>,
137//! vec![FieldInfo {
138//! span: <span of x>,
139//! name: Some(<ident of x>),
140//! self_: <expr for &self.x>,
141//! other: vec![<expr for &other.x>],
142//! }],
143//! )
144//! ```
145//!
146//! For the discriminants,
147//!
148//! ```text
149//! EnumDiscr(
150//! &[<ident of self discriminant>, <ident of other discriminant>],
151//! <expr to combine with>,
152//! )
153//! ```
154//!
155//! Note that this setup doesn't allow for the brute-force "match every variant
156//! against every other variant" approach, which is bad because it produces a
157//! quadratic amount of code (see #15375).
158//!
159//! ## Static
160//!
161//! A static method on the types above would result in,
162//!
163//! ```text
164//! StaticStruct(<ast::VariantData of A>, Named(vec![(<ident of x>, <span of x>)]))
165//!
166//! StaticStruct(<ast::VariantData of B>, Unnamed(vec![<span of x>]))
167//!
168//! StaticEnum(
169//! <ast::EnumDef of C>,
170//! vec![
171//! (<ident of C0>, <span of C0>, Unnamed(vec![<span of i32>])),
172//! (<ident of C1>, <span of C1>, Named(vec![(<ident of x>, <span of x>)])),
173//! ],
174//! )
175//! ```
176
177use std::cell::RefCell;
178use std::ops::Not;
179use std::{iter, vec};
180
181pub(crate) use StaticFields::*;
182pub(crate) use SubstructureFields::*;
183use rustc_ast::ptr::P;
184use rustc_ast::{
185 self as ast, AnonConst, BindingMode, ByRef, EnumDef, Expr, GenericArg, GenericParamKind,
186 Generics, Mutability, PatKind, VariantData,
187};
188use rustc_attr_data_structures::{AttributeKind, ReprPacked};
189use rustc_attr_parsing::AttributeParser;
190use rustc_expand::base::{Annotatable, ExtCtxt};
191use rustc_hir::Attribute;
192use rustc_span::{DUMMY_SP, Ident, Span, Symbol, kw, sym};
193use thin_vec::{ThinVec, thin_vec};
194use ty::{Bounds, Path, Ref, Self_, Ty};
195
196use crate::{deriving, errors};
197
198pub(crate) mod ty;
199
200pub(crate) struct TraitDef<'a> {
201 /// The span for the current #[derive(Foo)] header.
202 pub span: Span,
203
204 /// Path of the trait, including any type parameters
205 pub path: Path,
206
207 /// Whether to skip adding the current trait as a bound to the type parameters of the type.
208 pub skip_path_as_bound: bool,
209
210 /// Whether `Copy` is needed as an additional bound on type parameters in a packed struct.
211 pub needs_copy_as_bound_if_packed: bool,
212
213 /// Additional bounds required of any type parameters of the type,
214 /// other than the current trait
215 pub additional_bounds: Vec<Ty>,
216
217 /// Can this trait be derived for unions?
218 pub supports_unions: bool,
219
220 pub methods: Vec<MethodDef<'a>>,
221
222 pub associated_types: Vec<(Ident, Ty)>,
223
224 pub is_const: bool,
225}
226
227pub(crate) struct MethodDef<'a> {
228 /// name of the method
229 pub name: Symbol,
230 /// List of generics, e.g., `R: rand::Rng`
231 pub generics: Bounds,
232
233 /// Is there is a `&self` argument? If not, it is a static function.
234 pub explicit_self: bool,
235
236 /// Arguments other than the self argument.
237 pub nonself_args: Vec<(Ty, Symbol)>,
238
239 /// Returns type
240 pub ret_ty: Ty,
241
242 pub attributes: ast::AttrVec,
243
244 pub fieldless_variants_strategy: FieldlessVariantsStrategy,
245
246 pub combine_substructure: RefCell<CombineSubstructureFunc<'a>>,
247}
248
249/// How to handle fieldless enum variants.
250#[derive(PartialEq)]
251pub(crate) enum FieldlessVariantsStrategy {
252 /// Combine fieldless variants into a single match arm.
253 /// This assumes that relevant information has been handled
254 /// by looking at the enum's discriminant.
255 Unify,
256 /// Don't do anything special about fieldless variants. They are
257 /// handled like any other variant.
258 Default,
259 /// If all variants of the enum are fieldless, expand the special
260 /// `AllFieldLessEnum` substructure, so that the entire enum can be handled
261 /// at once.
262 SpecializeIfAllVariantsFieldless,
263}
264
265/// All the data about the data structure/method being derived upon.
266pub(crate) struct Substructure<'a> {
267 /// ident of self
268 pub type_ident: Ident,
269 /// Verbatim access to any non-selflike arguments, i.e. arguments that
270 /// don't have type `&Self`.
271 pub nonselflike_args: &'a [P<Expr>],
272 pub fields: &'a SubstructureFields<'a>,
273}
274
275/// Summary of the relevant parts of a struct/enum field.
276pub(crate) struct FieldInfo {
277 pub span: Span,
278 /// None for tuple structs/normal enum variants, Some for normal
279 /// structs/struct enum variants.
280 pub name: Option<Ident>,
281 /// The expression corresponding to this field of `self`
282 /// (specifically, a reference to it).
283 pub self_expr: P<Expr>,
284 /// The expressions corresponding to references to this field in
285 /// the other selflike arguments.
286 pub other_selflike_exprs: Vec<P<Expr>>,
287}
288
289#[derive(Copy, Clone)]
290pub(crate) enum IsTuple {
291 No,
292 Yes,
293}
294
295/// Fields for a static method
296pub(crate) enum StaticFields {
297 /// Tuple and unit structs/enum variants like this.
298 Unnamed(Vec<Span>, IsTuple),
299 /// Normal structs/struct variants.
300 Named(Vec<(Ident, Span, Option<AnonConst>)>),
301}
302
303/// A summary of the possible sets of fields.
304pub(crate) enum SubstructureFields<'a> {
305 /// A non-static method where `Self` is a struct.
306 Struct(&'a ast::VariantData, Vec<FieldInfo>),
307
308 /// A non-static method handling the entire enum at once
309 /// (after it has been determined that none of the enum
310 /// variants has any fields).
311 AllFieldlessEnum(&'a ast::EnumDef),
312
313 /// Matching variants of the enum: variant index, ast::Variant,
314 /// fields: the field name is only non-`None` in the case of a struct
315 /// variant.
316 EnumMatching(&'a ast::Variant, Vec<FieldInfo>),
317
318 /// The discriminant of an enum. The first field is a `FieldInfo` for the discriminants, as
319 /// if they were fields. The second field is the expression to combine the
320 /// discriminant expression with; it will be `None` if no match is necessary.
321 EnumDiscr(FieldInfo, Option<P<Expr>>),
322
323 /// A static method where `Self` is a struct.
324 StaticStruct(&'a ast::VariantData, StaticFields),
325
326 /// A static method where `Self` is an enum.
