rustc_codegen_ssa/mir/
block.rs

1use std::cmp;
2
3use rustc_abi::{Align, BackendRepr, ExternAbi, HasDataLayout, Reg, Size, WrappingRange};
4use rustc_ast as ast;
5use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
6use rustc_data_structures::packed::Pu128;
7use rustc_hir::lang_items::LangItem;
8use rustc_middle::mir::{self, AssertKind, InlineAsmMacro, SwitchTargets, UnwindTerminateReason};
9use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, ValidityRequirement};
10use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths};
11use rustc_middle::ty::{self, Instance, Ty};
12use rustc_middle::{bug, span_bug};
13use rustc_session::config::OptLevel;
14use rustc_span::Span;
15use rustc_span::source_map::Spanned;
16use rustc_target::callconv::{ArgAbi, CastTarget, FnAbi, PassMode};
17use tracing::{debug, info};
18
19use super::operand::OperandRef;
20use super::operand::OperandValue::{Immediate, Pair, Ref, ZeroSized};
21use super::place::{PlaceRef, PlaceValue};
22use super::{CachedLlbb, FunctionCx, LocalRef};
23use crate::base::{self, is_call_from_compiler_builtins_to_upstream_monomorphization};
24use crate::common::{self, IntPredicate};
25use crate::errors::CompilerBuiltinsCannotCall;
26use crate::traits::*;
27use crate::{MemFlags, meth};
28
29// Indicates if we are in the middle of merging a BB's successor into it. This
30// can happen when BB jumps directly to its successor and the successor has no
31// other predecessors.
32#[derive(Debug, PartialEq)]
33enum MergingSucc {
34    False,
35    True,
36}
37
38/// Indicates to the call terminator codegen whether a cal
39/// is a normal call or an explicit tail call.
40#[derive(Debug, PartialEq)]
41enum CallKind {
42    Normal,
43    Tail,
44}
45
46/// Used by `FunctionCx::codegen_terminator` for emitting common patterns
47/// e.g., creating a basic block, calling a function, etc.
48struct TerminatorCodegenHelper<'tcx> {
49    bb: mir::BasicBlock,
50    terminator: &'tcx mir::Terminator<'tcx>,
51}
52
53impl<'a, 'tcx> TerminatorCodegenHelper<'tcx> {
54    /// Returns the appropriate `Funclet` for the current funclet, if on MSVC,
55    /// either already previously cached, or newly created, by `landing_pad_for`.
56    fn funclet<'b, Bx: BuilderMethods<'a, 'tcx>>(
57        &self,
58        fx: &'b mut FunctionCx<'a, 'tcx, Bx>,
59    ) -> Option<&'b Bx::Funclet> {
60        let cleanup_kinds = fx.cleanup_kinds.as_ref()?;
61        let funclet_bb = cleanup_kinds[self.bb].funclet_bb(self.bb)?;
62        // If `landing_pad_for` hasn't been called yet to create the `Funclet`,
63        // it has to be now. This may not seem necessary, as RPO should lead
64        // to all the unwind edges being visited (and so to `landing_pad_for`
65        // getting called for them), before building any of the blocks inside
66        // the funclet itself - however, if MIR contains edges that end up not
67        // being needed in the LLVM IR after monomorphization, the funclet may
68        // be unreachable, and we don't have yet a way to skip building it in
69        // such an eventuality (which may be a better solution than this).
70        if fx.funclets[funclet_bb].is_none() {
71            fx.landing_pad_for(funclet_bb);
72        }
73        Some(
74            fx.funclets[funclet_bb]
75                .as_ref()
76                .expect("landing_pad_for didn't also create funclets entry"),
77        )
78    }
79
80    /// Get a basic block (creating it if necessary), possibly with cleanup
81    /// stuff in it or next to it.
82    fn llbb_with_cleanup<Bx: BuilderMethods<'a, 'tcx>>(
83        &self,
84        fx: &mut FunctionCx<'a, 'tcx, Bx>,
85        target: mir::BasicBlock,
86    ) -> Bx::BasicBlock {
87        let (needs_landing_pad, is_cleanupret) = self.llbb_characteristics(fx, target);
88        let mut lltarget = fx.llbb(target);
89        if needs_landing_pad {
90            lltarget = fx.landing_pad_for(target);
91        }
92        if is_cleanupret {
93            // Cross-funclet jump - need a trampoline
94            assert!(base::wants_new_eh_instructions(fx.cx.tcx().sess));
95            debug!("llbb_with_cleanup: creating cleanup trampoline for {:?}", target);
96            let name = &format!("{:?}_cleanup_trampoline_{:?}", self.bb, target);
97            let trampoline_llbb = Bx::append_block(fx.cx, fx.llfn, name);
98            let mut trampoline_bx = Bx::build(fx.cx, trampoline_llbb);
99            trampoline_bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
100            trampoline_llbb
101        } else {
102            lltarget
103        }
104    }
105
106    fn llbb_characteristics<Bx: BuilderMethods<'a, 'tcx>>(
107        &self,
108        fx: &mut FunctionCx<'a, 'tcx, Bx>,
109        target: mir::BasicBlock,
110    ) -> (bool, bool) {
111        if let Some(ref cleanup_kinds) = fx.cleanup_kinds {
112            let funclet_bb = cleanup_kinds[self.bb].funclet_bb(self.bb);
113            let target_funclet = cleanup_kinds[target].funclet_bb(target);
114            let (needs_landing_pad, is_cleanupret) = match (funclet_bb, target_funclet) {
115                (None, None) => (false, false),
116                (None, Some(_)) => (true, false),
117                (Some(f), Some(t_f)) => (f != t_f, f != t_f),
118                (Some(_), None) => {
119                    let span = self.terminator.source_info.span;
120                    span_bug!(span, "{:?} - jump out of cleanup?", self.terminator);
121                }
122            };
123            (needs_landing_pad, is_cleanupret)
124        } else {
125            let needs_landing_pad = !fx.mir[self.bb].is_cleanup && fx.mir[target].is_cleanup;
126            let is_cleanupret = false;
127            (needs_landing_pad, is_cleanupret)
128        }
129    }
130
131    fn funclet_br<Bx: BuilderMethods<'a, 'tcx>>(
132        &self,
133        fx: &mut FunctionCx<'a, 'tcx, Bx>,
134        bx: &mut Bx,
135        target: mir::BasicBlock,
136        mergeable_succ: bool,
137    ) -> MergingSucc {
138        let (needs_landing_pad, is_cleanupret) = self.llbb_characteristics(fx, target);
139        if mergeable_succ && !needs_landing_pad && !is_cleanupret {
140            // We can merge the successor into this bb, so no need for a `br`.
141            MergingSucc::True
142        } else {
143            let mut lltarget = fx.llbb(target);
144            if needs_landing_pad {
145                lltarget = fx.landing_pad_for(target);
146            }
147            if is_cleanupret {
148                // micro-optimization: generate a `ret` rather than a jump
149                // to a trampoline.
150                bx.cleanup_ret(self.funclet(fx).unwrap(), Some(lltarget));
151            } else {
152                bx.br(lltarget);
153            }
154            MergingSucc::False
155        }
156    }
157
158    /// Call `fn_ptr` of `fn_abi` with the arguments `llargs`, the optional
159    /// return destination `destination` and the unwind action `unwind`.
160    fn do_call<Bx: BuilderMethods<'a, 'tcx>>(
161        &self,
162        fx: &mut FunctionCx<'a, 'tcx, Bx>,
163        bx: &mut Bx,
164        fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
165        fn_ptr: Bx::Value,
166        llargs: &[Bx::Value],
167        destination: Option<(ReturnDest<'tcx, Bx::Value>, mir::BasicBlock)>,
168        mut unwind: mir::UnwindAction,
169        lifetime_ends_after_call: &[(Bx::Value, Size)],
170        instance: Option<Instance<'tcx>>,
171        kind: CallKind,
172        mergeable_succ: bool,
173    ) -> MergingSucc {
174        let tcx = bx.tcx();
175        if let Some(instance) = instance
176            && is_call_from_compiler_builtins_to_upstream_monomorphization(tcx, instance)
177        {
178            if destination.is_some() {
179                let caller_def = fx.instance.def_id();
180                let e = CompilerBuiltinsCannotCall {
181                    span: tcx.def_span(caller_def),
182                    caller: with_no_trimmed_paths!(tcx.def_path_str(caller_def)),
183                    callee: with_no_trimmed_paths!(tcx.def_path_str(instance.def_id())),
184                };
185                tcx.dcx().emit_err(e);
186            } else {
187                info!(
188                    "compiler_builtins call to diverging function {:?} replaced with abort",
189                    instance.def_id()
190                );
191                bx.abort();
192                bx.unreachable();
193                return MergingSucc::False;
194            }
195        }
196
197        // If there is a cleanup block and the function we're calling can unwind, then
198        // do an invoke, otherwise do a call.
199        let fn_ty = bx.fn_decl_backend_type(fn_abi);
200
201        let fn_attrs = if bx.tcx().def_kind(fx.instance.def_id()).has_codegen_attrs() {
202            Some(bx.tcx().codegen_fn_attrs(fx.instance.def_id()))
203        } else {
204            None
205        };
206
207        if !fn_abi.can_unwind {
208            unwind = mir::UnwindAction::Unreachable;
209        }
210
211        let unwind_block = match unwind {
212            mir::UnwindAction::Cleanup(cleanup) => Some(self.llbb_with_cleanup(fx, cleanup)),
213            mir::UnwindAction::Continue => None,
214            mir::UnwindAction::Unreachable => None,
215            mir::UnwindAction::Terminate(reason) => {
216                if fx.mir[self.bb].is_cleanup && base::wants_new_eh_instructions(fx.cx.tcx().sess) {
217                    // MSVC SEH will abort automatically if an exception tries to
218                    // propagate out from cleanup.
