rustc_hir_analysis/check/region.rs
1//! This file builds up the `ScopeTree`, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
5//! see the [rustc dev guide].
6//!
7//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
8
9use std::mem;
10
11use rustc_data_structures::fx::FxHashMap;
12use rustc_hir as hir;
13use rustc_hir::def_id::DefId;
14use rustc_hir::intravisit::{self, Visitor};
15use rustc_hir::{Arm, Block, Expr, LetStmt, Pat, PatKind, Stmt};
16use rustc_index::Idx;
17use rustc_middle::bug;
18use rustc_middle::middle::region::*;
19use rustc_middle::ty::TyCtxt;
20use rustc_session::lint;
21use rustc_span::source_map;
22use tracing::debug;
23
24#[derive(Debug, Copy, Clone)]
25struct Context {
26 /// The scope that contains any new variables declared.
27 var_parent: Option<Scope>,
28
29 /// Region parent of expressions, etc.
30 parent: Option<Scope>,
31}
32
33struct ScopeResolutionVisitor<'tcx> {
34 tcx: TyCtxt<'tcx>,
35
36 // The number of expressions and patterns visited in the current body.
37 expr_and_pat_count: usize,
38 // When this is `true`, we record the `Scopes` we encounter
39 // when processing a Yield expression. This allows us to fix
40 // up their indices.
41 pessimistic_yield: bool,
42 // Stores scopes when `pessimistic_yield` is `true`.
43 fixup_scopes: Vec<Scope>,
44 // The generated scope tree.
45 scope_tree: ScopeTree,
46
47 cx: Context,
48
49 extended_super_lets: FxHashMap<hir::ItemLocalId, Option<Scope>>,
50}
51
52/// Records the lifetime of a local variable as `cx.var_parent`
53fn record_var_lifetime(visitor: &mut ScopeResolutionVisitor<'_>, var_id: hir::ItemLocalId) {
54 match visitor.cx.var_parent {
55 None => {
56 // this can happen in extern fn declarations like
57 //
58 // extern fn isalnum(c: c_int) -> c_int
59 }
60 Some(parent_scope) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
61 }
62}
63
64fn resolve_block<'tcx>(
65 visitor: &mut ScopeResolutionVisitor<'tcx>,
66 blk: &'tcx hir::Block<'tcx>,
67 terminating: bool,
68) {
69 debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
70
71 let prev_cx = visitor.cx;
72
73 // We treat the tail expression in the block (if any) somewhat
74 // differently from the statements. The issue has to do with
75 // temporary lifetimes. Consider the following:
76 //
77 // quux({
78 // let inner = ... (&bar()) ...;
79 //
80 // (... (&foo()) ...) // (the tail expression)
81 // }, other_argument());
82 //
83 // Each of the statements within the block is a terminating
84 // scope, and thus a temporary (e.g., the result of calling
85 // `bar()` in the initializer expression for `let inner = ...;`)
86 // will be cleaned up immediately after its corresponding
87 // statement (i.e., `let inner = ...;`) executes.
88 //
89 // On the other hand, temporaries associated with evaluating the
90 // tail expression for the block are assigned lifetimes so that
91 // they will be cleaned up as part of the terminating scope
92 // *surrounding* the block expression. Here, the terminating
93 // scope for the block expression is the `quux(..)` call; so
94 // those temporaries will only be cleaned up *after* both
95 // `other_argument()` has run and also the call to `quux(..)`
96 // itself has returned.
97
98 visitor.enter_node_scope_with_dtor(blk.hir_id.local_id, terminating);
99 visitor.cx.var_parent = visitor.cx.parent;
100
101 {
102 // This block should be kept approximately in sync with
103 // `intravisit::walk_block`. (We manually walk the block, rather
104 // than call `walk_block`, in order to maintain precise
105 // index information.)
106
107 for (i, statement) in blk.stmts.iter().enumerate() {
108 match statement.kind {
109 hir::StmtKind::Let(LetStmt { els: Some(els), .. }) => {
110 // Let-else has a special lexical structure for variables.
111 // First we take a checkpoint of the current scope context here.