327 StaticEnum(&'a ast::EnumDef),
328}
329
330/// Combine the values of all the fields together. The last argument is
331/// all the fields of all the structures.
332pub(crate) type CombineSubstructureFunc<'a> =
333 Box<dyn FnMut(&ExtCtxt<'_>, Span, &Substructure<'_>) -> BlockOrExpr + 'a>;
334
335pub(crate) fn combine_substructure(
336 f: CombineSubstructureFunc<'_>,
337) -> RefCell<CombineSubstructureFunc<'_>> {
338 RefCell::new(f)
339}
340
341struct TypeParameter {
342 bound_generic_params: ThinVec<ast::GenericParam>,
343 ty: P<ast::Ty>,
344}
345
346/// The code snippets built up for derived code are sometimes used as blocks
347/// (e.g. in a function body) and sometimes used as expressions (e.g. in a match
348/// arm). This structure avoids committing to either form until necessary,
349/// avoiding the insertion of any unnecessary blocks.
350///
351/// The statements come before the expression.
352pub(crate) struct BlockOrExpr(ThinVec<ast::Stmt>, Option<P<Expr>>);
353
354impl BlockOrExpr {
355 pub(crate) fn new_stmts(stmts: ThinVec<ast::Stmt>) -> BlockOrExpr {
356 BlockOrExpr(stmts, None)
357 }
358
359 pub(crate) fn new_expr(expr: P<Expr>) -> BlockOrExpr {
360 BlockOrExpr(ThinVec::new(), Some(expr))
361 }
362
363 pub(crate) fn new_mixed(stmts: ThinVec<ast::Stmt>, expr: Option<P<Expr>>) -> BlockOrExpr {
364 BlockOrExpr(stmts, expr)
365 }
366
367 // Converts it into a block.
368 fn into_block(mut self, cx: &ExtCtxt<'_>, span: Span) -> P<ast::Block> {
369 if let Some(expr) = self.1 {
370 self.0.push(cx.stmt_expr(expr));
371 }
372 cx.block(span, self.0)
373 }
374
375 // Converts it into an expression.
376 fn into_expr(self, cx: &ExtCtxt<'_>, span: Span) -> P<Expr> {
377 if self.0.is_empty() {
378 match self.1 {
379 None => cx.expr_block(cx.block(span, ThinVec::new())),
380 Some(expr) => expr,
381 }
382 } else if let [stmt] = self.0.as_slice()
383 && let ast::StmtKind::Expr(expr) = &stmt.kind
384 && self.1.is_none()
385 {
386 // There's only a single statement expression. Pull it out.
387 expr.clone()
388 } else {
389 // Multiple statements and/or expressions.
390 cx.expr_block(self.into_block(cx, span))
391 }
392 }
393}
394
395/// This method helps to extract all the type parameters referenced from a
396/// type. For a type parameter `<T>`, it looks for either a `TyPath` that
397/// is not global and starts with `T`, or a `TyQPath`.
398/// Also include bound generic params from the input type.
399fn find_type_parameters(
400 ty: &ast::Ty,
401 ty_param_names: &[Symbol],
402 cx: &ExtCtxt<'_>,
403) -> Vec<TypeParameter> {
404 use rustc_ast::visit;
405
406 struct Visitor<'a, 'b> {
407 cx: &'a ExtCtxt<'b>,
408 ty_param_names: &'a [Symbol],
409 bound_generic_params_stack: ThinVec<ast::GenericParam>,
410 type_params: Vec<TypeParameter>,
411 }
412
413 impl<'a, 'b> visit::Visitor<'a> for Visitor<'a, 'b> {
414 fn visit_ty(&mut self, ty: &'a ast::Ty) {
415 let stack_len = self.bound_generic_params_stack.len();
416 if let ast::TyKind::BareFn(bare_fn) = &ty.kind
417 && !bare_fn.generic_params.is_empty()
418 {
419 // Given a field `x: for<'a> fn(T::SomeType<'a>)`, we wan't to account for `'a` so
420 // that we generate `where for<'a> T::SomeType<'a>: ::core::clone::Clone`. #122622
421 self.bound_generic_params_stack.extend(bare_fn.generic_params.iter().cloned());
422 }
423
424 if let ast::TyKind::Path(_, path) = &ty.kind
425 && let Some(segment) = path.segments.first()
426 && self.ty_param_names.contains(&segment.ident.name)
427 {
428 self.type_params.push(TypeParameter {
429 bound_generic_params: self.bound_generic_params_stack.clone(),
430 ty: P(ty.clone()),
431 });
432 }
433
434 visit::walk_ty(self, ty);
435 self.bound_generic_params_stack.truncate(stack_len);
436 }
437
438 // Place bound generic params on a stack, to extract them when a type is encountered.
439 fn visit_poly_trait_ref(&mut self, trait_ref: &'a ast::PolyTraitRef) {
440 let stack_len = self.bound_generic_params_stack.len();
441 self.bound_generic_params_stack.extend(trait_ref.bound_generic_params.iter().cloned());
442
443 visit::walk_poly_trait_ref(self, trait_ref);
444
445 self.bound_generic_params_stack.truncate(stack_len);
446 }
447
448 fn visit_mac_call(&mut self, mac: &ast::MacCall) {
449 self.cx.dcx().emit_err(errors::DeriveMacroCall { span: mac.span() });
450 }
451 }
452
453 let mut visitor = Visitor {
454 cx,
455 ty_param_names,
456 bound_generic_params_stack: ThinVec::new(),
457 type_params: Vec::new(),
458 };
459 visit::Visitor::visit_ty(&mut visitor, ty);
460
461 visitor.type_params
462}
463
464impl<'a> TraitDef<'a> {
465 pub(crate) fn expand(
466 self,
467 cx: &ExtCtxt<'_>,
468 mitem: &ast::MetaItem,
469 item: &'a Annotatable,
470 push: &mut dyn FnMut(Annotatable),
471 ) {
472 self.expand_ext(cx, mitem, item, push, false);
473 }
474
475 pub(crate) fn expand_ext(
476 self,
477 cx: &ExtCtxt<'_>,
478 mitem: &ast::MetaItem,
479 item: &'a Annotatable,
480 push: &mut dyn FnMut(Annotatable),
481 from_scratch: bool,
482 ) {
483 match item {
484 Annotatable::Item(item) => {
485 let is_packed = matches!(
486 AttributeParser::parse_limited(cx.sess, &item.attrs, sym::repr, item.span, true),
487 Some(Attribute::Parsed(AttributeKind::Repr(r))) if r.iter().any(|(x, _)| matches!(x, ReprPacked(..)))
488 );
489
490 let newitem = match &item.kind {
491 ast::ItemKind::Struct(ident, generics, struct_def) => self.expand_struct_def(
492 cx,
493 struct_def,
494 *ident,
495 generics,
496 from_scratch,
497 is_packed,
498 ),
499 ast::ItemKind::Enum(ident, generics, enum_def) => {
500 // We ignore `is_packed` here, because `repr(packed)`
501 // enums cause an error later on.