219
220                    // FIXME(@mirkootter): For wasm, we currently do not support terminate during
221                    // cleanup, because this requires a few more changes: The current code
222                    // caches the `terminate_block` for each function; funclet based code - however -
223                    // requires a different terminate_block for each funclet
224                    // Until this is implemented, we just do not unwind inside cleanup blocks
225
226                    None
227                } else {
228                    Some(fx.terminate_block(reason))
229                }
230            }
231        };
232
233        if kind == CallKind::Tail {
234            bx.tail_call(fn_ty, fn_attrs, fn_abi, fn_ptr, llargs, self.funclet(fx), instance);
235            return MergingSucc::False;
236        }
237
238        if let Some(unwind_block) = unwind_block {
239            let ret_llbb = if let Some((_, target)) = destination {
240                fx.llbb(target)
241            } else {
242                fx.unreachable_block()
243            };
244            let invokeret = bx.invoke(
245                fn_ty,
246                fn_attrs,
247                Some(fn_abi),
248                fn_ptr,
249                llargs,
250                ret_llbb,
251                unwind_block,
252                self.funclet(fx),
253                instance,
254            );
255            if fx.mir[self.bb].is_cleanup {
256                bx.apply_attrs_to_cleanup_callsite(invokeret);
257            }
258
259            if let Some((ret_dest, target)) = destination {
260                bx.switch_to_block(fx.llbb(target));
261                fx.set_debug_loc(bx, self.terminator.source_info);
262                for &(tmp, size) in lifetime_ends_after_call {
263                    bx.lifetime_end(tmp, size);
264                }
265                fx.store_return(bx, ret_dest, &fn_abi.ret, invokeret);
266            }
267            MergingSucc::False
268        } else {
269            let llret =
270                bx.call(fn_ty, fn_attrs, Some(fn_abi), fn_ptr, llargs, self.funclet(fx), instance);
271            if fx.mir[self.bb].is_cleanup {
272                bx.apply_attrs_to_cleanup_callsite(llret);
273            }
274
275            if let Some((ret_dest, target)) = destination {
276                for &(tmp, size) in lifetime_ends_after_call {
277                    bx.lifetime_end(tmp, size);
278                }
279                fx.store_return(bx, ret_dest, &fn_abi.ret, llret);
280                self.funclet_br(fx, bx, target, mergeable_succ)
281            } else {
282                bx.unreachable();
283                MergingSucc::False
284            }
285        }
286    }
287
288    /// Generates inline assembly with optional `destination` and `unwind`.
289    fn do_inlineasm<Bx: BuilderMethods<'a, 'tcx>>(
290        &self,
291        fx: &mut FunctionCx<'a, 'tcx, Bx>,
292        bx: &mut Bx,
293        template: &[InlineAsmTemplatePiece],
294        operands: &[InlineAsmOperandRef<'tcx, Bx>],
295        options: InlineAsmOptions,
296        line_spans: &[Span],
297        destination: Option<mir::BasicBlock>,
298        unwind: mir::UnwindAction,
299        instance: Instance<'_>,
300        mergeable_succ: bool,
301    ) -> MergingSucc {
302        let unwind_target = match unwind {
303            mir::UnwindAction::Cleanup(cleanup) => Some(self.llbb_with_cleanup(fx, cleanup)),
304            mir::UnwindAction::Terminate(reason) => Some(fx.terminate_block(reason)),
305            mir::UnwindAction::Continue => None,
306            mir::UnwindAction::Unreachable => None,
307        };
308
309        if operands.iter().any(|x| matches!(x, InlineAsmOperandRef::Label { .. })) {
310            assert!(unwind_target.is_none());
311            let ret_llbb = if let Some(target) = destination {
312                fx.llbb(target)
313            } else {
314                fx.unreachable_block()
315            };
316
317            bx.codegen_inline_asm(
318                template,
319                operands,
320                options,
321                line_spans,
322                instance,
323                Some(ret_llbb),
324                None,
325            );
326            MergingSucc::False
327        } else if let Some(cleanup) = unwind_target {
328            let ret_llbb = if let Some(target) = destination {
329                fx.llbb(target)
330            } else {
331                fx.unreachable_block()
332            };
333
334            bx.codegen_inline_asm(
335                template,
336                operands,
337                options,
338                line_spans,
339                instance,
340                Some(ret_llbb),
341                Some((cleanup, self.funclet(fx))),
342            );
343            MergingSucc::False
344        } else {
345            bx.codegen_inline_asm(template, operands, options, line_spans, instance, None, None);
346
347            if let Some(target) = destination {
348                self.funclet_br(fx, bx, target, mergeable_succ)
349            } else {
350                bx.unreachable();
351                MergingSucc::False
352            }
353        }
354    }
355}
356
357/// Codegen implementations for some terminator variants.
358impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
359    /// Generates code for a `Resume` terminator.
360    fn codegen_resume_terminator(&mut self, helper: TerminatorCodegenHelper<'tcx>, bx: &mut Bx) {
361        if let Some(funclet) = helper.funclet(self) {
362            bx.cleanup_ret(funclet, None);
363        } else {
364            let slot = self.get_personality_slot(bx);
365            let exn0 = slot.project_field(bx, 0);
366            let exn0 = bx.load_operand(exn0).immediate();
367            let exn1 = slot.project_field(bx, 1);
368            let exn1 = bx.load_operand(exn1).immediate();
369            slot.storage_dead(bx);
370
371            bx.resume(exn0, exn1);
372        }
373    }
374
375    fn codegen_switchint_terminator(
376        &mut self,
377        helper: TerminatorCodegenHelper<'tcx>,
378        bx: &mut Bx,
379        discr: &mir::Operand<'tcx>,
380        targets: &SwitchTargets,
381    ) {
382        let discr = self.codegen_operand(bx, discr);
383        let discr_value = discr.immediate();
384        let switch_ty = discr.layout.ty;
385        // If our discriminant is a constant we can branch directly
386        if let Some(const_discr) = bx.const_to_opt_u128(discr_value, false) {
387            let target = targets.target_for_value(const_discr);
388            bx.br(helper.llbb_with_cleanup(self, target));
389            return;
390        };
391
392        let mut target_iter = targets.iter();
393        if target_iter.len() == 1 {
394            // If there are two targets (one conditional, one fallback), emit `br` instead of
395            // `switch`.
396            let (test_value, target) = target_iter.next().unwrap();
397            let otherwise = targets.otherwise();
398            let lltarget = helper.llbb_with_cleanup(self, target);
399            let llotherwise = helper.llbb_with_cleanup(self, otherwise);
400            let target_cold = self.cold_blocks[target];
401            let otherwise_cold = self.cold_blocks[otherwise];
402            // If `target_cold == otherwise_cold`, the branches have the same weight
403            // so there is no expectation. If they differ, the `target` branch is expected
404            // when the `otherwise` branch is cold.
405            let expect = if target_cold == otherwise_cold { None } else { Some(otherwise_cold) };
406            if switch_ty == bx.tcx().types.bool {
407                // Don't generate trivial icmps when switching on bool.
408                match test_value {
409                    0 => {
410                        let expect = expect.map(|e| !e);
411                        bx.cond_br_with_expect(discr_value, llotherwise, lltarget, expect);
412                    }
413                    1 => {
414                        bx.cond_br_with_expect(discr_value, lltarget, llotherwise, expect);
415                    }
416                    _ => bug!(),
417                }
418            } else {
419                let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
420                let llval = bx.const_uint_big(switch_llty, test_value);
421                let cmp = bx.icmp(IntPredicate::IntEQ, discr_value, llval);
422                bx.cond_br_with_expect(cmp, lltarget, llotherwise, expect);
423            }
424        } else if target_iter.len() == 2
425            && self.mir[targets.otherwise()].is_empty_unreachable()
426            && targets.all_values().contains(&Pu128(0))
427            && targets.all_values().contains(&Pu128(1))
428        {
429            // This is the really common case for `bool`, `Option`, etc.
430            // By using `trunc nuw` we communicate that other values are
431            // impossible without needing `switch` or `assume`s.
432            let true_bb = targets.target_for_value(1);
433            let false_bb = targets.target_for_value(0);
434            let true_ll = helper.llbb_with_cleanup(self, true_bb);
435            let false_ll = helper.llbb_with_cleanup(self, false_bb);
436
437            let expected_cond_value = if self.cx.sess().opts.optimize == OptLevel::No {
438                None
439            } else {
440                match (self.cold_blocks[true_bb], self.cold_blocks[false_bb]) {
441                    // Same coldness, no expectation
442                    (true, true) | (false, false) => None,
443                    // Different coldness, expect the non-cold one
444                    (true, false) => Some(false),
445                    (false, true) => Some(true),
446                }
447            };
448
449            let bool_ty = bx.tcx().types.bool;
450            let cond = if switch_ty == bool_ty {
451                discr_value
452            } else {
453                let bool_llty = bx.immediate_backend_type(bx.layout_of(bool_ty));
454                bx.unchecked_utrunc(discr_value, bool_llty)
455            };
456            bx.cond_br_with_expect(cond, true_ll, false_ll, expected_cond_value);
457        } else if self.cx.sess().opts.optimize == OptLevel::No
458            && target_iter.len() == 2
459            && self.mir[targets.otherwise()].is_empty_unreachable()
460        {
461            // In unoptimized builds, if there are two normal targets and the `otherwise` target is
462            // an unreachable BB, emit `br` instead of `switch`. This leaves behind the unreachable
463            // BB, which will usually (but not always) be dead code.
464            //
465            // Why only in unoptimized builds?
466            // - In unoptimized builds LLVM uses FastISel which does not support switches, so it
467            //   must fall back to the slower SelectionDAG isel. Therefore, using `br` gives
468            //   significant compile time speedups for unoptimized builds.
469            // - In optimized builds the above doesn't hold, and using `br` sometimes results in
470            //   worse generated code because LLVM can no longer tell that the value being switched
471            //   on can only have two values, e.g. 0 and 1.
