rustc_hir_analysis/collect/
predicates_of.rs

1use std::assert_matches::assert_matches;
2
3use hir::Node;
4use rustc_data_structures::fx::FxIndexSet;
5use rustc_hir as hir;
6use rustc_hir::def::DefKind;
7use rustc_hir::def_id::{DefId, LocalDefId};
8use rustc_middle::ty::{
9    self, GenericPredicates, ImplTraitInTraitData, Ty, TyCtxt, TypeVisitable, TypeVisitor, Upcast,
10};
11use rustc_middle::{bug, span_bug};
12use rustc_span::{DUMMY_SP, Ident, Span};
13use tracing::{debug, instrument, trace};
14
15use super::item_bounds::explicit_item_bounds_with_filter;
16use crate::collect::ItemCtxt;
17use crate::constrained_generic_params as cgp;
18use crate::delegation::inherit_predicates_for_delegation_item;
19use crate::hir_ty_lowering::{HirTyLowerer, PredicateFilter, RegionInferReason};
20
21/// Returns a list of all type predicates (explicit and implicit) for the definition with
22/// ID `def_id`. This includes all predicates returned by `explicit_predicates_of`, plus
23/// inferred constraints concerning which regions outlive other regions.
24#[instrument(level = "debug", skip(tcx))]
25pub(super) fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
26    let mut result = tcx.explicit_predicates_of(def_id);
27    debug!("predicates_of: explicit_predicates_of({:?}) = {:?}", def_id, result);
28
29    let inferred_outlives = tcx.inferred_outlives_of(def_id);
30    if !inferred_outlives.is_empty() {
31        debug!("predicates_of: inferred_outlives_of({:?}) = {:?}", def_id, inferred_outlives,);
32        let inferred_outlives_iter =
33            inferred_outlives.iter().map(|(clause, span)| ((*clause).upcast(tcx), *span));
34        if result.predicates.is_empty() {
35            result.predicates = tcx.arena.alloc_from_iter(inferred_outlives_iter);
36        } else {
37            result.predicates = tcx.arena.alloc_from_iter(
38                result.predicates.into_iter().copied().chain(inferred_outlives_iter),
39            );
40        }
41    }
42
43    if tcx.is_trait(def_id) {
44        // For traits, add `Self: Trait` predicate. This is
45        // not part of the predicates that a user writes, but it
46        // is something that one must prove in order to invoke a
47        // method or project an associated type.
48        //
49        // In the chalk setup, this predicate is not part of the
50        // "predicates" for a trait item. But it is useful in
51        // rustc because if you directly (e.g.) invoke a trait
52        // method like `Trait::method(...)`, you must naturally
53        // prove that the trait applies to the types that were
54        // used, and adding the predicate into this list ensures
55        // that this is done.
56        //
57        // We use a DUMMY_SP here as a way to signal trait bounds that come
58        // from the trait itself that *shouldn't* be shown as the source of
59        // an obligation and instead be skipped. Otherwise we'd use
60        // `tcx.def_span(def_id);`
61        let span = DUMMY_SP;
62
63        result.predicates = tcx.arena.alloc_from_iter(
64            result
65                .predicates
66                .iter()
67                .copied()
68                .chain(std::iter::once((ty::TraitRef::identity(tcx, def_id).upcast(tcx), span))),
69        );
70    }
71
72    debug!("predicates_of({:?}) = {:?}", def_id, result);
73    result
74}
75
76/// Returns a list of user-specified type predicates for the definition with ID `def_id`.
77/// N.B., this does not include any implied/inferred constraints.
78#[instrument(level = "trace", skip(tcx), ret)]
79fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::GenericPredicates<'_> {
80    use rustc_hir::*;
81
82    match tcx.opt_rpitit_info(def_id.to_def_id()) {
83        Some(ImplTraitInTraitData::Trait { fn_def_id, .. }) => {
84            let mut predicates = Vec::new();
85
86            // RPITITs should inherit the predicates of their parent. This is
87            // both to ensure that the RPITITs are only instantiated when the
88            // parent predicates would hold, and also so that the param-env
89            // inherits these predicates as assumptions.
90            let identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
91            predicates
92                .extend(tcx.explicit_predicates_of(fn_def_id).instantiate_own(tcx, identity_args));
93
94            // We also install bidirectional outlives predicates for the RPITIT
95            // to keep the duplicates lifetimes from opaque lowering in sync.
96            // We only need to compute bidirectional outlives for the duplicated
97            // opaque lifetimes, which explains the slicing below.
98            compute_bidirectional_outlives_predicates(
99                tcx,
100                &tcx.generics_of(def_id.to_def_id()).own_params
101                    [tcx.generics_of(fn_def_id).own_params.len()..],
102                &mut predicates,
103            );
104
105            return ty::GenericPredicates {
106                parent: Some(tcx.parent(def_id.to_def_id())),
107                predicates: tcx.arena.alloc_from_iter(predicates),
108            };
109        }
110
111        Some(ImplTraitInTraitData::Impl { fn_def_id }) => {
112            let assoc_item = tcx.associated_item(def_id);
113            let trait_assoc_predicates =
114                tcx.explicit_predicates_of(assoc_item.trait_item_def_id.unwrap());
115
116            let impl_assoc_identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
117            let impl_def_id = tcx.parent(fn_def_id);
118            let impl_trait_ref_args =
119                tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity().args;
120
121            let impl_assoc_args =
122                impl_assoc_identity_args.rebase_onto(tcx, impl_def_id, impl_trait_ref_args);
123
124            let impl_predicates = trait_assoc_predicates.instantiate_own(tcx, impl_assoc_args);
125
126            return ty::GenericPredicates {
127                parent: Some(impl_def_id),
128                predicates: tcx.arena.alloc_from_iter(impl_predicates),
129            };
130        }
131
132        None => {}
133    }
134
135    let hir_id = tcx.local_def_id_to_hir_id(def_id);
136    let node = tcx.hir_node(hir_id);
137
138    if let Some(sig) = node.fn_sig()
139        && let Some(sig_id) = sig.decl.opt_delegation_sig_id()
140    {
141        return inherit_predicates_for_delegation_item(tcx, def_id, sig_id);
142    }
143
144    let mut is_trait = None;
145    let mut is_default_impl_trait = None;
146
147    let icx = ItemCtxt::new(tcx, def_id);
148
149    const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
150
151    // We use an `IndexSet` to preserve order of insertion.