502 //
503 // This can only cause further compilation errors
504 // downstream in blatantly illegal code, so it is fine.
505 self.expand_enum_def(cx, enum_def, *ident, generics, from_scratch)
506 }
507 ast::ItemKind::Union(ident, generics, struct_def) => {
508 if self.supports_unions {
509 self.expand_struct_def(
510 cx,
511 struct_def,
512 *ident,
513 generics,
514 from_scratch,
515 is_packed,
516 )
517 } else {
518 cx.dcx().emit_err(errors::DeriveUnion { span: mitem.span });
519 return;
520 }
521 }
522 _ => unreachable!(),
523 };
524 // Keep the lint attributes of the previous item to control how the
525 // generated implementations are linted
526 let mut attrs = newitem.attrs.clone();
527 attrs.extend(
528 item.attrs
529 .iter()
530 .filter(|a| {
531 a.has_any_name(&[
532 sym::allow,
533 sym::warn,
534 sym::deny,
535 sym::forbid,
536 sym::stable,
537 sym::unstable,
538 ])
539 })
540 .cloned(),
541 );
542 push(Annotatable::Item(P(ast::Item { attrs, ..(*newitem).clone() })))
543 }
544 _ => unreachable!(),
545 }
546 }
547
548 /// Given that we are deriving a trait `DerivedTrait` for a type like:
549 ///
550 /// ```ignore (only-for-syntax-highlight)
551 /// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
552 /// where
553 /// C: WhereTrait,
554 /// {
555 /// a: A,
556 /// b: B::Item,
557 /// b1: <B as DeclaredTrait>::Item,
558 /// c1: <C as WhereTrait>::Item,
559 /// c2: Option<<C as WhereTrait>::Item>,
560 /// ...
561 /// }
562 /// ```
563 ///
564 /// create an impl like:
565 ///
566 /// ```ignore (only-for-syntax-highlight)
567 /// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
568 /// where
569 /// C: WhereTrait,
570 /// A: DerivedTrait + B1 + ... + BN,
571 /// B: DerivedTrait + B1 + ... + BN,
572 /// C: DerivedTrait + B1 + ... + BN,
573 /// B::Item: DerivedTrait + B1 + ... + BN,
574 /// <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
575 /// ...
576 /// {
577 /// ...
578 /// }
579 /// ```
580 ///
581 /// where B1, ..., BN are the bounds given by `bounds_paths`.'. Z is a phantom type, and
582 /// therefore does not get bound by the derived trait.
583 fn create_derived_impl(
584 &self,
585 cx: &ExtCtxt<'_>,
586 type_ident: Ident,
587 generics: &Generics,
588 field_tys: Vec<P<ast::Ty>>,
589 methods: Vec<P<ast::AssocItem>>,
590 is_packed: bool,
591 ) -> P<ast::Item> {
592 let trait_path = self.path.to_path(cx, self.span, type_ident, generics);
593
594 // Transform associated types from `deriving::ty::Ty` into `ast::AssocItem`
595 let associated_types = self.associated_types.iter().map(|&(ident, ref type_def)| {
596 P(ast::AssocItem {
597 id: ast::DUMMY_NODE_ID,
598 span: self.span,
599 vis: ast::Visibility {
600 span: self.span.shrink_to_lo(),
601 kind: ast::VisibilityKind::Inherited,
602 tokens: None,
603 },
604 attrs: ast::AttrVec::new(),
605 kind: ast::AssocItemKind::Type(Box::new(ast::TyAlias {
606 defaultness: ast::Defaultness::Final,
607 ident,
608 generics: Generics::default(),
609 where_clauses: ast::TyAliasWhereClauses::default(),
610 bounds: Vec::new(),
611 ty: Some(type_def.to_ty(cx, self.span, type_ident, generics)),
612 })),
613 tokens: None,
614 })
615 });
616
617 let mut where_clause = ast::WhereClause::default();
618 where_clause.span = generics.where_clause.span;
619 let ctxt = self.span.ctxt();
620 let span = generics.span.with_ctxt(ctxt);
621
622 // Create the generic parameters
623 let params: ThinVec<_> = generics
624 .params
625 .iter()
626 .map(|param| match ¶m.kind {
627 GenericParamKind::Lifetime { .. } => param.clone(),
628 GenericParamKind::Type { .. } => {
629 // Extra restrictions on the generics parameters to the
630 // type being derived upon.
631 let bounds: Vec<_> = self
632 .additional_bounds
633 .iter()
634 .map(|p| {
635 cx.trait_bound(
636 p.to_path(cx, self.span, type_ident, generics),
637 self.is_const,
638 )
639 })
640 .chain(
641 // Add a bound for the current trait.
642 self.skip_path_as_bound
643 .not()
644 .then(|| cx.trait_bound(trait_path.clone(), self.is_const)),
645 )
646 .chain({
647 // Add a `Copy` bound if required.
648 if is_packed && self.needs_copy_as_bound_if_packed {
649 let p = deriving::path_std!(marker::Copy);
650 Some(cx.trait_bound(
651 p.to_path(cx, self.span, type_ident, generics),
652 self.is_const,
653 ))
654 } else {
655 None
656 }
657 })
658 .chain(
659 // Also add in any bounds from the declaration.
660 param.bounds.iter().cloned(),
661 )
662 .collect();
663
664 cx.typaram(param.ident.span.with_ctxt(ctxt), param.ident, bounds, None)
665 }
666 GenericParamKind::Const { ty, kw_span, .. } => {
667 let const_nodefault_kind = GenericParamKind::Const {
668 ty: ty.clone(),
669 kw_span: kw_span.with_ctxt(ctxt),
670
671 // We can't have default values inside impl block
672 default: None,
673 };
674 let mut param_clone = param.clone();
675 param_clone.kind = const_nodefault_kind;
676 param_clone
677 }
678 })
679 .map(|mut param| {
680 // Remove all attributes, because there might be helper attributes
681 // from other macros that will not be valid in the expanded implementation.
682 param.attrs.clear();
683 param
684 })
685 .collect();
686
687 // and similarly for where clauses
688 where_clause.predicates.extend(generics.where_clause.predicates.iter().map(|clause| {
689 ast::WherePredicate {
690 attrs: clause.attrs.clone(),
691 kind: clause.kind.clone(),
692 id: ast::DUMMY_NODE_ID,
693 span: clause.span.with_ctxt(ctxt),
694 is_placeholder: false,
695 }
696 }));
697
698 let ty_param_names: Vec<Symbol> = params
699 .iter()
700 .filter(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
701 .map(|ty_param| ty_param.ident.name)
702 .collect();
703
704 if !ty_param_names.is_empty() {
705 for field_ty in field_tys {
706 let field_ty_params = find_type_parameters(&field_ty, &ty_param_names, cx);
707
708 for field_ty_param in field_ty_params {
709 // if we have already handled this type, skip it
710 if let ast::TyKind::Path(_, p) = &field_ty_param.ty.kind
711 && let [sole_segment] = &*p.segments
712 && ty_param_names.contains(&sole_segment.ident.name)
713 {
714 continue;
715 }
716 let mut bounds: Vec<_> = self
717 .additional_bounds
718 .iter()
719 .map(|p| {
720 cx.trait_bound(
721 p.to_path(cx, self.span, type_ident, generics),
722 self.is_const,
723 )
724 })
725 .collect();
726
727 // Require the current trait.