472            //
473            let (test_value1, target1) = target_iter.next().unwrap();
474            let (_test_value2, target2) = target_iter.next().unwrap();
475            let ll1 = helper.llbb_with_cleanup(self, target1);
476            let ll2 = helper.llbb_with_cleanup(self, target2);
477            let switch_llty = bx.immediate_backend_type(bx.layout_of(switch_ty));
478            let llval = bx.const_uint_big(switch_llty, test_value1);
479            let cmp = bx.icmp(IntPredicate::IntEQ, discr_value, llval);
480            bx.cond_br(cmp, ll1, ll2);
481        } else {
482            let otherwise = targets.otherwise();
483            let otherwise_cold = self.cold_blocks[otherwise];
484            let otherwise_unreachable = self.mir[otherwise].is_empty_unreachable();
485            let cold_count = targets.iter().filter(|(_, target)| self.cold_blocks[*target]).count();
486            let none_cold = cold_count == 0;
487            let all_cold = cold_count == targets.iter().len();
488            if (none_cold && (!otherwise_cold || otherwise_unreachable))
489                || (all_cold && (otherwise_cold || otherwise_unreachable))
490            {
491                // All targets have the same weight,
492                // or `otherwise` is unreachable and it's the only target with a different weight.
493                bx.switch(
494                    discr_value,
495                    helper.llbb_with_cleanup(self, targets.otherwise()),
496                    target_iter
497                        .map(|(value, target)| (value, helper.llbb_with_cleanup(self, target))),
498                );
499            } else {
500                // Targets have different weights
501                bx.switch_with_weights(
502                    discr_value,
503                    helper.llbb_with_cleanup(self, targets.otherwise()),
504                    otherwise_cold,
505                    target_iter.map(|(value, target)| {
506                        (value, helper.llbb_with_cleanup(self, target), self.cold_blocks[target])
507                    }),
508                );
509            }
510        }
511    }
512
513    fn codegen_return_terminator(&mut self, bx: &mut Bx) {
514        // Call `va_end` if this is the definition of a C-variadic function.
515        if self.fn_abi.c_variadic {
516            // The `VaList` "spoofed" argument is just after all the real arguments.
517            let va_list_arg_idx = self.fn_abi.args.len();
518            match self.locals[mir::Local::from_usize(1 + va_list_arg_idx)] {
519                LocalRef::Place(va_list) => {
520                    bx.va_end(va_list.val.llval);
521                }
522                _ => bug!("C-variadic function must have a `VaList` place"),
523            }
524        }
525        if self.fn_abi.ret.layout.is_uninhabited() {
526            // Functions with uninhabited return values are marked `noreturn`,
527            // so we should make sure that we never actually do.
528            // We play it safe by using a well-defined `abort`, but we could go for immediate UB
529            // if that turns out to be helpful.
530            bx.abort();
531            // `abort` does not terminate the block, so we still need to generate
532            // an `unreachable` terminator after it.
533            bx.unreachable();
534            return;
535        }
536        let llval = match &self.fn_abi.ret.mode {
537            PassMode::Ignore | PassMode::Indirect { .. } => {
538                bx.ret_void();
539                return;
540            }
541
542            PassMode::Direct(_) | PassMode::Pair(..) => {
543                let op = self.codegen_consume(bx, mir::Place::return_place().as_ref());
544                if let Ref(place_val) = op.val {
545                    bx.load_from_place(bx.backend_type(op.layout), place_val)
546                } else {
547                    op.immediate_or_packed_pair(bx)
548                }
549            }
550
551            PassMode::Cast { cast: cast_ty, pad_i32: _ } => {
552                let op = match self.locals[mir::RETURN_PLACE] {
553                    LocalRef::Operand(op) => op,
554                    LocalRef::PendingOperand => bug!("use of return before def"),
555                    LocalRef::Place(cg_place) => {
556                        OperandRef { val: Ref(cg_place.val), layout: cg_place.layout }
557                    }
558                    LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
559                };
560                let llslot = match op.val {
561                    Immediate(_) | Pair(..) => {
562                        let scratch = PlaceRef::alloca(bx, self.fn_abi.ret.layout);
563                        op.val.store(bx, scratch);
564                        scratch.val.llval
565                    }
566                    Ref(place_val) => {
567                        assert_eq!(
568                            place_val.align, op.layout.align.abi,
569                            "return place is unaligned!"
570                        );
571                        place_val.llval
572                    }
573                    ZeroSized => bug!("ZST return value shouldn't be in PassMode::Cast"),
574                };
575                load_cast(bx, cast_ty, llslot, self.fn_abi.ret.layout.align.abi)
576            }
577        };
578        bx.ret(llval);
579    }
580
581    #[tracing::instrument(level = "trace", skip(self, helper, bx))]
582    fn codegen_drop_terminator(
583        &mut self,
584        helper: TerminatorCodegenHelper<'tcx>,
585        bx: &mut Bx,
586        source_info: &mir::SourceInfo,
587        location: mir::Place<'tcx>,
588        target: mir::BasicBlock,
589        unwind: mir::UnwindAction,
590        mergeable_succ: bool,
591    ) -> MergingSucc {
592        let ty = location.ty(self.mir, bx.tcx()).ty;
593        let ty = self.monomorphize(ty);
594        let drop_fn = Instance::resolve_drop_in_place(bx.tcx(), ty);
595
596        if let ty::InstanceKind::DropGlue(_, None) = drop_fn.def {
597            // we don't actually need to drop anything.
598            return helper.funclet_br(self, bx, target, mergeable_succ);
599        }
600
601        let place = self.codegen_place(bx, location.as_ref());
602        let (args1, args2);
603        let mut args = if let Some(llextra) = place.val.llextra {
604            args2 = [place.val.llval, llextra];
605            &args2[..]
606        } else {
607            args1 = [place.val.llval];
608            &args1[..]
609        };
610        let (maybe_null, drop_fn, fn_abi, drop_instance) = match ty.kind() {
611            // FIXME(eddyb) perhaps move some of this logic into
612            // `Instance::resolve_drop_in_place`?
613            ty::Dynamic(_, _, ty::Dyn) => {
614                // IN THIS ARM, WE HAVE:
615                // ty = *mut (dyn Trait)
616                // which is: exists<T> ( *mut T,    Vtable<T: Trait> )
617                //                       args[0]    args[1]
618                //
619                // args = ( Data, Vtable )
620                //                  |
621                //                  v
622                //                /-------\
623                //                | ...   |
624                //                \-------/
625                //
626                let virtual_drop = Instance {
627                    def: ty::InstanceKind::Virtual(drop_fn.def_id(), 0), // idx 0: the drop function
628                    args: drop_fn.args,
629                };
630                debug!("ty = {:?}", ty);
631                debug!("drop_fn = {:?}", drop_fn);
632                debug!("args = {:?}", args);
633                let fn_abi = bx.fn_abi_of_instance(virtual_drop, ty::List::empty());
634                let vtable = args[1];
635                // Truncate vtable off of args list
636                args = &args[..1];
637                (
638                    true,
639                    meth::VirtualIndex::from_index(ty::COMMON_VTABLE_ENTRIES_DROPINPLACE)
640                        .get_optional_fn(bx, vtable, ty, fn_abi),
641                    fn_abi,
642                    virtual_drop,
643                )
644            }
645            _ => (
646                false,
647                bx.get_fn_addr(drop_fn),
648                bx.fn_abi_of_instance(drop_fn, ty::List::empty()),
649                drop_fn,
650            ),
651        };
652
653        // We generate a null check for the drop_fn. This saves a bunch of relocations being
654        // generated for no-op drops.
655        if maybe_null {
656            let is_not_null = bx.append_sibling_block("is_not_null");
657            let llty = bx.fn_ptr_backend_type(fn_abi);
658            let null = bx.const_null(llty);
659            let non_null =
660                bx.icmp(base::bin_op_to_icmp_predicate(mir::BinOp::Ne, false), drop_fn, null);
661            bx.cond_br(non_null, is_not_null, helper.llbb_with_cleanup(self, target));
662            bx.switch_to_block(is_not_null);
663            self.set_debug_loc(bx, *source_info);
664        }
665
666        helper.do_call(
667            self,
668            bx,
669            fn_abi,
670            drop_fn,
671            args,
672            Some((ReturnDest::Nothing, target)),
673            unwind,
674            &[],
675            Some(drop_instance),
676            CallKind::Normal,
677            !maybe_null && mergeable_succ,
678        )
679    }
680
681    fn codegen_assert_terminator(
682        &mut self,
683        helper: TerminatorCodegenHelper<'tcx>,
684        bx: &mut Bx,
685        terminator: &mir::Terminator<'tcx>,
686        cond: &mir::Operand<'tcx>,
687        expected: bool,
688        msg: &mir::AssertMessage<'tcx>,
689        target: mir::BasicBlock,
690        unwind: mir::UnwindAction,
691        mergeable_succ: bool,
692    ) -> MergingSucc {
693        let span = terminator.source_info.span;
694        let cond = self.codegen_operand(bx, cond).immediate();
695        let mut const_cond = bx.const_to_opt_u128(cond, false).map(|c| c == 1);
696
697        // This case can currently arise only from functions marked
698        // with #[rustc_inherit_overflow_checks] and inlined from
699        // another crate (mostly core::num generic/#[inline] fns),
700        // while the current crate doesn't use overflow checks.
701        if !bx.sess().overflow_checks() && msg.is_optional_overflow_check() {
702            const_cond = Some(expected);
703        }
704
705        // Don't codegen the panic block if success if known.
706        if const_cond == Some(expected) {
707            return helper.funclet_br(self, bx, target, mergeable_succ);
708        }
709
710        // Because we're branching to a panic block (either a `#[cold]` one
711        // or an inlined abort), there's no need to `expect` it.
712
713        // Create the failure block and the conditional branch to it.
714        let lltarget = helper.llbb_with_cleanup(self, target);
715        let panic_block = bx.append_sibling_block("panic");
716        if expected {
717            bx.cond_br(cond, lltarget, panic_block);
718        } else {
719            bx.cond_br(cond, panic_block, lltarget);
720        }
721
722        // After this point, bx is the block for the call to panic.
723        bx.switch_to_block(panic_block);
724        self.set_debug_loc(bx, terminator.source_info);
725
726        // Get the location information.
727        let location = self.get_caller_location(bx, terminator.source_info).immediate();
728
729        // Put together the arguments to the panic entry point.
730        let (lang_item, args) = match msg {
731            AssertKind::BoundsCheck { len, index } => {
732                let len = self.codegen_operand(bx, len).immediate();
733                let index = self.codegen_operand(bx, index).immediate();
734                // It's `fn panic_bounds_check(index: usize, len: usize)`,
735                // and `#[track_caller]` adds an implicit third argument.