112 let mut prev_cx = visitor.cx;
113
114 visitor.enter_scope(Scope {
115 local_id: blk.hir_id.local_id,
116 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
117 });
118 visitor.cx.var_parent = visitor.cx.parent;
119 visitor.visit_stmt(statement);
120 // We need to back out temporarily to the last enclosing scope
121 // for the `else` block, so that even the temporaries receiving
122 // extended lifetime will be dropped inside this block.
123 // We are visiting the `else` block in this order so that
124 // the sequence of visits agree with the order in the default
125 // `hir::intravisit` visitor.
126 mem::swap(&mut prev_cx, &mut visitor.cx);
127 resolve_block(visitor, els, true);
128 // From now on, we continue normally.
129 visitor.cx = prev_cx;
130 }
131 hir::StmtKind::Let(..) => {
132 // Each declaration introduces a subscope for bindings
133 // introduced by the declaration; this subscope covers a
134 // suffix of the block. Each subscope in a block has the
135 // previous subscope in the block as a parent, except for
136 // the first such subscope, which has the block itself as a
137 // parent.
138 visitor.enter_scope(Scope {
139 local_id: blk.hir_id.local_id,
140 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
141 });
142 visitor.cx.var_parent = visitor.cx.parent;
143 visitor.visit_stmt(statement)
144 }
145 hir::StmtKind::Item(..) => {
146 // Don't create scopes for items, since they won't be
147 // lowered to THIR and MIR.
148 }
149 hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement),
150 }
151 }
152 if let Some(tail_expr) = blk.expr {
153 let local_id = tail_expr.hir_id.local_id;
154 let edition = blk.span.edition();
155 let terminating = edition.at_least_rust_2024();
156 if !terminating
157 && !visitor
158 .tcx
159 .lints_that_dont_need_to_run(())
160 .contains(&lint::LintId::of(lint::builtin::TAIL_EXPR_DROP_ORDER))
161 {
162 // If this temporary scope will be changing once the codebase adopts Rust 2024,
163 // and we are linting about possible semantic changes that would result,
164 // then record this node-id in the field `backwards_incompatible_scope`
165 // for future reference.
166 visitor
167 .scope_tree
168 .backwards_incompatible_scope
169 .insert(local_id, Scope { local_id, data: ScopeData::Node });
170 }
171 resolve_expr(visitor, tail_expr, terminating);
172 }
173 }
174
175 visitor.cx = prev_cx;
176}
177
178fn resolve_arm<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
179 fn has_let_expr(expr: &Expr<'_>) -> bool {
180 match &expr.kind {
181 hir::ExprKind::Binary(_, lhs, rhs) => has_let_expr(lhs) || has_let_expr(rhs),
182 hir::ExprKind::Let(..) => true,
183 _ => false,
184 }
185 }
186
187 let prev_cx = visitor.cx;
188
189 visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true);
190 visitor.cx.var_parent = visitor.cx.parent;
191
192 resolve_pat(visitor, arm.pat);
193 if let Some(guard) = arm.guard {
194 resolve_expr(visitor, guard, !has_let_expr(guard));
195 }
196 resolve_expr(visitor, arm.body, false);
197
198 visitor.cx = prev_cx;
199}
200
201fn resolve_pat<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
202 // If this is a binding then record the lifetime of that binding.
203 if let PatKind::Binding(..) = pat.kind {
204 record_var_lifetime(visitor, pat.hir_id.local_id);
205 }
206
207 debug!("resolve_pat - pre-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
208
209 intravisit::walk_pat(visitor, pat);
210
211 visitor.expr_and_pat_count += 1;
212
213 debug!("resolve_pat - post-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
214}
215
216fn resolve_stmt<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
217 let stmt_id = stmt.hir_id.local_id;
218 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
219
220 if let hir::StmtKind::Let(LetStmt { super_: Some(_), .. }) = stmt.kind {
221 // `super let` statement does not start a new scope, such that
222 //
223 // { super let x = identity(&temp()); &x }.method();
224 //
225 // behaves exactly as
226 //
227 // (&identity(&temp()).method();
228 intravisit::walk_stmt(visitor, stmt);
229 } else {
230 // Every statement will clean up the temporaries created during
231 // execution of that statement. Therefore each statement has an
232 // associated destruction scope that represents the scope of the
233 // statement plus its destructors, and thus the scope for which
234 // regions referenced by the destructors need to survive.