728 if !self.skip_path_as_bound {
729 bounds.push(cx.trait_bound(trait_path.clone(), self.is_const));
730 }
731
732 // Add a `Copy` bound if required.
733 if is_packed && self.needs_copy_as_bound_if_packed {
734 let p = deriving::path_std!(marker::Copy);
735 bounds.push(cx.trait_bound(
736 p.to_path(cx, self.span, type_ident, generics),
737 self.is_const,
738 ));
739 }
740
741 if !bounds.is_empty() {
742 let predicate = ast::WhereBoundPredicate {
743 bound_generic_params: field_ty_param.bound_generic_params,
744 bounded_ty: field_ty_param.ty,
745 bounds,
746 };
747
748 let kind = ast::WherePredicateKind::BoundPredicate(predicate);
749 let predicate = ast::WherePredicate {
750 attrs: ThinVec::new(),
751 kind,
752 id: ast::DUMMY_NODE_ID,
753 span: self.span,
754 is_placeholder: false,
755 };
756 where_clause.predicates.push(predicate);
757 }
758 }
759 }
760 }
761
762 let trait_generics = Generics { params, where_clause, span };
763
764 // Create the reference to the trait.
765 let trait_ref = cx.trait_ref(trait_path);
766
767 let self_params: Vec<_> = generics
768 .params
769 .iter()
770 .map(|param| match param.kind {
771 GenericParamKind::Lifetime { .. } => {
772 GenericArg::Lifetime(cx.lifetime(param.ident.span.with_ctxt(ctxt), param.ident))
773 }
774 GenericParamKind::Type { .. } => {
775 GenericArg::Type(cx.ty_ident(param.ident.span.with_ctxt(ctxt), param.ident))
776 }
777 GenericParamKind::Const { .. } => {
778 GenericArg::Const(cx.const_ident(param.ident.span.with_ctxt(ctxt), param.ident))
779 }
780 })
781 .collect();
782
783 // Create the type of `self`.
784 let path = cx.path_all(self.span, false, vec![type_ident], self_params);
785 let self_type = cx.ty_path(path);
786
787 let attrs = thin_vec![cx.attr_word(sym::automatically_derived, self.span),];
788 let opt_trait_ref = Some(trait_ref);
789
790 cx.item(
791 self.span,
792 attrs,
793 ast::ItemKind::Impl(Box::new(ast::Impl {
794 safety: ast::Safety::Default,
795 polarity: ast::ImplPolarity::Positive,
796 defaultness: ast::Defaultness::Final,
797 constness: if self.is_const { ast::Const::Yes(DUMMY_SP) } else { ast::Const::No },
798 generics: trait_generics,
799 of_trait: opt_trait_ref,
800 self_ty: self_type,
801 items: methods.into_iter().chain(associated_types).collect(),
802 })),
803 )
804 }
805
806 fn expand_struct_def(
807 &self,
808 cx: &ExtCtxt<'_>,
809 struct_def: &'a VariantData,
810 type_ident: Ident,
811 generics: &Generics,
812 from_scratch: bool,
813 is_packed: bool,
814 ) -> P<ast::Item> {
815 let field_tys: Vec<P<ast::Ty>> =
816 struct_def.fields().iter().map(|field| field.ty.clone()).collect();
817
818 let methods = self
819 .methods
820 .iter()
821 .map(|method_def| {
822 let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
823 method_def.extract_arg_details(cx, self, type_ident, generics);
824
825 let body = if from_scratch || method_def.is_static() {
826 method_def.expand_static_struct_method_body(
827 cx,
828 self,
829 struct_def,
830 type_ident,
831 &nonselflike_args,
832 )
833 } else {
834 method_def.expand_struct_method_body(
835 cx,
836 self,
837 struct_def,
838 type_ident,
839 &selflike_args,
840 &nonselflike_args,
841 is_packed,
842 )
843 };
844
845 method_def.create_method(
846 cx,
847 self,
848 type_ident,
849 generics,
850 explicit_self,
851 nonself_arg_tys,
852 body,
853 )
854 })
855 .collect();
856
857 self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
858 }
859
860 fn expand_enum_def(
861 &self,
862 cx: &ExtCtxt<'_>,
863 enum_def: &'a EnumDef,
864 type_ident: Ident,
865 generics: &Generics,
866 from_scratch: bool,
867 ) -> P<ast::Item> {
868 let mut field_tys = Vec::new();
869
870 for variant in &enum_def.variants {
871 field_tys.extend(variant.data.fields().iter().map(|field| field.ty.clone()));
872 }
873
874 let methods = self
875 .methods
876 .iter()
877 .map(|method_def| {
878 let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
879 method_def.extract_arg_details(cx, self, type_ident, generics);
880
881 let body = if from_scratch || method_def.is_static() {
882 method_def.expand_static_enum_method_body(
883 cx,
884 self,
885 enum_def,
886 type_ident,
887 &nonselflike_args,
888 )
889 } else {
890 method_def.expand_enum_method_body(
891 cx,
892 self,
893 enum_def,
894 type_ident,
895 selflike_args,
896 &nonselflike_args,
897 )
898 };
899
900 method_def.create_method(
901 cx,
902 self,
903 type_ident,
904 generics,
905 explicit_self,
906 nonself_arg_tys,
907 body,
908 )
909 })
910 .collect();
911
912 let is_packed = false; // enums are never packed
913 self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
914 }
915}
916
917impl<'a> MethodDef<'a> {
918 fn call_substructure_method(
919 &self,
920 cx: &ExtCtxt<'_>,
921 trait_: &TraitDef<'_>,
922 type_ident: Ident,
923 nonselflike_args: &[P<Expr>],
924 fields: &SubstructureFields<'_>,
925 ) -> BlockOrExpr {
926 let span = trait_.span;
927 let substructure = Substructure { type_ident, nonselflike_args, fields };
928 let mut f = self.combine_substructure.borrow_mut();
929 let f: &mut CombineSubstructureFunc<'_> = &mut *f;
930 f(cx, span, &substructure)
931 }
932
933 fn get_ret_ty(
934 &self,
935 cx: &ExtCtxt<'_>,
936 trait_: &TraitDef<'_>,
937 generics: &Generics,
938 type_ident: Ident,
939 ) -> P<ast::Ty> {
940 self.ret_ty.to_ty(cx, trait_.span, type_ident, generics)
941 }
942
943 fn is_static(&self) -> bool {
944 !self.explicit_self
945 }
946
947 // The return value includes:
948 // - explicit_self: The `&self` arg, if present.