736                (LangItem::PanicBoundsCheck, vec![index, len, location])
737            }
738            AssertKind::MisalignedPointerDereference { required, found } => {
739                let required = self.codegen_operand(bx, required).immediate();
740                let found = self.codegen_operand(bx, found).immediate();
741                // It's `fn panic_misaligned_pointer_dereference(required: usize, found: usize)`,
742                // and `#[track_caller]` adds an implicit third argument.
743                (LangItem::PanicMisalignedPointerDereference, vec![required, found, location])
744            }
745            AssertKind::NullPointerDereference => {
746                // It's `fn panic_null_pointer_dereference()`,
747                // `#[track_caller]` adds an implicit argument.
748                (LangItem::PanicNullPointerDereference, vec![location])
749            }
750            AssertKind::InvalidEnumConstruction(source) => {
751                let source = self.codegen_operand(bx, source).immediate();
752                // It's `fn panic_invalid_enum_construction(source: u128)`,
753                // `#[track_caller]` adds an implicit argument.
754                (LangItem::PanicInvalidEnumConstruction, vec![source, location])
755            }
756            _ => {
757                // It's `pub fn panic_...()` and `#[track_caller]` adds an implicit argument.
758                (msg.panic_function(), vec![location])
759            }
760        };
761
762        let (fn_abi, llfn, instance) = common::build_langcall(bx, span, lang_item);
763
764        // Codegen the actual panic invoke/call.
765        let merging_succ = helper.do_call(
766            self,
767            bx,
768            fn_abi,
769            llfn,
770            &args,
771            None,
772            unwind,
773            &[],
774            Some(instance),
775            CallKind::Normal,
776            false,
777        );
778        assert_eq!(merging_succ, MergingSucc::False);
779        MergingSucc::False
780    }
781
782    fn codegen_terminate_terminator(
783        &mut self,
784        helper: TerminatorCodegenHelper<'tcx>,
785        bx: &mut Bx,
786        terminator: &mir::Terminator<'tcx>,
787        reason: UnwindTerminateReason,
788    ) {
789        let span = terminator.source_info.span;
790        self.set_debug_loc(bx, terminator.source_info);
791
792        // Obtain the panic entry point.
793        let (fn_abi, llfn, instance) = common::build_langcall(bx, span, reason.lang_item());
794
795        // Codegen the actual panic invoke/call.
796        let merging_succ = helper.do_call(
797            self,
798            bx,
799            fn_abi,
800            llfn,
801            &[],
802            None,
803            mir::UnwindAction::Unreachable,
804            &[],
805            Some(instance),
806            CallKind::Normal,
807            false,
808        );
809        assert_eq!(merging_succ, MergingSucc::False);
810    }
811
812    /// Returns `Some` if this is indeed a panic intrinsic and codegen is done.
813    fn codegen_panic_intrinsic(
814        &mut self,
815        helper: &TerminatorCodegenHelper<'tcx>,
816        bx: &mut Bx,
817        intrinsic: ty::IntrinsicDef,
818        instance: Instance<'tcx>,
819        source_info: mir::SourceInfo,
820        target: Option<mir::BasicBlock>,
821        unwind: mir::UnwindAction,
822        mergeable_succ: bool,
823    ) -> Option<MergingSucc> {
824        // Emit a panic or a no-op for `assert_*` intrinsics.
825        // These are intrinsics that compile to panics so that we can get a message
826        // which mentions the offending type, even from a const context.
827        let Some(requirement) = ValidityRequirement::from_intrinsic(intrinsic.name) else {
828            return None;
829        };
830
831        let ty = instance.args.type_at(0);
832
833        let is_valid = bx
834            .tcx()
835            .check_validity_requirement((requirement, bx.typing_env().as_query_input(ty)))
836            .expect("expect to have layout during codegen");
837
838        if is_valid {
839            // a NOP
840            let target = target.unwrap();
841            return Some(helper.funclet_br(self, bx, target, mergeable_succ));
842        }
843
844        let layout = bx.layout_of(ty);
845
846        let msg_str = with_no_visible_paths!({
847            with_no_trimmed_paths!({
848                if layout.is_uninhabited() {
849                    // Use this error even for the other intrinsics as it is more precise.
850                    format!("attempted to instantiate uninhabited type `{ty}`")
851                } else if requirement == ValidityRequirement::Zero {
852                    format!("attempted to zero-initialize type `{ty}`, which is invalid")
853                } else {
854                    format!("attempted to leave type `{ty}` uninitialized, which is invalid")
855                }
856            })
857        });
858        let msg = bx.const_str(&msg_str);
859
860        // Obtain the panic entry point.
861        let (fn_abi, llfn, instance) =
862            common::build_langcall(bx, source_info.span, LangItem::PanicNounwind);
863
864        // Codegen the actual panic invoke/call.
865        Some(helper.do_call(
866            self,
867            bx,
868            fn_abi,
869            llfn,
870            &[msg.0, msg.1],
871            target.as_ref().map(|bb| (ReturnDest::Nothing, *bb)),
872            unwind,
873            &[],
874            Some(instance),
875            CallKind::Normal,
876            mergeable_succ,
877        ))
878    }
879
880    fn codegen_call_terminator(
881        &mut self,
882        helper: TerminatorCodegenHelper<'tcx>,
883        bx: &mut Bx,
884        terminator: &mir::Terminator<'tcx>,
885        func: &mir::Operand<'tcx>,
886        args: &[Spanned<mir::Operand<'tcx>>],
887        destination: mir::Place<'tcx>,
888        target: Option<mir::BasicBlock>,
889        unwind: mir::UnwindAction,
890        fn_span: Span,
891        kind: CallKind,
892        mergeable_succ: bool,
893    ) -> MergingSucc {
894        let source_info = mir::SourceInfo { span: fn_span, ..terminator.source_info };
895
896        // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
897        let callee = self.codegen_operand(bx, func);
898
899        let (instance, mut llfn) = match *callee.layout.ty.kind() {
900            ty::FnDef(def_id, generic_args) => {
901                let instance = ty::Instance::expect_resolve(
902                    bx.tcx(),
903                    bx.typing_env(),
904                    def_id,
905                    generic_args,
906                    fn_span,
907                );
908
909                let instance = match instance.def {
910                    // We don't need AsyncDropGlueCtorShim here because it is not `noop func`,
911                    // it is `func returning noop future`
912                    ty::InstanceKind::DropGlue(_, None) => {
913                        // Empty drop glue; a no-op.
914                        let target = target.unwrap();
915                        return helper.funclet_br(self, bx, target, mergeable_succ);
916                    }
917                    ty::InstanceKind::Intrinsic(def_id) => {
918                        let intrinsic = bx.tcx().intrinsic(def_id).unwrap();
919                        if let Some(merging_succ) = self.codegen_panic_intrinsic(
920                            &helper,
921                            bx,
922                            intrinsic,
923                            instance,
924                            source_info,
925                            target,
926                            unwind,
927                            mergeable_succ,
928                        ) {
929                            return merging_succ;
930                        }
931
932                        let result_layout =
933                            self.cx.layout_of(self.monomorphized_place_ty(destination.as_ref()));
934
935                        let (result, store_in_local) = if result_layout.is_zst() {
936                            (
937                                PlaceRef::new_sized(bx.const_undef(bx.type_ptr()), result_layout),
938                                None,
939                            )
940                        } else if let Some(local) = destination.as_local() {
941                            match self.locals[local] {
942                                LocalRef::Place(dest) => (dest, None),
943                                LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
944                                LocalRef::PendingOperand => {
945                                    // Currently, intrinsics always need a location to store
946                                    // the result, so we create a temporary `alloca` for the
947                                    // result.
948                                    let tmp = PlaceRef::alloca(bx, result_layout);
949                                    tmp.storage_live(bx);
950                                    (tmp, Some(local))
951                                }
952                                LocalRef::Operand(_) => {
953                                    bug!("place local already assigned to");
954                                }
955                            }
956                        } else {
957                            (self.codegen_place(bx, destination.as_ref()), None)
958                        };
959
960                        if result.val.align < result.layout.align.abi {
961                            // Currently, MIR code generation does not create calls
962                            // that store directly to fields of packed structs (in
963                            // fact, the calls it creates write only to temps).
964                            //
965                            // If someone changes that, please update this code path
966                            // to create a temporary.
967                            span_bug!(self.mir.span, "can't directly store to unaligned value");
968                        }
969
970                        let args: Vec<_> =
971                            args.iter().map(|arg| self.codegen_operand(bx, &arg.node)).collect();
972
973                        match self.codegen_intrinsic_call(bx, instance, &args, result, source_info)
974                        {
975                            Ok(()) => {
976                                if let Some(local) = store_in_local {
977                                    let op = bx.load_operand(result);
978                                    result.storage_dead(bx);
979                                    self.overwrite_local(local, LocalRef::Operand(op));
980                                    self.debug_introduce_local(bx, local);
981                                }
982
983                                return if let Some(target) = target {
984                                    helper.funclet_br(self, bx, target, mergeable_succ)
985                                } else {
986                                    bx.unreachable();
987                                    MergingSucc::False
988                                };
989                            }
990                            Err(instance) => {
991                                if intrinsic.must_be_overridden {
992                                    span_bug!(
993                                        fn_span,
994                                        "intrinsic {} must be overridden by codegen backend, but isn't",
995                                        intrinsic.name,
996                                    );
997                                }
998                                instance
999                            }
1000                        }
1001                    }
1002                    _ => instance,
1003                };
1004
1005                (Some(instance), None)
1006            }
1007            ty::FnPtr(..) => (None, Some(callee.immediate())),
1008            _ => bug!("{} is not callable", callee.layout.ty),
1009        };
1010
1011        // FIXME(eddyb) avoid computing this if possible, when `instance` is
1012        // available - right now `sig` is only needed for getting the `abi`
1013        // and figuring out how many extra args were passed to a C-variadic `fn`.