235
236 let prev_parent = visitor.cx.parent;
237 visitor.enter_node_scope_with_dtor(stmt_id, true);
238
239 intravisit::walk_stmt(visitor, stmt);
240
241 visitor.cx.parent = prev_parent;
242 }
243}
244
245fn resolve_expr<'tcx>(
246 visitor: &mut ScopeResolutionVisitor<'tcx>,
247 expr: &'tcx hir::Expr<'tcx>,
248 terminating: bool,
249) {
250 debug!("resolve_expr - pre-increment {} expr = {:?}", visitor.expr_and_pat_count, expr);
251
252 let prev_cx = visitor.cx;
253 visitor.enter_node_scope_with_dtor(expr.hir_id.local_id, terminating);
254
255 let prev_pessimistic = visitor.pessimistic_yield;
256
257 // Ordinarily, we can rely on the visit order of HIR intravisit
258 // to correspond to the actual execution order of statements.
259 // However, there's a weird corner case with compound assignment
260 // operators (e.g. `a += b`). The evaluation order depends on whether
261 // or not the operator is overloaded (e.g. whether or not a trait
262 // like AddAssign is implemented).
263
264 // For primitive types (which, despite having a trait impl, don't actually
265 // end up calling it), the evaluation order is right-to-left. For example,
266 // the following code snippet:
267 //
268 // let y = &mut 0;
269 // *{println!("LHS!"); y} += {println!("RHS!"); 1};
270 //
271 // will print:
272 //
273 // RHS!
274 // LHS!
275 //
276 // However, if the operator is used on a non-primitive type,
277 // the evaluation order will be left-to-right, since the operator
278 // actually get desugared to a method call. For example, this
279 // nearly identical code snippet:
280 //
281 // let y = &mut String::new();
282 // *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
283 //
284 // will print:
285 // LHS String
286 // RHS String
287 //
288 // To determine the actual execution order, we need to perform
289 // trait resolution. Unfortunately, we need to be able to compute
290 // yield_in_scope before type checking is even done, as it gets
291 // used by AST borrowcheck.
292 //
293 // Fortunately, we don't need to know the actual execution order.
294 // It suffices to know the 'worst case' order with respect to yields.
295 // Specifically, we need to know the highest 'expr_and_pat_count'
296 // that we could assign to the yield expression. To do this,
297 // we pick the greater of the two values from the left-hand
298 // and right-hand expressions. This makes us overly conservative
299 // about what types could possibly live across yield points,
300 // but we will never fail to detect that a type does actually
301 // live across a yield point. The latter part is critical -
302 // we're already overly conservative about what types will live
303 // across yield points, as the generated MIR will determine
304 // when things are actually live. However, for typecheck to work
305 // properly, we can't miss any types.
306
307 match expr.kind {
308 // Conditional or repeating scopes are always terminating
309 // scopes, meaning that temporaries cannot outlive them.
310 // This ensures fixed size stacks.
311 hir::ExprKind::Binary(
312 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
313 left,
314 right,
315 ) => {
316 // expr is a short circuiting operator (|| or &&). As its
317 // functionality can't be overridden by traits, it always
318 // processes bool sub-expressions. bools are Copy and thus we
319 // can drop any temporaries in evaluation (read) order
320 // (with the exception of potentially failing let expressions).
321 // We achieve this by enclosing the operands in a terminating
322 // scope, both the LHS and the RHS.
323
324 // We optimize this a little in the presence of chains.
325 // Chains like a && b && c get lowered to AND(AND(a, b), c).
326 // In here, b and c are RHS, while a is the only LHS operand in
327 // that chain. This holds true for longer chains as well: the
328 // leading operand is always the only LHS operand that is not a
329 // binop itself. Putting a binop like AND(a, b) into a
330 // terminating scope is not useful, thus we only put the LHS
331 // into a terminating scope if it is not a binop.
332
333 let terminate_lhs = match left.kind {
334 // let expressions can create temporaries that live on
335 hir::ExprKind::Let(_) => false,
336 // binops already drop their temporaries, so there is no
337 // need to put them into a terminating scope.
338 // This is purely an optimization to reduce the number of
339 // terminating scopes.