152    // Preserving the order of insertion is important here so as not to break UI tests.
153    let mut predicates: FxIndexSet<(ty::Clause<'_>, Span)> = FxIndexSet::default();
154
155    let hir_generics = node.generics().unwrap_or(NO_GENERICS);
156    if let Node::Item(item) = node {
157        match item.kind {
158            ItemKind::Impl(impl_) => {
159                if impl_.defaultness.is_default() {
160                    is_default_impl_trait = tcx
161                        .impl_trait_ref(def_id)
162                        .map(|t| ty::Binder::dummy(t.instantiate_identity()));
163                }
164            }
165
166            ItemKind::Trait(_, _, _, _, self_bounds, ..)
167            | ItemKind::TraitAlias(_, _, self_bounds) => {
168                is_trait = Some((self_bounds, item.span));
169            }
170            _ => {}
171        }
172    };
173
174    if let Node::TraitItem(item) = node {
175        let mut bounds = Vec::new();
176        icx.lowerer().add_default_trait_item_bounds(item, &mut bounds);
177        predicates.extend(bounds);
178    }
179
180    let generics = tcx.generics_of(def_id);
181
182    // Below we'll consider the bounds on the type parameters (including `Self`)
183    // and the explicit where-clauses, but to get the full set of predicates
184    // on a trait we must also consider the bounds that follow the trait's name,
185    // like `trait Foo: A + B + C`.
186    if let Some(self_bounds) = is_trait {
187        let mut bounds = Vec::new();
188        icx.lowerer().lower_bounds(
189            tcx.types.self_param,
190            self_bounds.0,
191            &mut bounds,
192            ty::List::empty(),
193            PredicateFilter::All,
194        );
195        icx.lowerer().add_default_super_traits(
196            def_id,
197            &mut bounds,
198            self_bounds.0,
199            hir_generics,
200            self_bounds.1,
201        );
202        predicates.extend(bounds);
203    }
204
205    // In default impls, we can assume that the self type implements
206    // the trait. So in:
207    //
208    //     default impl Foo for Bar { .. }
209    //
210    // we add a default where clause `Bar: Foo`. We do a similar thing for traits
211    // (see below). Recall that a default impl is not itself an impl, but rather a
212    // set of defaults that can be incorporated into another impl.
213    if let Some(trait_ref) = is_default_impl_trait {
214        predicates.insert((trait_ref.upcast(tcx), tcx.def_span(def_id)));
215    }
216
217    // Add implicit predicates that should be treated as if the user has written them,
218    // including the implicit `T: Sized` for all generic parameters, and `ConstArgHasType`
219    // for const params.
220    for param in hir_generics.params {
221        match param.kind {
222            GenericParamKind::Lifetime { .. } => (),
223            GenericParamKind::Type { .. } => {
224                let param_ty = icx.lowerer().lower_ty_param(param.hir_id);
225                let mut bounds = Vec::new();
226                // Implicit bounds are added to type params unless a `?Trait` bound is found
227                icx.lowerer().add_default_traits(
228                    &mut bounds,
229                    param_ty,
230                    &[],
231                    Some((param.def_id, hir_generics.predicates)),
232                    param.span,
233                );
234                trace!(?bounds);
235                predicates.extend(bounds);
236                trace!(?predicates);
237            }
238            hir::GenericParamKind::Const { .. } => {
239                let param_def_id = param.def_id.to_def_id();
240                let ct_ty = tcx.type_of(param_def_id).instantiate_identity();
241                let ct = icx.lowerer().lower_const_param(param_def_id, param.hir_id);
242                predicates
243                    .insert((ty::ClauseKind::ConstArgHasType(ct, ct_ty).upcast(tcx), param.span));
244            }
245        }
246    }
247
248    trace!(?predicates);
249    // Add inline `<T: Foo>` bounds and bounds in the where clause.
250    for predicate in hir_generics.predicates {
251        match predicate.kind {
252            hir::WherePredicateKind::BoundPredicate(bound_pred) => {
253                let ty = icx.lowerer().lower_ty_maybe_return_type_notation(bound_pred.bounded_ty);
254
255                let bound_vars = tcx.late_bound_vars(predicate.hir_id);
256                // Keep the type around in a dummy predicate, in case of no bounds.
257                // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
258                // is still checked for WF.
259                if bound_pred.bounds.is_empty() {
260                    if let ty::Param(_) = ty.kind() {
261                        // This is a `where T:`, which can be in the HIR from the
262                        // transformation that moves `?Sized` to `T`'s declaration.
263                        // We can skip the predicate because type parameters are
264                        // trivially WF, but also we *should*, to avoid exposing
265                        // users who never wrote `where Type:,` themselves, to
266                        // compiler/tooling bugs from not handling WF predicates.