949 // - selflike_args: Expressions for `&self` (if present) and also any other
950 // args with the same type (e.g. the `other` arg in `PartialEq::eq`).
951 // - nonselflike_args: Expressions for all the remaining args.
952 // - nonself_arg_tys: Additional information about all the args other than
953 // `&self`.
954 fn extract_arg_details(
955 &self,
956 cx: &ExtCtxt<'_>,
957 trait_: &TraitDef<'_>,
958 type_ident: Ident,
959 generics: &Generics,
960 ) -> (Option<ast::ExplicitSelf>, ThinVec<P<Expr>>, Vec<P<Expr>>, Vec<(Ident, P<ast::Ty>)>) {
961 let mut selflike_args = ThinVec::new();
962 let mut nonselflike_args = Vec::new();
963 let mut nonself_arg_tys = Vec::new();
964 let span = trait_.span;
965
966 let explicit_self = self.explicit_self.then(|| {
967 let (self_expr, explicit_self) = ty::get_explicit_self(cx, span);
968 selflike_args.push(self_expr);
969 explicit_self
970 });
971
972 for (ty, name) in self.nonself_args.iter() {
973 let ast_ty = ty.to_ty(cx, span, type_ident, generics);
974 let ident = Ident::new(*name, span);
975 nonself_arg_tys.push((ident, ast_ty));
976
977 let arg_expr = cx.expr_ident(span, ident);
978
979 match ty {
980 // Selflike (`&Self`) arguments only occur in non-static methods.
981 Ref(box Self_, _) if !self.is_static() => selflike_args.push(arg_expr),
982 Self_ => cx.dcx().span_bug(span, "`Self` in non-return position"),
983 _ => nonselflike_args.push(arg_expr),
984 }
985 }
986
987 (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys)
988 }
989
990 fn create_method(
991 &self,
992 cx: &ExtCtxt<'_>,
993 trait_: &TraitDef<'_>,
994 type_ident: Ident,
995 generics: &Generics,
996 explicit_self: Option<ast::ExplicitSelf>,
997 nonself_arg_tys: Vec<(Ident, P<ast::Ty>)>,
998 body: BlockOrExpr,
999 ) -> P<ast::AssocItem> {
1000 let span = trait_.span;
1001 // Create the generics that aren't for `Self`.
1002 let fn_generics = self.generics.to_generics(cx, span, type_ident, generics);
1003
1004 let args = {
1005 let self_arg = explicit_self.map(|explicit_self| {
1006 let ident = Ident::with_dummy_span(kw::SelfLower).with_span_pos(span);
1007 ast::Param::from_self(ast::AttrVec::default(), explicit_self, ident)
1008 });
1009 let nonself_args =
1010 nonself_arg_tys.into_iter().map(|(name, ty)| cx.param(span, name, ty));
1011 self_arg.into_iter().chain(nonself_args).collect()
1012 };
1013
1014 let ret_type = self.get_ret_ty(cx, trait_, generics, type_ident);
1015
1016 let method_ident = Ident::new(self.name, span);
1017 let fn_decl = cx.fn_decl(args, ast::FnRetTy::Ty(ret_type));
1018 let body_block = body.into_block(cx, span);
1019
1020 let trait_lo_sp = span.shrink_to_lo();
1021
1022 let sig = ast::FnSig { header: ast::FnHeader::default(), decl: fn_decl, span };
1023 let defaultness = ast::Defaultness::Final;
1024
1025 // Create the method.
1026 P(ast::AssocItem {
1027 id: ast::DUMMY_NODE_ID,
1028 attrs: self.attributes.clone(),
1029 span,
1030 vis: ast::Visibility {
1031 span: trait_lo_sp,
1032 kind: ast::VisibilityKind::Inherited,
1033 tokens: None,
1034 },
1035 kind: ast::AssocItemKind::Fn(Box::new(ast::Fn {
1036 defaultness,
1037 sig,
1038 ident: method_ident,
1039 generics: fn_generics,
1040 contract: None,
1041 body: Some(body_block),
1042 define_opaque: None,
1043 })),
1044 tokens: None,
1045 })
1046 }
1047
1048 /// The normal case uses field access.
1049 ///
1050 /// ```
1051 /// #[derive(PartialEq)]
1052 /// # struct Dummy;
1053 /// struct A { x: u8, y: u8 }
1054 ///
1055 /// // equivalent to:
1056 /// impl PartialEq for A {
1057 /// fn eq(&self, other: &A) -> bool {
1058 /// self.x == other.x && self.y == other.y
1059 /// }
1060 /// }
1061 /// ```
1062 ///
1063 /// But if the struct is `repr(packed)`, we can't use something like
1064 /// `&self.x` because that might cause an unaligned ref. So for any trait
1065 /// method that takes a reference, we use a local block to force a copy.
1066 /// This requires that the field impl `Copy`.
1067 ///
1068 /// ```rust,ignore (example)
1069 /// # struct A { x: u8, y: u8 }
1070 /// impl PartialEq for A {
1071 /// fn eq(&self, other: &A) -> bool {
1072 /// // Desugars to `{ self.x }.eq(&{ other.y }) && ...`
1073 /// { self.x } == { other.y } && { self.y } == { other.y }
1074 /// }
1075 /// }
1076 /// impl Hash for A {
1077 /// fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
1078 /// ::core::hash::Hash::hash(&{ self.x }, state);
1079 /// ::core::hash::Hash::hash(&{ self.y }, state);
1080 /// }
1081 /// }
1082 /// ```
1083 fn expand_struct_method_body<'b>(
1084 &self,
1085 cx: &ExtCtxt<'_>,
1086 trait_: &TraitDef<'b>,
1087 struct_def: &'b VariantData,
1088 type_ident: Ident,
1089 selflike_args: &[P<Expr>],
1090 nonselflike_args: &[P<Expr>],
1091 is_packed: bool,
1092 ) -> BlockOrExpr {
1093 assert!(selflike_args.len() == 1 || selflike_args.len() == 2);
1094
1095 let selflike_fields =
1096 trait_.create_struct_field_access_fields(cx, selflike_args, struct_def, is_packed);
1097 self.call_substructure_method(
1098 cx,
1099 trait_,
1100 type_ident,
1101 nonselflike_args,
1102 &Struct(struct_def, selflike_fields),
1103 )
1104 }
1105
1106 fn expand_static_struct_method_body(
1107 &self,
1108 cx: &ExtCtxt<'_>,
1109 trait_: &TraitDef<'_>,
1110 struct_def: &VariantData,
1111 type_ident: Ident,
1112 nonselflike_args: &[P<Expr>],
1113 ) -> BlockOrExpr {
1114 let summary = trait_.summarise_struct(cx, struct_def);
1115
1116 self.call_substructure_method(
1117 cx,
1118 trait_,
1119 type_ident,
1120 nonselflike_args,
1121 &StaticStruct(struct_def, summary),
1122 )
1123 }
1124
1125 /// ```
1126 /// #[derive(PartialEq)]
1127 /// # struct Dummy;
1128 /// enum A {
1129 /// A1,
1130 /// A2(i32)
1131 /// }
1132 /// ```
1133 ///
1134 /// is equivalent to:
1135 ///
1136 /// ```
1137 /// #![feature(core_intrinsics)]
1138 /// enum A {
1139 /// A1,
1140 /// A2(i32)
1141 /// }
1142 /// impl ::core::cmp::PartialEq for A {
1143 /// #[inline]
1144 /// fn eq(&self, other: &A) -> bool {
1145 /// let __self_discr = ::core::intrinsics::discriminant_value(self);
1146 /// let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1147 /// __self_discr == __arg1_discr
1148 /// && match (self, other) {
1149 /// (A::A2(__self_0), A::A2(__arg1_0)) => *__self_0 == *__arg1_0,
1150 /// _ => true,
1151 /// }
1152 /// }
1153 /// }
1154 /// ```
1155 ///
1156 /// Creates a discriminant check combined with a match for a tuple of all
1157 /// `selflike_args`, with an arm for each variant with fields, possibly an
1158 /// arm for each fieldless variant (if `unify_fieldless_variants` is not
1159 /// `Unify`), and possibly a default arm.