1014        let sig = callee.layout.ty.fn_sig(bx.tcx());
1015
1016        let extra_args = &args[sig.inputs().skip_binder().len()..];
1017        let extra_args = bx.tcx().mk_type_list_from_iter(extra_args.iter().map(|op_arg| {
1018            let op_ty = op_arg.node.ty(self.mir, bx.tcx());
1019            self.monomorphize(op_ty)
1020        }));
1021
1022        let fn_abi = match instance {
1023            Some(instance) => bx.fn_abi_of_instance(instance, extra_args),
1024            None => bx.fn_abi_of_fn_ptr(sig, extra_args),
1025        };
1026
1027        // The arguments we'll be passing. Plus one to account for outptr, if used.
1028        let arg_count = fn_abi.args.len() + fn_abi.ret.is_indirect() as usize;
1029
1030        let mut llargs = Vec::with_capacity(arg_count);
1031
1032        // We still need to call `make_return_dest` even if there's no `target`, since
1033        // `fn_abi.ret` could be `PassMode::Indirect`, even if it is uninhabited,
1034        // and `make_return_dest` adds the return-place indirect pointer to `llargs`.
1035        let destination = match kind {
1036            CallKind::Normal => {
1037                let return_dest = self.make_return_dest(bx, destination, &fn_abi.ret, &mut llargs);
1038                target.map(|target| (return_dest, target))
1039            }
1040            CallKind::Tail => None,
1041        };
1042
1043        // Split the rust-call tupled arguments off.
1044        let (first_args, untuple) = if sig.abi() == ExternAbi::RustCall
1045            && let Some((tup, args)) = args.split_last()
1046        {
1047            (args, Some(tup))
1048        } else {
1049            (args, None)
1050        };
1051
1052        // When generating arguments we sometimes introduce temporary allocations with lifetime
1053        // that extend for the duration of a call. Keep track of those allocations and their sizes
1054        // to generate `lifetime_end` when the call returns.
1055        let mut lifetime_ends_after_call: Vec<(Bx::Value, Size)> = Vec::new();
1056        'make_args: for (i, arg) in first_args.iter().enumerate() {
1057            if kind == CallKind::Tail && matches!(fn_abi.args[i].mode, PassMode::Indirect { .. }) {
1058                // FIXME: https://github.com/rust-lang/rust/pull/144232#discussion_r2218543841
1059                span_bug!(
1060                    fn_span,
1061                    "arguments using PassMode::Indirect are currently not supported for tail calls"
1062                );
1063            }
1064
1065            let mut op = self.codegen_operand(bx, &arg.node);
1066
1067            if let (0, Some(ty::InstanceKind::Virtual(_, idx))) = (i, instance.map(|i| i.def)) {
1068                match op.val {
1069                    Pair(data_ptr, meta) => {
1070                        // In the case of Rc<Self>, we need to explicitly pass a
1071                        // *mut RcInner<Self> with a Scalar (not ScalarPair) ABI. This is a hack
1072                        // that is understood elsewhere in the compiler as a method on
1073                        // `dyn Trait`.
1074                        // To get a `*mut RcInner<Self>`, we just keep unwrapping newtypes until
1075                        // we get a value of a built-in pointer type.
1076                        //
1077                        // This is also relevant for `Pin<&mut Self>`, where we need to peel the
1078                        // `Pin`.
1079                        while !op.layout.ty.is_raw_ptr() && !op.layout.ty.is_ref() {
1080                            let (idx, _) = op.layout.non_1zst_field(bx).expect(
1081                                "not exactly one non-1-ZST field in a `DispatchFromDyn` type",
1082                            );
1083                            op = op.extract_field(self, bx, idx.as_usize());
1084                        }
1085
1086                        // Now that we have `*dyn Trait` or `&dyn Trait`, split it up into its
1087                        // data pointer and vtable. Look up the method in the vtable, and pass
1088                        // the data pointer as the first argument.
1089                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
1090                            bx,
1091                            meta,
1092                            op.layout.ty,
1093                            fn_abi,
1094                        ));
1095                        llargs.push(data_ptr);
1096                        continue 'make_args;
1097                    }
1098                    Ref(PlaceValue { llval: data_ptr, llextra: Some(meta), .. }) => {
1099                        // by-value dynamic dispatch
1100                        llfn = Some(meth::VirtualIndex::from_index(idx).get_fn(
1101                            bx,
1102                            meta,
1103                            op.layout.ty,
1104                            fn_abi,
1105                        ));
1106                        llargs.push(data_ptr);
1107                        continue;
1108                    }
1109                    _ => {
1110                        span_bug!(fn_span, "can't codegen a virtual call on {:#?}", op);
1111                    }
1112                }
1113            }
1114
1115            // The callee needs to own the argument memory if we pass it
1116            // by-ref, so make a local copy of non-immediate constants.
1117            match (&arg.node, op.val) {
1118                (&mir::Operand::Copy(_), Ref(PlaceValue { llextra: None, .. }))
1119                | (&mir::Operand::Constant(_), Ref(PlaceValue { llextra: None, .. })) => {
1120                    let tmp = PlaceRef::alloca(bx, op.layout);
1121                    bx.lifetime_start(tmp.val.llval, tmp.layout.size);
1122                    op.val.store(bx, tmp);
1123                    op.val = Ref(tmp.val);
1124                    lifetime_ends_after_call.push((tmp.val.llval, tmp.layout.size));
1125                }
1126                _ => {}
1127            }
1128
1129            self.codegen_argument(
1130                bx,
1131                op,
1132                &mut llargs,
1133                &fn_abi.args[i],
1134                &mut lifetime_ends_after_call,
1135            );
1136        }
1137        let num_untupled = untuple.map(|tup| {
1138            self.codegen_arguments_untupled(
1139                bx,
1140                &tup.node,
1141                &mut llargs,
1142                &fn_abi.args[first_args.len()..],
1143                &mut lifetime_ends_after_call,
1144            )
1145        });
1146
1147        let needs_location =
1148            instance.is_some_and(|i| i.def.requires_caller_location(self.cx.tcx()));
1149        if needs_location {
1150            let mir_args = if let Some(num_untupled) = num_untupled {
1151                first_args.len() + num_untupled
1152            } else {
1153                args.len()
1154            };
1155            assert_eq!(
1156                fn_abi.args.len(),
1157                mir_args + 1,
1158                "#[track_caller] fn's must have 1 more argument in their ABI than in their MIR: {instance:?} {fn_span:?} {fn_abi:?}",
1159            );
1160            let location = self.get_caller_location(bx, source_info);
1161            debug!(
1162                "codegen_call_terminator({:?}): location={:?} (fn_span {:?})",
1163                terminator, location, fn_span
1164            );
1165
1166            let last_arg = fn_abi.args.last().unwrap();
1167            self.codegen_argument(
1168                bx,
1169                location,
1170                &mut llargs,
1171                last_arg,
1172                &mut lifetime_ends_after_call,
1173            );
1174        }
1175
1176        let fn_ptr = match (instance, llfn) {
1177            (Some(instance), None) => bx.get_fn_addr(instance),
1178            (_, Some(llfn)) => llfn,
1179            _ => span_bug!(fn_span, "no instance or llfn for call"),
1180        };
1181        self.set_debug_loc(bx, source_info);
1182        helper.do_call(
1183            self,
1184            bx,
1185            fn_abi,
1186            fn_ptr,
1187            &llargs,
1188            destination,
1189            unwind,
1190            &lifetime_ends_after_call,
1191            instance,
1192            kind,
1193            mergeable_succ,
1194        )
1195    }
1196
1197    fn codegen_asm_terminator(
1198        &mut self,
1199        helper: TerminatorCodegenHelper<'tcx>,
1200        bx: &mut Bx,
1201        asm_macro: InlineAsmMacro,
1202        terminator: &mir::Terminator<'tcx>,
1203        template: &[ast::InlineAsmTemplatePiece],
1204        operands: &[mir::InlineAsmOperand<'tcx>],
1205        options: ast::InlineAsmOptions,
1206        line_spans: &[Span],
1207        targets: &[mir::BasicBlock],
1208        unwind: mir::UnwindAction,
1209        instance: Instance<'_>,
1210        mergeable_succ: bool,
1211    ) -> MergingSucc {
1212        let span = terminator.source_info.span;
1213
1214        let operands: Vec<_> = operands
1215            .iter()
1216            .map(|op| match *op {
1217                mir::InlineAsmOperand::In { reg, ref value } => {
1218                    let value = self.codegen_operand(bx, value);
1219                    InlineAsmOperandRef::In { reg, value }
1220                }
1221                mir::InlineAsmOperand::Out { reg, late, ref place } => {
1222                    let place = place.map(|place| self.codegen_place(bx, place.as_ref()));
1223                    InlineAsmOperandRef::Out { reg, late, place }
1224                }
1225                mir::InlineAsmOperand::InOut { reg, late, ref in_value, ref out_place } => {
1226                    let in_value = self.codegen_operand(bx, in_value);
1227                    let out_place =
1228                        out_place.map(|out_place| self.codegen_place(bx, out_place.as_ref()));
1229                    InlineAsmOperandRef::InOut { reg, late, in_value, out_place }
1230                }
1231                mir::InlineAsmOperand::Const { ref value } => {
1232                    let const_value = self.eval_mir_constant(value);
1233                    let string = common::asm_const_to_str(
1234                        bx.tcx(),
1235                        span,
1236                        const_value,
1237                        bx.layout_of(value.ty()),
1238                    );
1239                    InlineAsmOperandRef::Const { string }
1240                }
1241                mir::InlineAsmOperand::SymFn { ref value } => {
1242                    let const_ = self.monomorphize(value.const_);
1243                    if let ty::FnDef(def_id, args) = *const_.ty().kind() {
1244                        let instance = ty::Instance::resolve_for_fn_ptr(
1245                            bx.tcx(),
1246                            bx.typing_env(),
1247                            def_id,
1248                            args,
1249                        )
1250                        .unwrap();
1251                        InlineAsmOperandRef::SymFn { instance }
1252                    } else {
1253                        span_bug!(span, "invalid type for asm sym (fn)");
1254                    }
1255                }
1256                mir::InlineAsmOperand::SymStatic { def_id } => {
1257                    InlineAsmOperandRef::SymStatic { def_id }
1258                }
1259                mir::InlineAsmOperand::Label { target_index } => {
1260                    InlineAsmOperandRef::Label { label: self.llbb(targets[target_index]) }
1261                }
1262            })
1263            .collect();
1264
1265        helper.do_inlineasm(
1266            self,
1267            bx,
1268            template,
1269            &operands,
1270            options,
1271            line_spans,
1272            if asm_macro.diverges(options) { None } else { targets.get(0).copied() },
1273            unwind,
1274            instance,
1275            mergeable_succ,
1276        )
1277    }
1278
1279    pub(crate) fn codegen_block(&mut self, mut bb: mir::BasicBlock) {
1280        let llbb = match self.try_llbb(bb) {
1281            Some(llbb) => llbb,
1282            None => return,
1283        };
1284        let bx = &mut Bx::build(self.cx, llbb);
1285        let mir = self.mir;
1286
1287        // MIR basic blocks stop at any function call. This may not be the case
1288        // for the backend's basic blocks, in which case we might be able to
1289        // combine multiple MIR basic blocks into a single backend basic block.