267                    } else {
268                        let span = bound_pred.bounded_ty.span;
269                        let predicate = ty::Binder::bind_with_vars(
270                            ty::ClauseKind::WellFormed(ty.into()),
271                            bound_vars,
272                        );
273                        predicates.insert((predicate.upcast(tcx), span));
274                    }
275                }
276
277                let mut bounds = Vec::new();
278                icx.lowerer().lower_bounds(
279                    ty,
280                    bound_pred.bounds,
281                    &mut bounds,
282                    bound_vars,
283                    PredicateFilter::All,
284                );
285                predicates.extend(bounds);
286            }
287
288            hir::WherePredicateKind::RegionPredicate(region_pred) => {
289                let r1 = icx
290                    .lowerer()
291                    .lower_lifetime(region_pred.lifetime, RegionInferReason::RegionPredicate);
292                predicates.extend(region_pred.bounds.iter().map(|bound| {
293                    let (r2, span) = match bound {
294                        hir::GenericBound::Outlives(lt) => (
295                            icx.lowerer().lower_lifetime(lt, RegionInferReason::RegionPredicate),
296                            lt.ident.span,
297                        ),
298                        bound => {
299                            span_bug!(
300                                bound.span(),
301                                "lifetime param bounds must be outlives, but found {bound:?}"
302                            )
303                        }
304                    };
305                    let pred =
306                        ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(r1, r2)).upcast(tcx);
307                    (pred, span)
308                }))
309            }
310
311            hir::WherePredicateKind::EqPredicate(..) => {
312                // FIXME(#20041)
313            }
314        }
315    }
316
317    if tcx.features().generic_const_exprs() {
318        predicates.extend(const_evaluatable_predicates_of(tcx, def_id, &predicates));
319    }
320
321    let mut predicates: Vec<_> = predicates.into_iter().collect();
322
323    // Subtle: before we store the predicates into the tcx, we
324    // sort them so that predicates like `T: Foo<Item=U>` come
325    // before uses of `U`. This avoids false ambiguity errors
326    // in trait checking. See `setup_constraining_predicates`
327    // for details.
328    if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
329        let self_ty = tcx.type_of(def_id).instantiate_identity();
330        let trait_ref = tcx.impl_trait_ref(def_id).map(ty::EarlyBinder::instantiate_identity);
331        cgp::setup_constraining_predicates(
332            tcx,
333            &mut predicates,
334            trait_ref,
335            &mut cgp::parameters_for_impl(tcx, self_ty, trait_ref),
336        );
337    }
338
339    // Opaque types duplicate some of their generic parameters.
340    // We create bi-directional Outlives predicates between the original
341    // and the duplicated parameter, to ensure that they do not get out of sync.
342    if let Node::OpaqueTy(..) = node {
343        compute_bidirectional_outlives_predicates(tcx, &generics.own_params, &mut predicates);
344        debug!(?predicates);
345    }
346
347    ty::GenericPredicates {
348        parent: generics.parent,
349        predicates: tcx.arena.alloc_from_iter(predicates),
350    }
351}
352
353/// Opaques have duplicated lifetimes and we need to compute bidirectional outlives predicates to
354/// enforce that these lifetimes stay in sync.
355fn compute_bidirectional_outlives_predicates<'tcx>(
356    tcx: TyCtxt<'tcx>,
357    opaque_own_params: &[ty::GenericParamDef],
358    predicates: &mut Vec<(ty::Clause<'tcx>, Span)>,
359) {
360    for param in opaque_own_params {
361        let orig_lifetime = tcx.map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local());
362        if let ty::ReEarlyParam(..) = orig_lifetime.kind() {
363            let dup_lifetime = ty::Region::new_early_param(
364                tcx,
365                ty::EarlyParamRegion { index: param.index, name: param.name },
366            );
367            let span = tcx.def_span(param.def_id);
368            predicates.push((
369                ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(orig_lifetime, dup_lifetime))
370                    .upcast(tcx),
371                span,
372            ));
373            predicates.push((
374                ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(dup_lifetime, orig_lifetime))
375                    .upcast(tcx),
376                span,
377            ));
378        }
379    }
380}
381
382#[instrument(level = "debug", skip(tcx, predicates), ret)]
383fn const_evaluatable_predicates_of<'tcx>(
384    tcx: TyCtxt<'tcx>,
385    def_id: LocalDefId,
386    predicates: &FxIndexSet<(ty::Clause<'tcx>, Span)>,
387) -> FxIndexSet<(ty::Clause<'tcx>, Span)> {
388    struct ConstCollector<'tcx> {
389        tcx: TyCtxt<'tcx>,
390        preds: FxIndexSet<(ty::Clause<'tcx>, Span)>,
391    }
392
393    fn is_const_param_default(tcx: TyCtxt<'_>, def: LocalDefId) -> bool {
394        let hir_id = tcx.local_def_id_to_hir_id(def);
395        let (_, parent_node) = tcx
396            .hir_parent_iter(hir_id)
397            .skip_while(|(_, n)| matches!(n, Node::ConstArg(..)))
398            .next()
399            .unwrap();
400        matches!(
401            parent_node,
402            Node::GenericParam(hir::GenericParam { kind: hir::GenericParamKind::Const { .. }, .. })
403        )
404    }
405
406    impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ConstCollector<'tcx> {
407        fn visit_const(&mut self, c: ty::Const<'tcx>) {
408            if let ty::ConstKind::Unevaluated(uv) = c.kind() {
409                if is_const_param_default(self.tcx, uv.def.expect_local()) {
410                    // Do not look into const param defaults,
411                    // these get checked when they are actually instantiated.