1160 fn expand_enum_method_body<'b>(
1161 &self,
1162 cx: &ExtCtxt<'_>,
1163 trait_: &TraitDef<'b>,
1164 enum_def: &'b EnumDef,
1165 type_ident: Ident,
1166 mut selflike_args: ThinVec<P<Expr>>,
1167 nonselflike_args: &[P<Expr>],
1168 ) -> BlockOrExpr {
1169 assert!(
1170 !selflike_args.is_empty(),
1171 "static methods must use `expand_static_enum_method_body`",
1172 );
1173
1174 let span = trait_.span;
1175 let variants = &enum_def.variants;
1176
1177 // Traits that unify fieldless variants always use the discriminant(s).
1178 let unify_fieldless_variants =
1179 self.fieldless_variants_strategy == FieldlessVariantsStrategy::Unify;
1180
1181 // For zero-variant enum, this function body is unreachable. Generate
1182 // `match *self {}`. This produces machine code identical to `unsafe {
1183 // core::intrinsics::unreachable() }` while being safe and stable.
1184 if variants.is_empty() {
1185 selflike_args.truncate(1);
1186 let match_arg = cx.expr_deref(span, selflike_args.pop().unwrap());
1187 let match_arms = ThinVec::new();
1188 let expr = cx.expr_match(span, match_arg, match_arms);
1189 return BlockOrExpr(ThinVec::new(), Some(expr));
1190 }
1191
1192 let prefixes = iter::once("__self".to_string())
1193 .chain(
1194 selflike_args
1195 .iter()
1196 .enumerate()
1197 .skip(1)
1198 .map(|(arg_count, _selflike_arg)| format!("__arg{arg_count}")),
1199 )
1200 .collect::<Vec<String>>();
1201
1202 // Build a series of let statements mapping each selflike_arg
1203 // to its discriminant value.
1204 //
1205 // e.g. for `PartialEq::eq` builds two statements:
1206 // ```
1207 // let __self_discr = ::core::intrinsics::discriminant_value(self);
1208 // let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1209 // ```
1210 let get_discr_pieces = |cx: &ExtCtxt<'_>| {
1211 let discr_idents: Vec<_> = prefixes
1212 .iter()
1213 .map(|name| Ident::from_str_and_span(&format!("{name}_discr"), span))
1214 .collect();
1215
1216 let mut discr_exprs: Vec<_> = discr_idents
1217 .iter()
1218 .map(|&ident| cx.expr_addr_of(span, cx.expr_ident(span, ident)))
1219 .collect();
1220
1221 let self_expr = discr_exprs.remove(0);
1222 let other_selflike_exprs = discr_exprs;
1223 let discr_field = FieldInfo { span, name: None, self_expr, other_selflike_exprs };
1224
1225 let discr_let_stmts: ThinVec<_> = iter::zip(&discr_idents, &selflike_args)
1226 .map(|(&ident, selflike_arg)| {
1227 let variant_value = deriving::call_intrinsic(
1228 cx,
1229 span,
1230 sym::discriminant_value,
1231 thin_vec![selflike_arg.clone()],
1232 );
1233 cx.stmt_let(span, false, ident, variant_value)
1234 })
1235 .collect();
1236
1237 (discr_field, discr_let_stmts)
1238 };
1239
1240 // There are some special cases involving fieldless enums where no
1241 // match is necessary.
1242 let all_fieldless = variants.iter().all(|v| v.data.fields().is_empty());
1243 if all_fieldless {
1244 if variants.len() > 1 {
1245 match self.fieldless_variants_strategy {
1246 FieldlessVariantsStrategy::Unify => {
1247 // If the type is fieldless and the trait uses the discriminant and
1248 // there are multiple variants, we need just an operation on
1249 // the discriminant(s).
1250 let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1251 let mut discr_check = self.call_substructure_method(
1252 cx,
1253 trait_,
1254 type_ident,
1255 nonselflike_args,
1256 &EnumDiscr(discr_field, None),
1257 );
1258 discr_let_stmts.append(&mut discr_check.0);
1259 return BlockOrExpr(discr_let_stmts, discr_check.1);
1260 }
1261 FieldlessVariantsStrategy::SpecializeIfAllVariantsFieldless => {
1262 return self.call_substructure_method(
1263 cx,
1264 trait_,
1265 type_ident,
1266 nonselflike_args,
1267 &AllFieldlessEnum(enum_def),
1268 );
1269 }
1270 FieldlessVariantsStrategy::Default => (),
1271 }
1272 } else if let [variant] = variants.as_slice() {
1273 // If there is a single variant, we don't need an operation on
1274 // the discriminant(s). Just use the most degenerate result.
1275 return self.call_substructure_method(
1276 cx,
1277 trait_,
1278 type_ident,
1279 nonselflike_args,
1280 &EnumMatching(variant, Vec::new()),
1281 );
1282 }
1283 }
1284
1285 // These arms are of the form:
1286 // (Variant1, Variant1, ...) => Body1
1287 // (Variant2, Variant2, ...) => Body2
1288 // ...
1289 // where each tuple has length = selflike_args.len()
1290 let mut match_arms: ThinVec<ast::Arm> = variants
1291 .iter()
1292 .filter(|&v| !(unify_fieldless_variants && v.data.fields().is_empty()))
1293 .map(|variant| {
1294 // A single arm has form (&VariantK, &VariantK, ...) => BodyK
1295 // (see "Final wrinkle" note below for why.)