340 hir::ExprKind::Binary(
341 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
342 ..,
343 ) => false,
344 // otherwise: mark it as terminating
345 _ => true,
346 };
347
348 // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries
349 // should live beyond the immediate expression
350 let terminate_rhs = !matches!(right.kind, hir::ExprKind::Let(_));
351
352 resolve_expr(visitor, left, terminate_lhs);
353 resolve_expr(visitor, right, terminate_rhs);
354 }
355 // Manually recurse over closures, because they are nested bodies
356 // that share the parent environment. We handle const blocks in
357 // `visit_inline_const`.
358 hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
359 let body = visitor.tcx.hir_body(body);
360 visitor.visit_body(body);
361 }
362 hir::ExprKind::AssignOp(_, left_expr, right_expr) => {
363 debug!(
364 "resolve_expr - enabling pessimistic_yield, was previously {}",
365 prev_pessimistic
366 );
367
368 let start_point = visitor.fixup_scopes.len();
369 visitor.pessimistic_yield = true;
370
371 // If the actual execution order turns out to be right-to-left,
372 // then we're fine. However, if the actual execution order is left-to-right,
373 // then we'll assign too low a count to any `yield` expressions
374 // we encounter in 'right_expression' - they should really occur after all of the
375 // expressions in 'left_expression'.
376 visitor.visit_expr(right_expr);
377 visitor.pessimistic_yield = prev_pessimistic;
378
379 debug!("resolve_expr - restoring pessimistic_yield to {}", prev_pessimistic);
380 visitor.visit_expr(left_expr);
381 debug!("resolve_expr - fixing up counts to {}", visitor.expr_and_pat_count);
382
383 // Remove and process any scopes pushed by the visitor
384 let target_scopes = visitor.fixup_scopes.drain(start_point..);
385
386 for scope in target_scopes {
387 let yield_data =
388 visitor.scope_tree.yield_in_scope.get_mut(&scope).unwrap().last_mut().unwrap();
389 let count = yield_data.expr_and_pat_count;
390 let span = yield_data.span;
391
392 // expr_and_pat_count never decreases. Since we recorded counts in yield_in_scope
393 // before walking the left-hand side, it should be impossible for the recorded
394 // count to be greater than the left-hand side count.
395 if count > visitor.expr_and_pat_count {
396 bug!(
397 "Encountered greater count {} at span {:?} - expected no greater than {}",
398 count,
399 span,
400 visitor.expr_and_pat_count
401 );
402 }
403 let new_count = visitor.expr_and_pat_count;
404 debug!(
405 "resolve_expr - increasing count for scope {:?} from {} to {} at span {:?}",
406 scope, count, new_count, span
407 );
408
409 yield_data.expr_and_pat_count = new_count;
410 }
411 }
412
413 hir::ExprKind::If(cond, then, Some(otherwise)) => {
414 let expr_cx = visitor.cx;
415 let data = if expr.span.at_least_rust_2024() {
416 ScopeData::IfThenRescope
417 } else {
418 ScopeData::IfThen
419 };
420 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
421 visitor.cx.var_parent = visitor.cx.parent;
422 visitor.visit_expr(cond);
423 resolve_expr(visitor, then, true);
424 visitor.cx = expr_cx;
425 resolve_expr(visitor, otherwise, true);
426 }
427
428 hir::ExprKind::If(cond, then, None) => {
429 let expr_cx = visitor.cx;
430 let data = if expr.span.at_least_rust_2024() {
431 ScopeData::IfThenRescope
432 } else {
433 ScopeData::IfThen
434 };
435 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
436 visitor.cx.var_parent = visitor.cx.parent;
437 visitor.visit_expr(cond);
438 resolve_expr(visitor, then, true);
439 visitor.cx = expr_cx;
440 }
441
442 hir::ExprKind::Loop(body, _, _, _) => {
443 resolve_block(visitor, body, true);
444 }
445
446 hir::ExprKind::DropTemps(expr) => {
447 // `DropTemps(expr)` does not denote a conditional scope.
448 // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
449 resolve_expr(visitor, expr, true);
450 }
451
452 _ => intravisit::walk_expr(visitor, expr),
453 }
454
455 visitor.expr_and_pat_count += 1;
456
457 debug!("resolve_expr post-increment {}, expr = {:?}", visitor.expr_and_pat_count, expr);
458
459 if let hir::ExprKind::Yield(_, source) = &expr.kind {
460 // Mark this expr's scope and all parent scopes as containing `yield`.