412                    //
413                    // We do not want the following to error:
414                    //
415                    //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
416                    //     struct Bar<const N: usize>(Foo<N, 3>);
417                    return;
418                }
419
420                let span = self.tcx.def_span(uv.def);
421                self.preds.insert((ty::ClauseKind::ConstEvaluatable(c).upcast(self.tcx), span));
422            }
423        }
424    }
425
426    let hir_id = tcx.local_def_id_to_hir_id(def_id);
427    let node = tcx.hir_node(hir_id);
428
429    let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
430
431    for (clause, _sp) in predicates {
432        clause.visit_with(&mut collector);
433    }
434
435    if let hir::Node::Item(item) = node
436        && let hir::ItemKind::Impl(_) = item.kind
437    {
438        if let Some(of_trait) = tcx.impl_trait_ref(def_id) {
439            debug!("visit impl trait_ref");
440            of_trait.instantiate_identity().visit_with(&mut collector);
441        }
442
443        debug!("visit self_ty");
444        let self_ty = tcx.type_of(def_id);
445        self_ty.instantiate_identity().visit_with(&mut collector);
446    }
447
448    if let Some(_) = tcx.hir_fn_sig_by_hir_id(hir_id) {
449        debug!("visit fn sig");
450        let fn_sig = tcx.fn_sig(def_id);
451        let fn_sig = fn_sig.instantiate_identity();
452        debug!(?fn_sig);
453        fn_sig.visit_with(&mut collector);
454    }
455
456    collector.preds
457}
458
459pub(super) fn trait_explicit_predicates_and_bounds(
460    tcx: TyCtxt<'_>,
461    def_id: LocalDefId,
462) -> ty::GenericPredicates<'_> {
463    assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
464    gather_explicit_predicates_of(tcx, def_id)
465}
466
467pub(super) fn explicit_predicates_of<'tcx>(
468    tcx: TyCtxt<'tcx>,
469    def_id: LocalDefId,
470) -> ty::GenericPredicates<'tcx> {
471    let def_kind = tcx.def_kind(def_id);
472    if let DefKind::Trait = def_kind {
473        // Remove bounds on associated types from the predicates, they will be
474        // returned by `explicit_item_bounds`.
475        let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id);
476        let trait_identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
477
478        let is_assoc_item_ty = |ty: Ty<'tcx>| {
479            // For a predicate from a where clause to become a bound on an
480            // associated type:
481            // * It must use the identity args of the item.
482            //   * We're in the scope of the trait, so we can't name any
483            //     parameters of the GAT. That means that all we need to
484            //     check are that the args of the projection are the
485            //     identity args of the trait.
486            // * It must be an associated type for this trait (*not* a
487            //   supertrait).
488            if let ty::Alias(ty::Projection, projection) = ty.kind() {
489                projection.args == trait_identity_args
490                    // FIXME(return_type_notation): This check should be more robust
491                    && !tcx.is_impl_trait_in_trait(projection.def_id)
492                    && tcx.associated_item(projection.def_id).container_id(tcx)
493                        == def_id.to_def_id()
494            } else {
495                false
496            }
497        };
498
499        let predicates: Vec<_> = predicates_and_bounds
500            .predicates
501            .iter()
502            .copied()
503            .filter(|(pred, _)| match pred.kind().skip_binder() {
504                ty::ClauseKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
505                ty::ClauseKind::Projection(proj) => {
506                    !is_assoc_item_ty(proj.projection_term.self_ty())
507                }
508                ty::ClauseKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
509                _ => true,
510            })
511            .collect();
512        if predicates.len() == predicates_and_bounds.predicates.len() {
513            predicates_and_bounds
514        } else {
515            ty::GenericPredicates {
516                parent: predicates_and_bounds.parent,
517                predicates: tcx.arena.alloc_slice(&predicates),
518            }
519        }
520    } else {
521        if matches!(def_kind, DefKind::AnonConst)
522            && tcx.features().generic_const_exprs()
523            && let Some(defaulted_param_def_id) =
524                tcx.hir_opt_const_param_default_param_def_id(tcx.local_def_id_to_hir_id(def_id))
525        {
526            // In `generics_of` we set the generics' parent to be our parent's parent which means that
527            // we lose out on the predicates of our actual parent if we dont return those predicates here.
528            // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
529            //
530            // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
531            //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
532            //        ^^^                                             explicit_predicates_of on
533            //        parent item we dont have set as the
534            //        parent of generics returned by `generics_of`
535            //
536            // In the above code we want the anon const to have predicates in its param env for `T: Trait`
537            // and we would be calling `explicit_predicates_of(Foo)` here
538            let parent_def_id = tcx.local_parent(def_id);
539            let parent_preds = tcx.explicit_predicates_of(parent_def_id);
540
541            // If we dont filter out `ConstArgHasType` predicates then every single defaulted const parameter
542            // will ICE because of #106994. FIXME(generic_const_exprs): remove this when a more general solution
543            // to #106994 is implemented.