1296
1297 let fields = trait_.create_struct_pattern_fields(cx, &variant.data, &prefixes);
1298
1299 let sp = variant.span.with_ctxt(trait_.span.ctxt());
1300 let variant_path = cx.path(sp, vec![type_ident, variant.ident]);
1301 let by_ref = ByRef::No; // because enums can't be repr(packed)
1302 let mut subpats = trait_.create_struct_patterns(
1303 cx,
1304 variant_path,
1305 &variant.data,
1306 &prefixes,
1307 by_ref,
1308 );
1309
1310 // `(VariantK, VariantK, ...)` or just `VariantK`.
1311 let single_pat = if subpats.len() == 1 {
1312 subpats.pop().unwrap()
1313 } else {
1314 cx.pat_tuple(span, subpats)
1315 };
1316
1317 // For the BodyK, we need to delegate to our caller,
1318 // passing it an EnumMatching to indicate which case
1319 // we are in.
1320 //
1321 // Now, for some given VariantK, we have built up
1322 // expressions for referencing every field of every
1323 // Self arg, assuming all are instances of VariantK.
1324 // Build up code associated with such a case.
1325 let substructure = EnumMatching(variant, fields);
1326 let arm_expr = self
1327 .call_substructure_method(
1328 cx,
1329 trait_,
1330 type_ident,
1331 nonselflike_args,
1332 &substructure,
1333 )
1334 .into_expr(cx, span);
1335
1336 cx.arm(span, single_pat, arm_expr)
1337 })
1338 .collect();
1339
1340 // Add a default arm to the match, if necessary.
1341 let first_fieldless = variants.iter().find(|v| v.data.fields().is_empty());
1342 let default = match first_fieldless {
1343 Some(v) if unify_fieldless_variants => {
1344 // We need a default case that handles all the fieldless
1345 // variants. The index and actual variant aren't meaningful in
1346 // this case, so just use dummy values.
1347 Some(
1348 self.call_substructure_method(
1349 cx,
1350 trait_,
1351 type_ident,
1352 nonselflike_args,
1353 &EnumMatching(v, Vec::new()),
1354 )
1355 .into_expr(cx, span),
1356 )
1357 }
1358 _ if variants.len() > 1 && selflike_args.len() > 1 => {
1359 // Because we know that all the arguments will match if we reach
1360 // the match expression we add the unreachable intrinsics as the
1361 // result of the default which should help llvm in optimizing it.
1362 Some(deriving::call_unreachable(cx, span))
1363 }
1364 _ => None,
1365 };
1366 if let Some(arm) = default {
1367 match_arms.push(cx.arm(span, cx.pat_wild(span), arm));
1368 }
1369
1370 // Create a match expression with one arm per discriminant plus
1371 // possibly a default arm, e.g.:
1372 // match (self, other) {
1373 // (Variant1, Variant1, ...) => Body1
1374 // (Variant2, Variant2, ...) => Body2,
1375 // ...
1376 // _ => ::core::intrinsics::unreachable(),
1377 // }
1378 let get_match_expr = |mut selflike_args: ThinVec<P<Expr>>| {
1379 let match_arg = if selflike_args.len() == 1 {
1380 selflike_args.pop().unwrap()
1381 } else {
1382 cx.expr(span, ast::ExprKind::Tup(selflike_args))
1383 };
1384 cx.expr_match(span, match_arg, match_arms)
1385 };
1386
1387 // If the trait uses the discriminant and there are multiple variants, we need
1388 // to add a discriminant check operation before the match. Otherwise, the match
1389 // is enough.
1390 if unify_fieldless_variants && variants.len() > 1 {
1391 let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1392
1393 // Combine a discriminant check with the match.
1394 let mut discr_check_plus_match = self.call_substructure_method(
1395 cx,
1396 trait_,
1397 type_ident,
1398 nonselflike_args,
1399 &EnumDiscr(discr_field, Some(get_match_expr(selflike_args))),
1400 );
1401 discr_let_stmts.append(&mut discr_check_plus_match.0);
1402 BlockOrExpr(discr_let_stmts, discr_check_plus_match.1)
1403 } else {
1404 BlockOrExpr(ThinVec::new(), Some(get_match_expr(selflike_args)))
1405 }
1406 }
1407
1408 fn expand_static_enum_method_body(
1409 &self,
1410 cx: &ExtCtxt<'_>,
1411 trait_: &TraitDef<'_>,
1412 enum_def: &EnumDef,
1413 type_ident: Ident,
1414 nonselflike_args: &[P<Expr>],
1415 ) -> BlockOrExpr {
1416 self.call_substructure_method(
1417 cx,
1418 trait_,
1419 type_ident,
1420 nonselflike_args,
1421 &StaticEnum(enum_def),
1422 )
1423 }
1424}
1425
1426// general helper methods.
1427impl<'a> TraitDef<'a> {
1428 fn summarise_struct(&self, cx: &ExtCtxt<'_>, struct_def: &VariantData) -> StaticFields {
1429 let mut named_idents = Vec::new();
1430 let mut just_spans = Vec::new();
1431 for field in struct_def.fields() {
1432 let sp = field.span.with_ctxt(self.span.ctxt());
1433 match field.ident {
1434 Some(ident) => named_idents.push((ident, sp, field.default.clone())),
1435 _ => just_spans.push(sp),
1436 }
1437 }
1438
1439 let is_tuple = match struct_def {
1440 ast::VariantData::Tuple(..) => IsTuple::Yes,
1441 _ => IsTuple::No,
1442 };
1443 match (just_spans.is_empty(), named_idents.is_empty()) {
1444 (false, false) => cx
1445 .dcx()
1446 .span_bug(self.span, "a struct with named and unnamed fields in generic `derive`"),
1447 // named fields
1448 (_, false) => Named(named_idents),
1449 // unnamed fields
1450 (false, _) => Unnamed(just_spans, is_tuple),
1451 // empty
1452 _ => Named(Vec::new()),
1453 }
1454 }
1455
1456 fn create_struct_patterns(
1457 &self,
1458 cx: &ExtCtxt<'_>,
1459 struct_path: ast::Path,
1460 struct_def: &'a VariantData,
1461 prefixes: &[String],
1462 by_ref: ByRef,
1463 ) -> ThinVec<P<ast::Pat>> {
1464 prefixes
1465 .iter()
1466 .map(|prefix| {
1467 let pieces_iter =
1468 struct_def.fields().iter().enumerate().map(|(i, struct_field)| {
1469 let sp = struct_field.span.with_ctxt(self.span.ctxt());
1470 let ident = self.mk_pattern_ident(prefix, i);
1471 let path = ident.with_span_pos(sp);
1472 (
1473 sp,
1474 struct_field.ident,
1475 cx.pat(
1476 path.span,
1477 PatKind::Ident(BindingMode(by_ref, Mutability::Not), path, None),
1478 ),
1479 )
1480 });
1481
1482 let struct_path = struct_path.clone();
1483 match *struct_def {
1484 VariantData::Struct { .. } => {
1485 let field_pats = pieces_iter
1486 .map(|(sp, ident, pat)| {
1487 if ident.is_none() {
1488 cx.dcx().span_bug(
1489 sp,
1490 "a braced struct with unnamed fields in `derive`",
1491 );
1492 }
1493 ast::PatField {
1494 ident: ident.unwrap(),
1495 is_shorthand: false,
1496 attrs: ast::AttrVec::new(),
1497 id: ast::DUMMY_NODE_ID,
1498 span: pat.span.with_ctxt(self.span.ctxt()),
1499 pat,
1500 is_placeholder: false,
1501 }
1502 })
1503 .collect();
1504 cx.pat_struct(self.span, struct_path, field_pats)
1505 }
1506 VariantData::Tuple(..) => {
1507 let subpats = pieces_iter.map(|(_, _, subpat)| subpat).collect();
1508 cx.pat_tuple_struct(self.span, struct_path, subpats)
1509 }
1510 VariantData::Unit(..) => cx.pat_path(self.span, struct_path),
1511 }
1512 })
1513 .collect()
1514 }
1515
1516 fn create_fields<F>(&self, struct_def: &'a VariantData, mk_exprs: F) -> Vec<FieldInfo>
1517 where
1518 F: Fn(usize, &ast::FieldDef, Span) -> Vec<P<ast::Expr>>,
1519 {
1520 struct_def
1521 .fields()
1522 .iter()
1523 .enumerate()
1524 .map(|(i, struct_field)| {
1525 // For this field, get an expr for each selflike_arg. E.g. for
1526 // `PartialEq::eq`, one for each of `&self` and `other`.