1290        loop {
1291            let data = &mir[bb];
1292
1293            debug!("codegen_block({:?}={:?})", bb, data);
1294
1295            for statement in &data.statements {
1296                self.codegen_statement(bx, statement);
1297            }
1298
1299            let merging_succ = self.codegen_terminator(bx, bb, data.terminator());
1300            if let MergingSucc::False = merging_succ {
1301                break;
1302            }
1303
1304            // We are merging the successor into the produced backend basic
1305            // block. Record that the successor should be skipped when it is
1306            // reached.
1307            //
1308            // Note: we must not have already generated code for the successor.
1309            // This is implicitly ensured by the reverse postorder traversal,
1310            // and the assertion explicitly guarantees that.
1311            let mut successors = data.terminator().successors();
1312            let succ = successors.next().unwrap();
1313            assert!(matches!(self.cached_llbbs[succ], CachedLlbb::None));
1314            self.cached_llbbs[succ] = CachedLlbb::Skip;
1315            bb = succ;
1316        }
1317    }
1318
1319    pub(crate) fn codegen_block_as_unreachable(&mut self, bb: mir::BasicBlock) {
1320        let llbb = match self.try_llbb(bb) {
1321            Some(llbb) => llbb,
1322            None => return,
1323        };
1324        let bx = &mut Bx::build(self.cx, llbb);
1325        debug!("codegen_block_as_unreachable({:?})", bb);
1326        bx.unreachable();
1327    }
1328
1329    fn codegen_terminator(
1330        &mut self,
1331        bx: &mut Bx,
1332        bb: mir::BasicBlock,
1333        terminator: &'tcx mir::Terminator<'tcx>,
1334    ) -> MergingSucc {
1335        debug!("codegen_terminator: {:?}", terminator);
1336
1337        let helper = TerminatorCodegenHelper { bb, terminator };
1338
1339        let mergeable_succ = || {
1340            // Note: any call to `switch_to_block` will invalidate a `true` value
1341            // of `mergeable_succ`.
1342            let mut successors = terminator.successors();
1343            if let Some(succ) = successors.next()
1344                && successors.next().is_none()
1345                && let &[succ_pred] = self.mir.basic_blocks.predecessors()[succ].as_slice()
1346            {
1347                // bb has a single successor, and bb is its only predecessor. This
1348                // makes it a candidate for merging.
1349                assert_eq!(succ_pred, bb);
1350                true
1351            } else {
1352                false
1353            }
1354        };
1355
1356        self.set_debug_loc(bx, terminator.source_info);
1357        match terminator.kind {
1358            mir::TerminatorKind::UnwindResume => {
1359                self.codegen_resume_terminator(helper, bx);
1360                MergingSucc::False
1361            }
1362
1363            mir::TerminatorKind::UnwindTerminate(reason) => {
1364                self.codegen_terminate_terminator(helper, bx, terminator, reason);
1365                MergingSucc::False
1366            }
1367
1368            mir::TerminatorKind::Goto { target } => {
1369                helper.funclet_br(self, bx, target, mergeable_succ())
1370            }
1371
1372            mir::TerminatorKind::SwitchInt { ref discr, ref targets } => {
1373                self.codegen_switchint_terminator(helper, bx, discr, targets);
1374                MergingSucc::False
1375            }
1376
1377            mir::TerminatorKind::Return => {
1378                self.codegen_return_terminator(bx);
1379                MergingSucc::False
1380            }
1381
1382            mir::TerminatorKind::Unreachable => {
1383                bx.unreachable();
1384                MergingSucc::False
1385            }
1386
1387            mir::TerminatorKind::Drop { place, target, unwind, replace: _, drop, async_fut } => {
1388                assert!(
1389                    async_fut.is_none() && drop.is_none(),
1390                    "Async Drop must be expanded or reset to sync before codegen"
1391                );
1392                self.codegen_drop_terminator(
1393                    helper,
1394                    bx,
1395                    &terminator.source_info,
1396                    place,
1397                    target,
1398                    unwind,
1399                    mergeable_succ(),
1400                )
1401            }
1402
1403            mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, unwind } => self
1404                .codegen_assert_terminator(
1405                    helper,
1406                    bx,
1407                    terminator,
1408                    cond,
1409                    expected,
1410                    msg,
1411                    target,
1412                    unwind,
1413                    mergeable_succ(),
1414                ),
1415
1416            mir::TerminatorKind::Call {
1417                ref func,
1418                ref args,
1419                destination,
1420                target,
1421                unwind,
1422                call_source: _,
1423                fn_span,
1424            } => self.codegen_call_terminator(
1425                helper,
1426                bx,
1427                terminator,
1428                func,
1429                args,
1430                destination,
1431                target,
1432                unwind,
1433                fn_span,
1434                CallKind::Normal,
1435                mergeable_succ(),
1436            ),
1437            mir::TerminatorKind::TailCall { ref func, ref args, fn_span } => self
1438                .codegen_call_terminator(
1439                    helper,
1440                    bx,
1441                    terminator,
1442                    func,
1443                    args,
1444                    mir::Place::from(mir::RETURN_PLACE),
1445                    None,
1446                    mir::UnwindAction::Unreachable,
1447                    fn_span,
1448                    CallKind::Tail,
1449                    mergeable_succ(),
1450                ),
1451            mir::TerminatorKind::CoroutineDrop | mir::TerminatorKind::Yield { .. } => {
1452                bug!("coroutine ops in codegen")
1453            }
1454            mir::TerminatorKind::FalseEdge { .. } | mir::TerminatorKind::FalseUnwind { .. } => {
1455                bug!("borrowck false edges in codegen")
1456            }
1457
1458            mir::TerminatorKind::InlineAsm {
1459                asm_macro,
1460                template,
1461                ref operands,
1462                options,
1463                line_spans,
1464                ref targets,
1465                unwind,
1466            } => self.codegen_asm_terminator(
1467                helper,
1468                bx,
1469                asm_macro,
1470                terminator,
1471                template,
1472                operands,
1473                options,
1474                line_spans,
1475                targets,
1476                unwind,
1477                self.instance,
1478                mergeable_succ(),
1479            ),
1480        }
1481    }
1482
1483    fn codegen_argument(
1484        &mut self,
1485        bx: &mut Bx,
1486        op: OperandRef<'tcx, Bx::Value>,
1487        llargs: &mut Vec<Bx::Value>,
1488        arg: &ArgAbi<'tcx, Ty<'tcx>>,
1489        lifetime_ends_after_call: &mut Vec<(Bx::Value, Size)>,
1490    ) {
1491        match arg.mode {
1492            PassMode::Ignore => return,
1493            PassMode::Cast { pad_i32: true, .. } => {
1494                // Fill padding with undef value, where applicable.
1495                llargs.push(bx.const_undef(bx.reg_backend_type(&Reg::i32())));
1496            }
1497            PassMode::Pair(..) => match op.val {
1498                Pair(a, b) => {
1499                    llargs.push(a);
1500                    llargs.push(b);
1501                    return;
1502                }
1503                _ => bug!("codegen_argument: {:?} invalid for pair argument", op),
1504            },
1505            PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => match op.val {
1506                Ref(PlaceValue { llval: a, llextra: Some(b), .. }) => {
1507                    llargs.push(a);
1508                    llargs.push(b);
1509                    return;
1510                }
1511                _ => bug!("codegen_argument: {:?} invalid for unsized indirect argument", op),
1512            },
1513            _ => {}
1514        }
1515
1516        // Force by-ref if we have to load through a cast pointer.
1517        let (mut llval, align, by_ref) = match op.val {
1518            Immediate(_) | Pair(..) => match arg.mode {
1519                PassMode::Indirect { attrs, .. } => {
1520                    // Indirect argument may have higher alignment requirements than the type's
1521                    // alignment. This can happen, e.g. when passing types with <4 byte alignment
1522                    // on the stack on x86.
1523                    let required_align = match attrs.pointee_align {
1524                        Some(pointee_align) => cmp::max(pointee_align, arg.layout.align.abi),
1525                        None => arg.layout.align.abi,
1526                    };
1527                    let scratch = PlaceValue::alloca(bx, arg.layout.size, required_align);
1528                    bx.lifetime_start(scratch.llval, arg.layout.size);
1529                    op.val.store(bx, scratch.with_type(arg.layout));
1530                    lifetime_ends_after_call.push((scratch.llval, arg.layout.size));
1531                    (scratch.llval, scratch.align, true)
1532                }
1533                PassMode::Cast { .. } => {
1534                    let scratch = PlaceRef::alloca(bx, arg.layout);
1535                    op.val.store(bx, scratch);
1536                    (scratch.val.llval, scratch.val.align, true)
1537                }
1538                _ => (op.immediate_or_packed_pair(bx), arg.layout.align.abi, false),
1539            },
1540            Ref(op_place_val) => match arg.mode {
1541                PassMode::Indirect { attrs, .. } => {
1542                    let required_align = match attrs.pointee_align {
1543                        Some(pointee_align) => cmp::max(pointee_align, arg.layout.align.abi),
1544                        None => arg.layout.align.abi,
1545                    };
1546                    if op_place_val.align < required_align {
1547                        // For `foo(packed.large_field)`, and types with <4 byte alignment on x86,
1548                        // alignment requirements may be higher than the type's alignment, so copy
1549                        // to a higher-aligned alloca.