544            let filtered_predicates = parent_preds
545                .predicates
546                .into_iter()
547                .filter(|(pred, _)| {
548                    if let ty::ClauseKind::ConstArgHasType(ct, _) = pred.kind().skip_binder() {
549                        match ct.kind() {
550                            ty::ConstKind::Param(param_const) => {
551                                let defaulted_param_idx = tcx
552                                    .generics_of(parent_def_id)
553                                    .param_def_id_to_index[&defaulted_param_def_id.to_def_id()];
554                                param_const.index < defaulted_param_idx
555                            }
556                            _ => bug!(
557                                "`ConstArgHasType` in `predicates_of`\
558                                 that isn't a `Param` const"
559                            ),
560                        }
561                    } else {
562                        true
563                    }
564                })
565                .cloned();
566            return GenericPredicates {
567                parent: parent_preds.parent,
568                predicates: { tcx.arena.alloc_from_iter(filtered_predicates) },
569            };
570        }
571        gather_explicit_predicates_of(tcx, def_id)
572    }
573}
574
575/// Ensures that the super-predicates of the trait with a `DefId`
576/// of `trait_def_id` are lowered and stored. This also ensures that
577/// the transitive super-predicates are lowered.
578pub(super) fn explicit_super_predicates_of<'tcx>(
579    tcx: TyCtxt<'tcx>,
580    trait_def_id: LocalDefId,
581) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
582    implied_predicates_with_filter(tcx, trait_def_id.to_def_id(), PredicateFilter::SelfOnly)
583}
584
585pub(super) fn explicit_supertraits_containing_assoc_item<'tcx>(
586    tcx: TyCtxt<'tcx>,
587    (trait_def_id, assoc_ident): (DefId, Ident),
588) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
589    implied_predicates_with_filter(
590        tcx,
591        trait_def_id,
592        PredicateFilter::SelfTraitThatDefines(assoc_ident),
593    )
594}
595
596pub(super) fn explicit_implied_predicates_of<'tcx>(
597    tcx: TyCtxt<'tcx>,
598    trait_def_id: LocalDefId,
599) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
600    implied_predicates_with_filter(
601        tcx,
602        trait_def_id.to_def_id(),
603        if tcx.is_trait_alias(trait_def_id.to_def_id()) {
604            PredicateFilter::All
605        } else {
606            PredicateFilter::SelfAndAssociatedTypeBounds
607        },
608    )
609}
610
611/// Ensures that the super-predicates of the trait with a `DefId`
612/// of `trait_def_id` are lowered and stored. This also ensures that
613/// the transitive super-predicates are lowered.
614pub(super) fn implied_predicates_with_filter<'tcx>(
615    tcx: TyCtxt<'tcx>,
616    trait_def_id: DefId,
617    filter: PredicateFilter,
618) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
619    let Some(trait_def_id) = trait_def_id.as_local() else {
620        // if `assoc_ident` is None, then the query should've been redirected to an
621        // external provider
622        assert_matches!(filter, PredicateFilter::SelfTraitThatDefines(_));
623        return tcx.explicit_super_predicates_of(trait_def_id);
624    };
625
626    let Node::Item(item) = tcx.hir_node_by_def_id(trait_def_id) else {
627        bug!("trait_def_id {trait_def_id:?} is not an item");
628    };
629
630    let (generics, superbounds) = match item.kind {
631        hir::ItemKind::Trait(.., generics, supertraits, _) => (generics, supertraits),
632        hir::ItemKind::TraitAlias(_, generics, supertraits) => (generics, supertraits),
633        _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
634    };
635
636    let icx = ItemCtxt::new(tcx, trait_def_id);
637
638    let self_param_ty = tcx.types.self_param;
639    let mut bounds = Vec::new();
640    icx.lowerer().lower_bounds(self_param_ty, superbounds, &mut bounds, ty::List::empty(), filter);
641    match filter {
642        PredicateFilter::All
643        | PredicateFilter::SelfOnly
644        | PredicateFilter::SelfTraitThatDefines(_)
645        | PredicateFilter::SelfAndAssociatedTypeBounds => {
646            icx.lowerer().add_default_super_traits(
647                trait_def_id,
648                &mut bounds,
649                superbounds,
650                generics,
651                item.span,
652            );
653        }
654        //`ConstIfConst` is only interested in `~const` bounds.
655        PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {}
656    }
657
658    let where_bounds_that_match =
659        icx.probe_ty_param_bounds_in_generics(generics, item.owner_id.def_id, filter);
660
661    // Combine the two lists to form the complete set of superbounds:
662    let implied_bounds =
663        &*tcx.arena.alloc_from_iter(bounds.into_iter().chain(where_bounds_that_match));
664    debug!(?implied_bounds);
665
666    // Now require that immediate supertraits are lowered, which will, in
667    // turn, reach indirect supertraits, so we detect cycles now instead of
668    // overflowing during elaboration. Same for implied predicates, which
669    // make sure we walk into associated type bounds.
670    match filter {
671        PredicateFilter::SelfOnly => {
672            for &(pred, span) in implied_bounds {
673                debug!("superbound: {:?}", pred);
674                if let ty::ClauseKind::Trait(bound) = pred.kind().skip_binder()
675                    && bound.polarity == ty::PredicatePolarity::Positive
676                {
677                    tcx.at(span).explicit_super_predicates_of(bound.def_id());
678                }
679            }
680        }
681        PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {
682            for &(pred, span) in implied_bounds {
683                debug!("superbound: {:?}", pred);
684                if let ty::ClauseKind::Trait(bound) = pred.kind().skip_binder()
685                    && bound.polarity == ty::PredicatePolarity::Positive
686                {
687                    tcx.at(span).explicit_implied_predicates_of(bound.def_id());
688                }
689            }
690        }
691        _ => {}
692    }
693
694    assert_only_contains_predicates_from(filter, implied_bounds, tcx.types.self_param);
695
696    ty::EarlyBinder::bind(implied_bounds)
697}
698
699// Make sure when elaborating supertraits, probing for associated types, etc.,
700// we really truly are elaborating clauses that have `ty` as their self type.
701// This is very important since downstream code relies on this being correct.