461 let mut scope = Scope { local_id: expr.hir_id.local_id, data: ScopeData::Node };
462 loop {
463 let data = YieldData {
464 span: expr.span,
465 expr_and_pat_count: visitor.expr_and_pat_count,
466 source: *source,
467 };
468 match visitor.scope_tree.yield_in_scope.get_mut(&scope) {
469 Some(yields) => yields.push(data),
470 None => {
471 visitor.scope_tree.yield_in_scope.insert(scope, vec![data]);
472 }
473 }
474
475 if visitor.pessimistic_yield {
476 debug!("resolve_expr in pessimistic_yield - marking scope {:?} for fixup", scope);
477 visitor.fixup_scopes.push(scope);
478 }
479
480 // Keep traversing up while we can.
481 match visitor.scope_tree.parent_map.get(&scope) {
482 // Don't cross from closure bodies to their parent.
483 Some(&superscope) => match superscope.data {
484 ScopeData::CallSite => break,
485 _ => scope = superscope,
486 },
487 None => break,
488 }
489 }
490 }
491
492 visitor.cx = prev_cx;
493}
494
495#[derive(Copy, Clone, PartialEq, Eq, Debug)]
496enum LetKind {
497 Regular,
498 Super,
499}
500
501fn resolve_local<'tcx>(
502 visitor: &mut ScopeResolutionVisitor<'tcx>,
503 pat: Option<&'tcx hir::Pat<'tcx>>,
504 init: Option<&'tcx hir::Expr<'tcx>>,
505 let_kind: LetKind,
506) {
507 debug!("resolve_local(pat={:?}, init={:?}, let_kind={:?})", pat, init, let_kind);
508
509 // As an exception to the normal rules governing temporary
510 // lifetimes, initializers in a let have a temporary lifetime
511 // of the enclosing block. This means that e.g., a program
512 // like the following is legal:
513 //
514 // let ref x = HashMap::new();
515 //
516 // Because the hash map will be freed in the enclosing block.
517 //
518 // We express the rules more formally based on 3 grammars (defined
519 // fully in the helpers below that implement them):
520 //
521 // 1. `E&`, which matches expressions like `&<rvalue>` that
522 // own a pointer into the stack.
523 //
524 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
525 // y)` that produce ref bindings into the value they are
526 // matched against or something (at least partially) owned by
527 // the value they are matched against. (By partially owned,
528 // I mean that creating a binding into a ref-counted or managed value
529 // would still count.)
530 //
531 // 3. `ET`, which matches both rvalues like `foo()` as well as places
532 // based on rvalues like `foo().x[2].y`.
533 //
534 // A subexpression `<rvalue>` that appears in a let initializer
535 // `let pat [: ty] = expr` has an extended temporary lifetime if
536 // any of the following conditions are met:
537 //
538 // A. `pat` matches `P&` and `expr` matches `ET`
539 // (covers cases where `pat` creates ref bindings into an rvalue
540 // produced by `expr`)
541 // B. `ty` is a borrowed pointer and `expr` matches `ET`
542 // (covers cases where coercion creates a borrow)
543 // C. `expr` matches `E&`
544 // (covers cases `expr` borrows an rvalue that is then assigned
545 // to memory (at least partially) owned by the binding)
546 //
547 // Here are some examples hopefully giving an intuition where each
548 // rule comes into play and why:
549 //
550 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
551 // would have an extended lifetime, but not `foo()`.
552 //
553 // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
554 // lifetime.
555 //
556 // In some cases, multiple rules may apply (though not to the same
557 // rvalue). For example:
558 //
559 // let ref x = [&a(), &b()];
560 //
561 // Here, the expression `[...]` has an extended lifetime due to rule
562 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
563 // due to rule C.
564
565 if let_kind == LetKind::Super {
566 if let Some(scope) = visitor.extended_super_lets.remove(&pat.unwrap().hir_id.local_id) {
567 // This expression was lifetime-extended by a parent let binding. E.g.
568 //
569 // let a = {
570 // super let b = temp();
571 // &b
572 // };
573 //
574 // (Which needs to behave exactly as: let a = &temp();)
575 //
576 // Processing of `let a` will have already decided to extend the lifetime of this
577 // `super let` to its own var_scope. We use that scope.