1550                        let scratch = PlaceValue::alloca(bx, arg.layout.size, required_align);
1551                        bx.lifetime_start(scratch.llval, arg.layout.size);
1552                        bx.typed_place_copy(scratch, op_place_val, op.layout);
1553                        lifetime_ends_after_call.push((scratch.llval, arg.layout.size));
1554                        (scratch.llval, scratch.align, true)
1555                    } else {
1556                        (op_place_val.llval, op_place_val.align, true)
1557                    }
1558                }
1559                _ => (op_place_val.llval, op_place_val.align, true),
1560            },
1561            ZeroSized => match arg.mode {
1562                PassMode::Indirect { on_stack, .. } => {
1563                    if on_stack {
1564                        // It doesn't seem like any target can have `byval` ZSTs, so this assert
1565                        // is here to replace a would-be untested codepath.
1566                        bug!("ZST {op:?} passed on stack with abi {arg:?}");
1567                    }
1568                    // Though `extern "Rust"` doesn't pass ZSTs, some ABIs pass
1569                    // a pointer for `repr(C)` structs even when empty, so get
1570                    // one from an `alloca` (which can be left uninitialized).
1571                    let scratch = PlaceRef::alloca(bx, arg.layout);
1572                    (scratch.val.llval, scratch.val.align, true)
1573                }
1574                _ => bug!("ZST {op:?} wasn't ignored, but was passed with abi {arg:?}"),
1575            },
1576        };
1577
1578        if by_ref && !arg.is_indirect() {
1579            // Have to load the argument, maybe while casting it.
1580            if let PassMode::Cast { cast, pad_i32: _ } = &arg.mode {
1581                // The ABI mandates that the value is passed as a different struct representation.
1582                // Spill and reload it from the stack to convert from the Rust representation to
1583                // the ABI representation.
1584                let scratch_size = cast.size(bx);
1585                let scratch_align = cast.align(bx);
1586                // Note that the ABI type may be either larger or smaller than the Rust type,
1587                // due to the presence or absence of trailing padding. For example:
1588                // - On some ABIs, the Rust layout { f64, f32, <f32 padding> } may omit padding
1589                //   when passed by value, making it smaller.
1590                // - On some ABIs, the Rust layout { u16, u16, u16 } may be padded up to 8 bytes
1591                //   when passed by value, making it larger.
1592                let copy_bytes = cmp::min(cast.unaligned_size(bx).bytes(), arg.layout.size.bytes());
1593                // Allocate some scratch space...
1594                let llscratch = bx.alloca(scratch_size, scratch_align);
1595                bx.lifetime_start(llscratch, scratch_size);
1596                // ...memcpy the value...
1597                bx.memcpy(
1598                    llscratch,
1599                    scratch_align,
1600                    llval,
1601                    align,
1602                    bx.const_usize(copy_bytes),
1603                    MemFlags::empty(),
1604                );
1605                // ...and then load it with the ABI type.
1606                llval = load_cast(bx, cast, llscratch, scratch_align);
1607                bx.lifetime_end(llscratch, scratch_size);
1608            } else {
1609                // We can't use `PlaceRef::load` here because the argument
1610                // may have a type we don't treat as immediate, but the ABI
1611                // used for this call is passing it by-value. In that case,
1612                // the load would just produce `OperandValue::Ref` instead
1613                // of the `OperandValue::Immediate` we need for the call.
1614                llval = bx.load(bx.backend_type(arg.layout), llval, align);
1615                if let BackendRepr::Scalar(scalar) = arg.layout.backend_repr {
1616                    if scalar.is_bool() {
1617                        bx.range_metadata(llval, WrappingRange { start: 0, end: 1 });
1618                    }
1619                    // We store bools as `i8` so we need to truncate to `i1`.
1620                    llval = bx.to_immediate_scalar(llval, scalar);
1621                }
1622            }
1623        }
1624
1625        llargs.push(llval);
1626    }
1627
1628    fn codegen_arguments_untupled(
1629        &mut self,
1630        bx: &mut Bx,
1631        operand: &mir::Operand<'tcx>,
1632        llargs: &mut Vec<Bx::Value>,
1633        args: &[ArgAbi<'tcx, Ty<'tcx>>],
1634        lifetime_ends_after_call: &mut Vec<(Bx::Value, Size)>,
1635    ) -> usize {
1636        let tuple = self.codegen_operand(bx, operand);
1637
1638        // Handle both by-ref and immediate tuples.
1639        if let Ref(place_val) = tuple.val {
1640            if place_val.llextra.is_some() {
1641                bug!("closure arguments must be sized");
1642            }
1643            let tuple_ptr = place_val.with_type(tuple.layout);
1644            for i in 0..tuple.layout.fields.count() {
1645                let field_ptr = tuple_ptr.project_field(bx, i);
1646                let field = bx.load_operand(field_ptr);
1647                self.codegen_argument(bx, field, llargs, &args[i], lifetime_ends_after_call);
1648            }
1649        } else {
1650            // If the tuple is immediate, the elements are as well.
1651            for i in 0..tuple.layout.fields.count() {
1652                let op = tuple.extract_field(self, bx, i);
1653                self.codegen_argument(bx, op, llargs, &args[i], lifetime_ends_after_call);
1654            }
1655        }
1656        tuple.layout.fields.count()
1657    }
1658
1659    pub(super) fn get_caller_location(
1660        &mut self,
1661        bx: &mut Bx,
1662        source_info: mir::SourceInfo,
1663    ) -> OperandRef<'tcx, Bx::Value> {
1664        self.mir.caller_location_span(source_info, self.caller_location, bx.tcx(), |span: Span| {
1665            let const_loc = bx.tcx().span_as_caller_location(span);
1666            OperandRef::from_const(bx, const_loc, bx.tcx().caller_location_ty())
1667        })
1668    }
1669
1670    fn get_personality_slot(&mut self, bx: &mut Bx) -> PlaceRef<'tcx, Bx::Value> {
1671        let cx = bx.cx();
1672        if let Some(slot) = self.personality_slot {
1673            slot
1674        } else {
1675            let layout = cx.layout_of(Ty::new_tup(
1676                cx.tcx(),
1677                &[Ty::new_mut_ptr(cx.tcx(), cx.tcx().types.u8), cx.tcx().types.i32],
1678            ));
1679            let slot = PlaceRef::alloca(bx, layout);
1680            self.personality_slot = Some(slot);
1681            slot
1682        }
1683    }
1684
1685    /// Returns the landing/cleanup pad wrapper around the given basic block.
1686    // FIXME(eddyb) rename this to `eh_pad_for`.
1687    fn landing_pad_for(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
1688        if let Some(landing_pad) = self.landing_pads[bb] {
1689            return landing_pad;
1690        }
1691
1692        let landing_pad = self.landing_pad_for_uncached(bb);
1693        self.landing_pads[bb] = Some(landing_pad);
1694        landing_pad
1695    }
1696
1697    // FIXME(eddyb) rename this to `eh_pad_for_uncached`.
1698    fn landing_pad_for_uncached(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
1699        let llbb = self.llbb(bb);
1700        if base::wants_new_eh_instructions(self.cx.sess()) {
1701            let cleanup_bb = Bx::append_block(self.cx, self.llfn, &format!("funclet_{bb:?}"));
1702            let mut cleanup_bx = Bx::build(self.cx, cleanup_bb);
1703            let funclet = cleanup_bx.cleanup_pad(None, &[]);
1704            cleanup_bx.br(llbb);
1705            self.funclets[bb] = Some(funclet);
1706            cleanup_bb
1707        } else {
1708            let cleanup_llbb = Bx::append_block(self.cx, self.llfn, "cleanup");
1709            let mut cleanup_bx = Bx::build(self.cx, cleanup_llbb);
1710
1711            let llpersonality = self.cx.eh_personality();
1712            let (exn0, exn1) = cleanup_bx.cleanup_landing_pad(llpersonality);
1713
1714            let slot = self.get_personality_slot(&mut cleanup_bx);
1715            slot.storage_live(&mut cleanup_bx);
1716            Pair(exn0, exn1).store(&mut cleanup_bx, slot);
1717
1718            cleanup_bx.br(llbb);
1719            cleanup_llbb
1720        }
1721    }
1722
1723    fn unreachable_block(&mut self) -> Bx::BasicBlock {
1724        self.unreachable_block.unwrap_or_else(|| {
1725            let llbb = Bx::append_block(self.cx, self.llfn, "unreachable");
1726            let mut bx = Bx::build(self.cx, llbb);
1727            bx.unreachable();
1728            self.unreachable_block = Some(llbb);
1729            llbb
1730        })
1731    }
1732
1733    fn terminate_block(&mut self, reason: UnwindTerminateReason) -> Bx::BasicBlock {
1734        if let Some((cached_bb, cached_reason)) = self.terminate_block
1735            && reason == cached_reason
1736        {
1737            return cached_bb;
1738        }
1739
1740        let funclet;
1741        let llbb;
1742        let mut bx;
1743        if base::wants_new_eh_instructions(self.cx.sess()) {
1744            // This is a basic block that we're aborting the program for,
1745            // notably in an `extern` function. These basic blocks are inserted
1746            // so that we assert that `extern` functions do indeed not panic,
1747            // and if they do we abort the process.
1748            //
1749            // On MSVC these are tricky though (where we're doing funclets). If
1750            // we were to do a cleanuppad (like below) the normal functions like
1751            // `longjmp` would trigger the abort logic, terminating the
1752            // program. Instead we insert the equivalent of `catch(...)` for C++
1753            // which magically doesn't trigger when `longjmp` files over this
1754            // frame.
1755            //
1756            // Lots more discussion can be found on #48251 but this codegen is
1757            // modeled after clang's for:
1758            //
1759            //      try {
1760            //          foo();
1761            //      } catch (...) {
1762            //          bar();
1763            //      }
1764            //
1765            // which creates an IR snippet like
1766            //
1767            //      cs_terminate:
1768            //         %cs = catchswitch within none [%cp_terminate] unwind to caller
1769            //      cp_terminate:
1770            //         %cp = catchpad within %cs [null, i32 64, null]
1771            //         ...