702pub(super) fn assert_only_contains_predicates_from<'tcx>(
703    filter: PredicateFilter,
704    bounds: &'tcx [(ty::Clause<'tcx>, Span)],
705    ty: Ty<'tcx>,
706) {
707    if !cfg!(debug_assertions) {
708        return;
709    }
710
711    match filter {
712        PredicateFilter::SelfOnly => {
713            for (clause, _) in bounds {
714                match clause.kind().skip_binder() {
715                    ty::ClauseKind::Trait(trait_predicate) => {
716                        assert_eq!(
717                            trait_predicate.self_ty(),
718                            ty,
719                            "expected `Self` predicate when computing \
720                            `{filter:?}` implied bounds: {clause:?}"
721                        );
722                    }
723                    ty::ClauseKind::Projection(projection_predicate) => {
724                        assert_eq!(
725                            projection_predicate.self_ty(),
726                            ty,
727                            "expected `Self` predicate when computing \
728                            `{filter:?}` implied bounds: {clause:?}"
729                        );
730                    }
731                    ty::ClauseKind::TypeOutlives(outlives_predicate) => {
732                        assert_eq!(
733                            outlives_predicate.0, ty,
734                            "expected `Self` predicate when computing \
735                            `{filter:?}` implied bounds: {clause:?}"
736                        );
737                    }
738                    ty::ClauseKind::HostEffect(host_effect_predicate) => {
739                        assert_eq!(
740                            host_effect_predicate.self_ty(),
741                            ty,
742                            "expected `Self` predicate when computing \
743                            `{filter:?}` implied bounds: {clause:?}"
744                        );
745                    }
746
747                    ty::ClauseKind::RegionOutlives(_)
748                    | ty::ClauseKind::ConstArgHasType(_, _)
749                    | ty::ClauseKind::WellFormed(_)
750                    | ty::ClauseKind::ConstEvaluatable(_) => {
751                        bug!(
752                            "unexpected non-`Self` predicate when computing \
753                            `{filter:?}` implied bounds: {clause:?}"
754                        );
755                    }
756                }
757            }
758        }
759        PredicateFilter::SelfTraitThatDefines(_) => {
760            for (clause, _) in bounds {
761                match clause.kind().skip_binder() {
762                    ty::ClauseKind::Trait(trait_predicate) => {
763                        assert_eq!(
764                            trait_predicate.self_ty(),
765                            ty,
766                            "expected `Self` predicate when computing \
767                            `{filter:?}` implied bounds: {clause:?}"
768                        );
769                    }
770
771                    ty::ClauseKind::Projection(_)
772                    | ty::ClauseKind::TypeOutlives(_)
773                    | ty::ClauseKind::RegionOutlives(_)
774                    | ty::ClauseKind::ConstArgHasType(_, _)
775                    | ty::ClauseKind::WellFormed(_)
776                    | ty::ClauseKind::ConstEvaluatable(_)
777                    | ty::ClauseKind::HostEffect(..) => {
778                        bug!(
779                            "unexpected non-`Self` predicate when computing \
780                            `{filter:?}` implied bounds: {clause:?}"
781                        );
782                    }
783                }
784            }
785        }
786        PredicateFilter::ConstIfConst => {
787            for (clause, _) in bounds {
788                match clause.kind().skip_binder() {
789                    ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
790                        trait_ref: _,
791                        constness: ty::BoundConstness::Maybe,
792                    }) => {}
793                    _ => {
794                        bug!(
795                            "unexpected non-`HostEffect` predicate when computing \
796                            `{filter:?}` implied bounds: {clause:?}"
797                        );
798                    }
799                }
800            }
801        }
802        PredicateFilter::SelfConstIfConst => {
803            for (clause, _) in bounds {
804                match clause.kind().skip_binder() {
805                    ty::ClauseKind::HostEffect(pred) => {
806                        assert_eq!(
807                            pred.constness,
808                            ty::BoundConstness::Maybe,
809                            "expected `~const` predicate when computing `{filter:?}` \
810                            implied bounds: {clause:?}",
811                        );
812                        assert_eq!(
813                            pred.trait_ref.self_ty(),
814                            ty,
815                            "expected `Self` predicate when computing `{filter:?}` \
816                            implied bounds: {clause:?}"
817                        );
818                    }
819                    _ => {
820                        bug!(
821                            "unexpected non-`HostEffect` predicate when computing \
822                            `{filter:?}` implied bounds: {clause:?}"
823                        );
824                    }
825                }
826            }
827        }
828        PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {}
829    }
830}
831
832/// Returns the predicates defined on `item_def_id` of the form
833/// `X: Foo` where `X` is the type parameter `def_id`.
834#[instrument(level = "trace", skip(tcx))]
835pub(super) fn type_param_predicates<'tcx>(
836    tcx: TyCtxt<'tcx>,
837    (item_def_id, def_id, assoc_ident): (LocalDefId, LocalDefId, Ident),
838) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
839    match tcx.opt_rpitit_info(item_def_id.to_def_id()) {
840        Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => {
841            return tcx.type_param_predicates((opaque_def_id.expect_local(), def_id, assoc_ident));
842        }
843        Some(ty::ImplTraitInTraitData::Impl { .. }) => {
844            unreachable!("should not be lowering bounds on RPITIT in impl")
845        }
846        None => {}
847    }
848
849    // In the HIR, bounds can derive from two places. Either
850    // written inline like `<T: Foo>` or in a where-clause like
851    // `where T: Foo`.
852
853    let param_id = tcx.local_def_id_to_hir_id(def_id);
854    let param_owner = tcx.hir_ty_param_owner(def_id);
855
856    // Don't look for bounds where the type parameter isn't in scope.