578 visitor.cx.var_parent = scope;
579 } else {
580 // This `super let` is not subject to lifetime extension from a parent let binding. E.g.
581 //
582 // identity({ super let x = temp(); &x }).method();
583 //
584 // (Which needs to behave exactly as: identity(&temp()).method();)
585 //
586 // Iterate up to the enclosing destruction scope to find the same scope that will also
587 // be used for the result of the block itself.
588 while let Some(s) = visitor.cx.var_parent {
589 let parent = visitor.scope_tree.parent_map.get(&s).cloned();
590 if let Some(Scope { data: ScopeData::Destruction, .. }) = parent {
591 break;
592 }
593 visitor.cx.var_parent = parent;
594 }
595 }
596 }
597
598 if let Some(expr) = init {
599 record_rvalue_scope_if_borrow_expr(visitor, expr, visitor.cx.var_parent);
600
601 if let Some(pat) = pat {
602 if is_binding_pat(pat) {
603 visitor.scope_tree.record_rvalue_candidate(
604 expr.hir_id,
605 RvalueCandidate {
606 target: expr.hir_id.local_id,
607 lifetime: visitor.cx.var_parent,
608 },
609 );
610 }
611 }
612 }
613
614 // Make sure we visit the initializer first, so expr_and_pat_count remains correct.
615 // The correct order, as shared between coroutine_interior, drop_ranges and intravisitor,
616 // is to walk initializer, followed by pattern bindings, finally followed by the `else` block.
617 if let Some(expr) = init {
618 visitor.visit_expr(expr);
619 }
620
621 if let Some(pat) = pat {
622 visitor.visit_pat(pat);
623 }
624
625 /// Returns `true` if `pat` match the `P&` non-terminal.
626 ///
627 /// ```text
628 /// P& = ref X
629 /// | StructName { ..., P&, ... }
630 /// | VariantName(..., P&, ...)
631 /// | [ ..., P&, ... ]
632 /// | ( ..., P&, ... )
633 /// | ... "|" P& "|" ...
634 /// | box P&
635 /// | P& if ...
636 /// ```
637 fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
638 // Note that the code below looks for *explicit* refs only, that is, it won't
639 // know about *implicit* refs as introduced in #42640.
640 //
641 // This is not a problem. For example, consider
642 //
643 // let (ref x, ref y) = (Foo { .. }, Bar { .. });
644 //
645 // Due to the explicit refs on the left hand side, the below code would signal
646 // that the temporary value on the right hand side should live until the end of
647 // the enclosing block (as opposed to being dropped after the let is complete).
648 //
649 // To create an implicit ref, however, you must have a borrowed value on the RHS
650 // already, as in this example (which won't compile before #42640):
651 //
652 // let Foo { x, .. } = &Foo { x: ..., ... };
653 //
654 // in place of
655 //
656 // let Foo { ref x, .. } = Foo { ... };
657 //
658 // In the former case (the implicit ref version), the temporary is created by the
659 // & expression, and its lifetime would be extended to the end of the block (due
660 // to a different rule, not the below code).
661 match pat.kind {
662 PatKind::Binding(hir::BindingMode(hir::ByRef::Yes(_), _), ..) => true,
663
664 PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)),
665
666 PatKind::Slice(pats1, pats2, pats3) => {
667 pats1.iter().any(|p| is_binding_pat(p))
668 || pats2.iter().any(|p| is_binding_pat(p))
669 || pats3.iter().any(|p| is_binding_pat(p))
670 }
671
672 PatKind::Or(subpats)
673 | PatKind::TupleStruct(_, subpats, _)
674 | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)),
675
676 PatKind::Box(subpat) | PatKind::Deref(subpat) | PatKind::Guard(subpat, _) => {
677 is_binding_pat(subpat)
678 }
679
680 PatKind::Ref(_, _)
681 | PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), ..)
682 | PatKind::Missing
683 | PatKind::Wild
684 | PatKind::Never
685 | PatKind::Expr(_)
686 | PatKind::Range(_, _, _)
687 | PatKind::Err(_) => false,
688 }
689 }
690
691 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
692 ///
693 /// ```text
694 /// E& = & ET
695 /// | StructName { ..., f: E&, ... }
696 /// | [ ..., E&, ... ]
697 /// | ( ..., E&, ... )
698 /// | {...; E&}
699 /// | { super let ... = E&; ... }
700 /// | if _ { ...; E& } else { ...; E& }
701 /// | match _ { ..., _ => E&, ... }
702 /// | box E&
703 /// | E& as ...