1772
1773            llbb = Bx::append_block(self.cx, self.llfn, "cs_terminate");
1774            let cp_llbb = Bx::append_block(self.cx, self.llfn, "cp_terminate");
1775
1776            let mut cs_bx = Bx::build(self.cx, llbb);
1777            let cs = cs_bx.catch_switch(None, None, &[cp_llbb]);
1778
1779            bx = Bx::build(self.cx, cp_llbb);
1780            let null =
1781                bx.const_null(bx.type_ptr_ext(bx.cx().data_layout().instruction_address_space));
1782
1783            // The `null` in first argument here is actually a RTTI type
1784            // descriptor for the C++ personality function, but `catch (...)`
1785            // has no type so it's null.
1786            let args = if base::wants_msvc_seh(self.cx.sess()) {
1787                // This bitmask is a single `HT_IsStdDotDot` flag, which
1788                // represents that this is a C++-style `catch (...)` block that
1789                // only captures programmatic exceptions, not all SEH
1790                // exceptions. The second `null` points to a non-existent
1791                // `alloca` instruction, which an LLVM pass would inline into
1792                // the initial SEH frame allocation.
1793                let adjectives = bx.const_i32(0x40);
1794                &[null, adjectives, null] as &[_]
1795            } else {
1796                // Specifying more arguments than necessary usually doesn't
1797                // hurt, but the `WasmEHPrepare` LLVM pass does not recognize
1798                // anything other than a single `null` as a `catch (...)` block,
1799                // leading to problems down the line during instruction
1800                // selection.
1801                &[null] as &[_]
1802            };
1803
1804            funclet = Some(bx.catch_pad(cs, args));
1805        } else {
1806            llbb = Bx::append_block(self.cx, self.llfn, "terminate");
1807            bx = Bx::build(self.cx, llbb);
1808
1809            let llpersonality = self.cx.eh_personality();
1810            bx.filter_landing_pad(llpersonality);
1811
1812            funclet = None;
1813        }
1814
1815        self.set_debug_loc(&mut bx, mir::SourceInfo::outermost(self.mir.span));
1816
1817        let (fn_abi, fn_ptr, instance) =
1818            common::build_langcall(&bx, self.mir.span, reason.lang_item());
1819        if is_call_from_compiler_builtins_to_upstream_monomorphization(bx.tcx(), instance) {
1820            bx.abort();
1821        } else {
1822            let fn_ty = bx.fn_decl_backend_type(fn_abi);
1823
1824            let llret = bx.call(fn_ty, None, Some(fn_abi), fn_ptr, &[], funclet.as_ref(), None);
1825            bx.apply_attrs_to_cleanup_callsite(llret);
1826        }
1827
1828        bx.unreachable();
1829
1830        self.terminate_block = Some((llbb, reason));
1831        llbb
1832    }
1833
1834    /// Get the backend `BasicBlock` for a MIR `BasicBlock`, either already
1835    /// cached in `self.cached_llbbs`, or created on demand (and cached).
1836    // FIXME(eddyb) rename `llbb` and other `ll`-prefixed things to use a
1837    // more backend-agnostic prefix such as `cg` (i.e. this would be `cgbb`).
1838    pub fn llbb(&mut self, bb: mir::BasicBlock) -> Bx::BasicBlock {
1839        self.try_llbb(bb).unwrap()
1840    }
1841
1842    /// Like `llbb`, but may fail if the basic block should be skipped.
1843    pub(crate) fn try_llbb(&mut self, bb: mir::BasicBlock) -> Option<Bx::BasicBlock> {
1844        match self.cached_llbbs[bb] {
1845            CachedLlbb::None => {
1846                let llbb = Bx::append_block(self.cx, self.llfn, &format!("{bb:?}"));
1847                self.cached_llbbs[bb] = CachedLlbb::Some(llbb);
1848                Some(llbb)
1849            }
1850            CachedLlbb::Some(llbb) => Some(llbb),
1851            CachedLlbb::Skip => None,
1852        }
1853    }
1854
1855    fn make_return_dest(
1856        &mut self,
1857        bx: &mut Bx,
1858        dest: mir::Place<'tcx>,
1859        fn_ret: &ArgAbi<'tcx, Ty<'tcx>>,
1860        llargs: &mut Vec<Bx::Value>,
1861    ) -> ReturnDest<'tcx, Bx::Value> {
1862        // If the return is ignored, we can just return a do-nothing `ReturnDest`.
1863        if fn_ret.is_ignore() {
1864            return ReturnDest::Nothing;
1865        }
1866        let dest = if let Some(index) = dest.as_local() {
1867            match self.locals[index] {
1868                LocalRef::Place(dest) => dest,
1869                LocalRef::UnsizedPlace(_) => bug!("return type must be sized"),
1870                LocalRef::PendingOperand => {
1871                    // Handle temporary places, specifically `Operand` ones, as
1872                    // they don't have `alloca`s.
1873                    return if fn_ret.is_indirect() {
1874                        // Odd, but possible, case, we have an operand temporary,
1875                        // but the calling convention has an indirect return.
1876                        let tmp = PlaceRef::alloca(bx, fn_ret.layout);
1877                        tmp.storage_live(bx);
1878                        llargs.push(tmp.val.llval);
1879                        ReturnDest::IndirectOperand(tmp, index)
1880                    } else {
1881                        ReturnDest::DirectOperand(index)
1882                    };
1883                }
1884                LocalRef::Operand(_) => {
1885                    bug!("place local already assigned to");
1886                }
1887            }
1888        } else {
1889            self.codegen_place(bx, dest.as_ref())
1890        };
1891        if fn_ret.is_indirect() {
1892            if dest.val.align < dest.layout.align.abi {
1893                // Currently, MIR code generation does not create calls
1894                // that store directly to fields of packed structs (in
1895                // fact, the calls it creates write only to temps).
1896                //
1897                // If someone changes that, please update this code path
1898                // to create a temporary.
1899                span_bug!(self.mir.span, "can't directly store to unaligned value");
1900            }
1901            llargs.push(dest.val.llval);
1902            ReturnDest::Nothing
1903        } else {
1904            ReturnDest::Store(dest)
1905        }
1906    }
1907
1908    // Stores the return value of a function call into it's final location.
1909    fn store_return(
1910        &mut self,
1911        bx: &mut Bx,
1912        dest: ReturnDest<'tcx, Bx::Value>,
1913        ret_abi: &ArgAbi<'tcx, Ty<'tcx>>,
1914        llval: Bx::Value,
1915    ) {
1916        use self::ReturnDest::*;
1917
1918        match dest {
1919            Nothing => (),
1920            Store(dst) => bx.store_arg(ret_abi, llval, dst),
1921            IndirectOperand(tmp, index) => {
1922                let op = bx.load_operand(tmp);
1923                tmp.storage_dead(bx);
1924                self.overwrite_local(index, LocalRef::Operand(op));
1925                self.debug_introduce_local(bx, index);
1926            }
1927            DirectOperand(index) => {
1928                // If there is a cast, we have to store and reload.
1929                let op = if let PassMode::Cast { .. } = ret_abi.mode {
1930                    let tmp = PlaceRef::alloca(bx, ret_abi.layout);
1931                    tmp.storage_live(bx);
1932                    bx.store_arg(ret_abi, llval, tmp);
1933                    let op = bx.load_operand(tmp);
1934                    tmp.storage_dead(bx);
1935                    op
1936                } else {
1937                    OperandRef::from_immediate_or_packed_pair(bx, llval, ret_abi.layout)
1938                };
1939                self.overwrite_local(index, LocalRef::Operand(op));
1940                self.debug_introduce_local(bx, index);
1941            }
1942        }
1943    }
1944}
1945
1946enum ReturnDest<'tcx, V> {
1947    /// Do nothing; the return value is indirect or ignored.
1948    Nothing,
1949    /// Store the return value to the pointer.
1950    Store(PlaceRef<'tcx, V>),
1951    /// Store an indirect return value to an operand local place.
1952    IndirectOperand(PlaceRef<'tcx, V>, mir::Local),
1953    /// Store a direct return value to an operand local place.
1954    DirectOperand(mir::Local),
1955}
1956
1957fn load_cast<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
1958    bx: &mut Bx,
1959    cast: &CastTarget,
1960    ptr: Bx::Value,
1961    align: Align,
1962) -> Bx::Value {
1963    let cast_ty = bx.cast_backend_type(cast);
1964    if let Some(offset_from_start) = cast.rest_offset {
1965        assert!(cast.prefix[1..].iter().all(|p| p.is_none()));
1966        assert_eq!(cast.rest.unit.size, cast.rest.total);
1967        let first_ty = bx.reg_backend_type(&cast.prefix[0].unwrap());
1968        let second_ty = bx.reg_backend_type(&cast.rest.unit);
1969        let first = bx.load(first_ty, ptr, align);
1970        let second_ptr = bx.inbounds_ptradd(ptr, bx.const_usize(offset_from_start.bytes()));
1971        let second = bx.load(second_ty, second_ptr, align.restrict_for_offset(offset_from_start));
1972        let res = bx.cx().const_poison(cast_ty);
1973        let res = bx.insert_value(res, first, 0);
1974        bx.insert_value(res, second, 1)
1975    } else {
1976        bx.load(cast_ty, ptr, align)
1977    }
1978}
1979
1980pub fn store_cast<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
1981    bx: &mut Bx,
1982    cast: &CastTarget,
1983    value: Bx::Value,
1984    ptr: Bx::Value,
1985    align: Align,
1986) {
1987    if let Some(offset_from_start) = cast.rest_offset {
1988        assert!(cast.prefix[1..].iter().all(|p| p.is_none()));
1989        assert_eq!(cast.rest.unit.size, cast.rest.total);
1990        assert!(cast.prefix[0].is_some());
1991        let first = bx.extract_value(value, 0);
1992        let second = bx.extract_value(value, 1);
1993        bx.store(first, ptr, align);
1994        let second_ptr = bx.inbounds_ptradd(ptr, bx.const_usize(offset_from_start.bytes()));
1995        bx.store(second, second_ptr, align.restrict_for_offset(offset_from_start));
1996    } else {
1997        bx.store(value, ptr, align);
1998    };
1999}