857    let parent = if item_def_id == param_owner {
858        // FIXME: Shouldn't this be unreachable?
859        None
860    } else {
861        tcx.generics_of(item_def_id).parent.map(|def_id| def_id.expect_local())
862    };
863
864    let result = if let Some(parent) = parent {
865        let icx = ItemCtxt::new(tcx, parent);
866        icx.probe_ty_param_bounds(DUMMY_SP, def_id, assoc_ident)
867    } else {
868        ty::EarlyBinder::bind(&[] as &[_])
869    };
870    let mut extend = None;
871
872    let item_hir_id = tcx.local_def_id_to_hir_id(item_def_id);
873
874    let hir_node = tcx.hir_node(item_hir_id);
875    let Some(hir_generics) = hir_node.generics() else {
876        return result;
877    };
878
879    if let Node::Item(item) = hir_node
880        && let hir::ItemKind::Trait(..) = item.kind
881        // Implied `Self: Trait` and supertrait bounds.
882        && param_id == item_hir_id
883    {
884        let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id.to_def_id());
885        extend = Some((identity_trait_ref.upcast(tcx), item.span));
886    }
887
888    let icx = ItemCtxt::new(tcx, item_def_id);
889    let extra_predicates = extend.into_iter().chain(icx.probe_ty_param_bounds_in_generics(
890        hir_generics,
891        def_id,
892        PredicateFilter::SelfTraitThatDefines(assoc_ident),
893    ));
894
895    let bounds =
896        &*tcx.arena.alloc_from_iter(result.skip_binder().iter().copied().chain(extra_predicates));
897
898    // Double check that the bounds *only* contain `SelfTy: Trait` preds.
899    let self_ty = match tcx.def_kind(def_id) {
900        DefKind::TyParam => Ty::new_param(
901            tcx,
902            tcx.generics_of(item_def_id)
903                .param_def_id_to_index(tcx, def_id.to_def_id())
904                .expect("expected generic param to be owned by item"),
905            tcx.item_name(def_id.to_def_id()),
906        ),
907        DefKind::Trait | DefKind::TraitAlias => tcx.types.self_param,
908        _ => unreachable!(),
909    };
910    assert_only_contains_predicates_from(
911        PredicateFilter::SelfTraitThatDefines(assoc_ident),
912        bounds,
913        self_ty,
914    );
915
916    ty::EarlyBinder::bind(bounds)
917}
918
919impl<'tcx> ItemCtxt<'tcx> {
920    /// Finds bounds from `hir::Generics`.
921    ///
922    /// This requires scanning through the HIR.
923    /// We do this to avoid having to lower *all* the bounds, which would create artificial cycles.
924    /// Instead, we can only lower the bounds for a type parameter `X` if `X::Foo` is used.
925    #[instrument(level = "trace", skip(self, hir_generics))]
926    fn probe_ty_param_bounds_in_generics(
927        &self,
928        hir_generics: &'tcx hir::Generics<'tcx>,
929        param_def_id: LocalDefId,
930        filter: PredicateFilter,
931    ) -> Vec<(ty::Clause<'tcx>, Span)> {
932        let mut bounds = Vec::new();
933
934        for predicate in hir_generics.predicates {
935            let hir_id = predicate.hir_id;
936            let hir::WherePredicateKind::BoundPredicate(predicate) = predicate.kind else {
937                continue;
938            };
939
940            match filter {
941                _ if predicate.is_param_bound(param_def_id.to_def_id()) => {
942                    // Ok
943                }
944                PredicateFilter::All => {
945                    // Ok
946                }
947                PredicateFilter::SelfOnly
948                | PredicateFilter::SelfTraitThatDefines(_)
949                | PredicateFilter::SelfConstIfConst
950                | PredicateFilter::SelfAndAssociatedTypeBounds => continue,
951                PredicateFilter::ConstIfConst => unreachable!(),
952            }
953
954            let bound_ty = self.lowerer().lower_ty_maybe_return_type_notation(predicate.bounded_ty);
955
956            let bound_vars = self.tcx.late_bound_vars(hir_id);
957            self.lowerer().lower_bounds(
958                bound_ty,
959                predicate.bounds,
960                &mut bounds,
961                bound_vars,
962                filter,
963            );
964        }
965
966        bounds
967    }
968}
969
970pub(super) fn const_conditions<'tcx>(
971    tcx: TyCtxt<'tcx>,
972    def_id: LocalDefId,
973) -> ty::ConstConditions<'tcx> {
974    if !tcx.is_conditionally_const(def_id) {
975        bug!("const_conditions invoked for item that is not conditionally const: {def_id:?}");
976    }
977
978    match tcx.opt_rpitit_info(def_id.to_def_id()) {
979        // RPITITs inherit const conditions of their parent fn
980        Some(
981            ty::ImplTraitInTraitData::Impl { fn_def_id }
982            | ty::ImplTraitInTraitData::Trait { fn_def_id, .. },
983        ) => return tcx.const_conditions(fn_def_id),
984        None => {}
985    }
986
987    let (generics, trait_def_id_and_supertraits, has_parent) = match tcx.hir_node_by_def_id(def_id)
988    {
989        Node::Item(item) => match item.kind {
990            hir::ItemKind::Impl(impl_) => (impl_.generics, None, false),
991            hir::ItemKind::Fn { generics, .. } => (generics, None, false),
992            hir::ItemKind::Trait(_, _, _, generics, supertraits, _) => {
993                (generics, Some((item.owner_id.def_id, supertraits)), false)
994            }
995            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
996        },
997        // While associated types are not really const, we do allow them to have `~const`
998        // bounds and where clauses. `const_conditions` is responsible for gathering
999        // these up so we can check them in `compare_type_predicate_entailment`, and
1000        // in `HostEffect` goal computation.