704 /// | ( E& )
705 /// ```
706 fn record_rvalue_scope_if_borrow_expr<'tcx>(
707 visitor: &mut ScopeResolutionVisitor<'tcx>,
708 expr: &hir::Expr<'_>,
709 blk_id: Option<Scope>,
710 ) {
711 match expr.kind {
712 hir::ExprKind::AddrOf(_, _, subexpr) => {
713 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
714 visitor.scope_tree.record_rvalue_candidate(
715 subexpr.hir_id,
716 RvalueCandidate { target: subexpr.hir_id.local_id, lifetime: blk_id },
717 );
718 }
719 hir::ExprKind::Struct(_, fields, _) => {
720 for field in fields {
721 record_rvalue_scope_if_borrow_expr(visitor, field.expr, blk_id);
722 }
723 }
724 hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
725 for subexpr in subexprs {
726 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
727 }
728 }
729 hir::ExprKind::Cast(subexpr, _) => {
730 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id)
731 }
732 hir::ExprKind::Block(block, _) => {
733 if let Some(subexpr) = block.expr {
734 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
735 }
736 for stmt in block.stmts {
737 if let hir::StmtKind::Let(local) = stmt.kind
738 && let Some(_) = local.super_
739 {
740 visitor.extended_super_lets.insert(local.pat.hir_id.local_id, blk_id);
741 }
742 }
743 }
744 hir::ExprKind::If(_, then_block, else_block) => {
745 record_rvalue_scope_if_borrow_expr(visitor, then_block, blk_id);
746 if let Some(else_block) = else_block {
747 record_rvalue_scope_if_borrow_expr(visitor, else_block, blk_id);
748 }
749 }
750 hir::ExprKind::Match(_, arms, _) => {
751 for arm in arms {
752 record_rvalue_scope_if_borrow_expr(visitor, arm.body, blk_id);
753 }
754 }
755 hir::ExprKind::Call(..) | hir::ExprKind::MethodCall(..) => {
756 // FIXME(@dingxiangfei2009): choose call arguments here
757 // for candidacy for extended parameter rule application
758 }
759 hir::ExprKind::Index(..) => {
760 // FIXME(@dingxiangfei2009): select the indices
761 // as candidate for rvalue scope rules
762 }
763 _ => {}
764 }
765 }
766}
767
768impl<'tcx> ScopeResolutionVisitor<'tcx> {
769 /// Records the current parent (if any) as the parent of `child_scope`.
770 fn record_child_scope(&mut self, child_scope: Scope) {
771 let parent = self.cx.parent;
772 self.scope_tree.record_scope_parent(child_scope, parent);
773 }
774
775 /// Records the current parent (if any) as the parent of `child_scope`,
776 /// and sets `child_scope` as the new current parent.
777 fn enter_scope(&mut self, child_scope: Scope) {
778 self.record_child_scope(child_scope);
779 self.cx.parent = Some(child_scope);
780 }
781
782 fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId, terminating: bool) {
783 // If node was previously marked as a terminating scope during the
784 // recursive visit of its parent node in the HIR, then we need to
785 // account for the destruction scope representing the scope of
786 // the destructors that run immediately after it completes.
787 if terminating {
788 self.enter_scope(Scope { local_id: id, data: ScopeData::Destruction });
789 }
790 self.enter_scope(Scope { local_id: id, data: ScopeData::Node });
791 }
792
793 fn enter_body(&mut self, hir_id: hir::HirId, f: impl FnOnce(&mut Self)) {
794 // Save all state that is specific to the outer function
795 // body. These will be restored once down below, once we've
796 // visited the body.
797 let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0);
798 let outer_cx = self.cx;
799 // The 'pessimistic yield' flag is set to true when we are
800 // processing a `+=` statement and have to make pessimistic
801 // control flow assumptions. This doesn't apply to nested
802 // bodies within the `+=` statements. See #69307.