1527 let sp = struct_field.span.with_ctxt(self.span.ctxt());
1528 let mut exprs: Vec<_> = mk_exprs(i, struct_field, sp);
1529 let self_expr = exprs.remove(0);
1530 let other_selflike_exprs = exprs;
1531 FieldInfo {
1532 span: sp.with_ctxt(self.span.ctxt()),
1533 name: struct_field.ident,
1534 self_expr,
1535 other_selflike_exprs,
1536 }
1537 })
1538 .collect()
1539 }
1540
1541 fn mk_pattern_ident(&self, prefix: &str, i: usize) -> Ident {
1542 Ident::from_str_and_span(&format!("{prefix}_{i}"), self.span)
1543 }
1544
1545 fn create_struct_pattern_fields(
1546 &self,
1547 cx: &ExtCtxt<'_>,
1548 struct_def: &'a VariantData,
1549 prefixes: &[String],
1550 ) -> Vec<FieldInfo> {
1551 self.create_fields(struct_def, |i, _struct_field, sp| {
1552 prefixes
1553 .iter()
1554 .map(|prefix| {
1555 let ident = self.mk_pattern_ident(prefix, i);
1556 cx.expr_path(cx.path_ident(sp, ident))
1557 })
1558 .collect()
1559 })
1560 }
1561
1562 fn create_struct_field_access_fields(
1563 &self,
1564 cx: &ExtCtxt<'_>,
1565 selflike_args: &[P<Expr>],
1566 struct_def: &'a VariantData,
1567 is_packed: bool,
1568 ) -> Vec<FieldInfo> {
1569 self.create_fields(struct_def, |i, struct_field, sp| {
1570 selflike_args
1571 .iter()
1572 .map(|selflike_arg| {
1573 // Note: we must use `struct_field.span` rather than `sp` in the
1574 // `unwrap_or_else` case otherwise the hygiene is wrong and we get
1575 // "field `0` of struct `Point` is private" errors on tuple
1576 // structs.
1577 let mut field_expr = cx.expr(
1578 sp,
1579 ast::ExprKind::Field(
1580 selflike_arg.clone(),
1581 struct_field.ident.unwrap_or_else(|| {
1582 Ident::from_str_and_span(&i.to_string(), struct_field.span)
1583 }),
1584 ),
1585 );
1586 if is_packed {
1587 // Fields in packed structs are wrapped in a block, e.g. `&{self.0}`,
1588 // causing a copy instead of a (potentially misaligned) reference.
1589 field_expr = cx.expr_block(
1590 cx.block(struct_field.span, thin_vec![cx.stmt_expr(field_expr)]),
1591 );
1592 }
1593 cx.expr_addr_of(sp, field_expr)
1594 })
1595 .collect()
1596 })
1597 }
1598}
1599
1600/// The function passed to `cs_fold` is called repeatedly with a value of this
1601/// type. It describes one part of the code generation. The result is always an
1602/// expression.
1603pub(crate) enum CsFold<'a> {
1604 /// The basic case: a field expression for one or more selflike args. E.g.
1605 /// for `PartialEq::eq` this is something like `self.x == other.x`.
1606 Single(&'a FieldInfo),
1607
1608 /// The combination of two field expressions. E.g. for `PartialEq::eq` this
1609 /// is something like `<field1 equality> && <field2 equality>`.
1610 Combine(Span, P<Expr>, P<Expr>),
1611
1612 // The fallback case for a struct or enum variant with no fields.
1613 Fieldless,
1614}
1615
1616/// Folds over fields, combining the expressions for each field in a sequence.
1617/// Statics may not be folded over.
1618pub(crate) fn cs_fold<F>(
1619 use_foldl: bool,
1620 cx: &ExtCtxt<'_>,
1621 trait_span: Span,
1622 substructure: &Substructure<'_>,
1623 mut f: F,
1624) -> P<Expr>
1625where
1626 F: FnMut(&ExtCtxt<'_>, CsFold<'_>) -> P<Expr>,
1627{
1628 match substructure.fields {
1629 EnumMatching(.., all_fields) | Struct(_, all_fields) => {
1630 if all_fields.is_empty() {
1631 return f(cx, CsFold::Fieldless);
1632 }
1633
1634 let (base_field, rest) = if use_foldl {
1635 all_fields.split_first().unwrap()
1636 } else {
1637 all_fields.split_last().unwrap()
1638 };
1639
1640 let base_expr = f(cx, CsFold::Single(base_field));
1641
1642 let op = |old, field: &FieldInfo| {
1643 let new = f(cx, CsFold::Single(field));
1644 f(cx, CsFold::Combine(field.span, old, new))
1645 };
1646
1647 if use_foldl {
1648 rest.iter().fold(base_expr, op)
1649 } else {
1650 rest.iter().rfold(base_expr, op)
1651 }
1652 }
1653 EnumDiscr(discr_field, match_expr) => {
1654 let discr_check_expr = f(cx, CsFold::Single(discr_field));
1655 if let Some(match_expr) = match_expr {
1656 if use_foldl {
1657 f(cx, CsFold::Combine(trait_span, discr_check_expr, match_expr.clone()))
1658 } else {
1659 f(cx, CsFold::Combine(trait_span, match_expr.clone(), discr_check_expr))
1660 }
1661 } else {
1662 discr_check_expr
1663 }
1664 }
1665 StaticEnum(..) | StaticStruct(..) => {
1666 cx.dcx().span_bug(trait_span, "static function in `derive`")
1667 }
1668 AllFieldlessEnum(..) => cx.dcx().span_bug(trait_span, "fieldless enum in `derive`"),
1669 }
1670}