1001        Node::TraitItem(item) => match item.kind {
1002            hir::TraitItemKind::Fn(_, _) | hir::TraitItemKind::Type(_, _) => {
1003                (item.generics, None, true)
1004            }
1005            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1006        },
1007        Node::ImplItem(item) => match item.kind {
1008            hir::ImplItemKind::Fn(_, _) | hir::ImplItemKind::Type(_) => {
1009                (item.generics, None, tcx.is_conditionally_const(tcx.local_parent(def_id)))
1010            }
1011            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1012        },
1013        Node::ForeignItem(item) => match item.kind {
1014            hir::ForeignItemKind::Fn(_, _, generics) => (generics, None, false),
1015            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1016        },
1017        Node::OpaqueTy(opaque) => match opaque.origin {
1018            hir::OpaqueTyOrigin::FnReturn { parent, .. } => return tcx.const_conditions(parent),
1019            hir::OpaqueTyOrigin::AsyncFn { .. } | hir::OpaqueTyOrigin::TyAlias { .. } => {
1020                unreachable!()
1021            }
1022        },
1023        // N.B. Tuple ctors are unconditionally constant.
1024        Node::Ctor(hir::VariantData::Tuple { .. }) => return Default::default(),
1025        _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1026    };
1027
1028    let icx = ItemCtxt::new(tcx, def_id);
1029    let mut bounds = Vec::new();
1030
1031    for pred in generics.predicates {
1032        match pred.kind {
1033            hir::WherePredicateKind::BoundPredicate(bound_pred) => {
1034                let ty = icx.lowerer().lower_ty_maybe_return_type_notation(bound_pred.bounded_ty);
1035                let bound_vars = tcx.late_bound_vars(pred.hir_id);
1036                icx.lowerer().lower_bounds(
1037                    ty,
1038                    bound_pred.bounds.iter(),
1039                    &mut bounds,
1040                    bound_vars,
1041                    PredicateFilter::ConstIfConst,
1042                );
1043            }
1044            _ => {}
1045        }
1046    }
1047
1048    if let Some((def_id, supertraits)) = trait_def_id_and_supertraits {
1049        // We've checked above that the trait is conditionally const.
1050        bounds.push((
1051            ty::Binder::dummy(ty::TraitRef::identity(tcx, def_id.to_def_id()))
1052                .to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
1053            DUMMY_SP,
1054        ));
1055
1056        icx.lowerer().lower_bounds(
1057            tcx.types.self_param,
1058            supertraits,
1059            &mut bounds,
1060            ty::List::empty(),
1061            PredicateFilter::ConstIfConst,
1062        );
1063    }
1064
1065    ty::ConstConditions {
1066        parent: has_parent.then(|| tcx.local_parent(def_id).to_def_id()),
1067        predicates: tcx.arena.alloc_from_iter(bounds.into_iter().map(|(clause, span)| {
1068            (
1069                clause.kind().map_bound(|clause| match clause {
1070                    ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
1071                        trait_ref,
1072                        constness: ty::BoundConstness::Maybe,
1073                    }) => trait_ref,
1074                    _ => bug!("converted {clause:?}"),
1075                }),
1076                span,
1077            )
1078        })),
1079    }
1080}
1081
1082pub(super) fn explicit_implied_const_bounds<'tcx>(
1083    tcx: TyCtxt<'tcx>,
1084    def_id: LocalDefId,
1085) -> ty::EarlyBinder<'tcx, &'tcx [(ty::PolyTraitRef<'tcx>, Span)]> {
1086    if !tcx.is_conditionally_const(def_id) {
1087        bug!(
1088            "explicit_implied_const_bounds invoked for item that is not conditionally const: {def_id:?}"
1089        );
1090    }
1091
1092    let bounds = match tcx.opt_rpitit_info(def_id.to_def_id()) {
1093        // RPITIT's bounds are the same as opaque type bounds, but with
1094        // a projection self type.
1095        Some(ty::ImplTraitInTraitData::Trait { .. }) => {
1096            explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::ConstIfConst)
1097        }
1098        Some(ty::ImplTraitInTraitData::Impl { .. }) => {
1099            span_bug!(tcx.def_span(def_id), "RPITIT in impl should not have item bounds")
1100        }
1101        None => match tcx.hir_node_by_def_id(def_id) {
1102            Node::Item(hir::Item { kind: hir::ItemKind::Trait(..), .. }) => {
1103                implied_predicates_with_filter(
1104                    tcx,
1105                    def_id.to_def_id(),
1106                    PredicateFilter::SelfConstIfConst,
1107                )
1108            }
1109            Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Type(..), .. })
1110            | Node::OpaqueTy(_) => {
1111                explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::ConstIfConst)
1112            }
1113            _ => bug!("explicit_implied_const_bounds called on wrong item: {def_id:?}"),
1114        },
1115    };
1116
1117    bounds.map_bound(|bounds| {
1118        &*tcx.arena.alloc_from_iter(bounds.iter().copied().map(|(clause, span)| {
1119            (
1120                clause.kind().map_bound(|clause| match clause {
1121                    ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
1122                        trait_ref,
1123                        constness: ty::BoundConstness::Maybe,
1124                    }) => trait_ref,
1125                    _ => bug!("converted {clause:?}"),
1126                }),
1127                span,
1128            )
1129        }))
1130    })
1131}