803 let outer_pessimistic_yield = mem::replace(&mut self.pessimistic_yield, false);
804
805 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::CallSite });
806 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::Arguments });
807
808 f(self);
809
810 // Restore context we had at the start.
811 self.expr_and_pat_count = outer_ec;
812 self.cx = outer_cx;
813 self.pessimistic_yield = outer_pessimistic_yield;
814 }
815}
816
817impl<'tcx> Visitor<'tcx> for ScopeResolutionVisitor<'tcx> {
818 fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
819 resolve_block(self, b, false);
820 }
821
822 fn visit_body(&mut self, body: &hir::Body<'tcx>) {
823 let body_id = body.id();
824 let owner_id = self.tcx.hir_body_owner_def_id(body_id);
825
826 debug!(
827 "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
828 owner_id,
829 self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span),
830 body_id,
831 self.cx.parent
832 );
833
834 self.enter_body(body.value.hir_id, |this| {
835 if this.tcx.hir_body_owner_kind(owner_id).is_fn_or_closure() {
836 // The arguments and `self` are parented to the fn.
837 this.cx.var_parent = this.cx.parent;
838 for param in body.params {
839 this.visit_pat(param.pat);
840 }
841
842 // The body of the every fn is a root scope.
843 resolve_expr(this, body.value, true);
844 } else {
845 // Only functions have an outer terminating (drop) scope, while
846 // temporaries in constant initializers may be 'static, but only
847 // according to rvalue lifetime semantics, using the same
848 // syntactical rules used for let initializers.
849 //
850 // e.g., in `let x = &f();`, the temporary holding the result from
851 // the `f()` call lives for the entirety of the surrounding block.
852 //
853 // Similarly, `const X: ... = &f();` would have the result of `f()`
854 // live for `'static`, implying (if Drop restrictions on constants
855 // ever get lifted) that the value *could* have a destructor, but
856 // it'd get leaked instead of the destructor running during the
857 // evaluation of `X` (if at all allowed by CTFE).
858 //
859 // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
860 // would *not* let the `f()` temporary escape into an outer scope
861 // (i.e., `'static`), which means that after `g` returns, it drops,
862 // and all the associated destruction scope rules apply.
863 this.cx.var_parent = None;
864 this.enter_scope(Scope {
865 local_id: body.value.hir_id.local_id,
866 data: ScopeData::Destruction,
867 });
868 resolve_local(this, None, Some(body.value), LetKind::Regular);
869 }
870 })
871 }
872
873 fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
874 resolve_arm(self, a);
875 }
876 fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
877 resolve_pat(self, p);
878 }
879 fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
880 resolve_stmt(self, s);
881 }
882 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
883 resolve_expr(self, ex, false);
884 }
885 fn visit_local(&mut self, l: &'tcx LetStmt<'tcx>) {
886 let let_kind = match l.super_ {
887 Some(_) => LetKind::Super,
888 None => LetKind::Regular,
889 };
890 resolve_local(self, Some(l.pat), l.init, let_kind);
891 }
892 fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) {
893 let body = self.tcx.hir_body(c.body);
894 self.visit_body(body);
895 }
896}
897
898/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
899/// in the case of closures, this will be redirected to the enclosing function.
900///
901/// Performance: This is a query rather than a simple function to enable
902/// re-use in incremental scenarios. We may sometimes need to rerun the
903/// type checker even when the HIR hasn't changed, and in those cases
904/// we can avoid reconstructing the region scope tree.
905pub(crate) fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
906 let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
907 if typeck_root_def_id != def_id {
908 return tcx.region_scope_tree(typeck_root_def_id);
909 }
910
911 let scope_tree = if let Some(body) = tcx.hir_maybe_body_owned_by(def_id.expect_local()) {
912 let mut visitor = ScopeResolutionVisitor {
913 tcx,
914 scope_tree: ScopeTree::default(),
915 expr_and_pat_count: 0,
916 cx: Context { parent: None, var_parent: None },
917 pessimistic_yield: false,
918 fixup_scopes: vec![],
919 extended_super_lets: Default::default(),
920 };
921
922 visitor.scope_tree.root_body = Some(body.value.hir_id);
923 visitor.visit_body(&body);
924 visitor.scope_tree
925 } else {
926 ScopeTree::default()
927 };
928
929 tcx.arena.alloc(scope_tree)
930}