rustc_hir_typeck/method/
probe.rs

1use std::assert_matches::debug_assert_matches;
2use std::cell::{Cell, RefCell};
3use std::cmp::max;
4use std::ops::Deref;
5
6use rustc_attr_parsing::is_doc_alias_attrs_contain_symbol;
7use rustc_data_structures::fx::FxHashSet;
8use rustc_data_structures::sso::SsoHashSet;
9use rustc_errors::Applicability;
10use rustc_hir as hir;
11use rustc_hir::HirId;
12use rustc_hir::def::DefKind;
13use rustc_hir_analysis::autoderef::{self, Autoderef};
14use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
15use rustc_infer::infer::{BoundRegionConversionTime, DefineOpaqueTypes, InferOk, TyCtxtInferExt};
16use rustc_infer::traits::ObligationCauseCode;
17use rustc_middle::middle::stability;
18use rustc_middle::ty::elaborate::supertrait_def_ids;
19use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams, simplify_type};
20use rustc_middle::ty::{
21    self, AssocItem, AssocItemContainer, GenericArgs, GenericArgsRef, GenericParamDefKind,
22    ParamEnvAnd, Ty, TyCtxt, TypeVisitableExt, Upcast,
23};
24use rustc_middle::{bug, span_bug};
25use rustc_session::lint;
26use rustc_span::def_id::{DefId, LocalDefId};
27use rustc_span::edit_distance::{
28    edit_distance_with_substrings, find_best_match_for_name_with_substrings,
29};
30use rustc_span::{DUMMY_SP, Ident, Span, Symbol, sym};
31use rustc_trait_selection::error_reporting::infer::need_type_info::TypeAnnotationNeeded;
32use rustc_trait_selection::infer::InferCtxtExt as _;
33use rustc_trait_selection::traits::query::CanonicalTyGoal;
34use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
35use rustc_trait_selection::traits::query::method_autoderef::{
36    CandidateStep, MethodAutoderefBadTy, MethodAutoderefStepsResult,
37};
38use rustc_trait_selection::traits::{self, ObligationCause, ObligationCtxt};
39use smallvec::{SmallVec, smallvec};
40use tracing::{debug, instrument};
41
42use self::CandidateKind::*;
43pub(crate) use self::PickKind::*;
44use super::{CandidateSource, MethodError, NoMatchData, suggest};
45use crate::FnCtxt;
46
47/// Boolean flag used to indicate if this search is for a suggestion
48/// or not. If true, we can allow ambiguity and so forth.
49#[derive(Clone, Copy, Debug)]
50pub(crate) struct IsSuggestion(pub bool);
51
52pub(crate) struct ProbeContext<'a, 'tcx> {
53    fcx: &'a FnCtxt<'a, 'tcx>,
54    span: Span,
55    mode: Mode,
56    method_name: Option<Ident>,
57    return_type: Option<Ty<'tcx>>,
58
59    /// This is the OriginalQueryValues for the steps queries
60    /// that are answered in steps.
61    orig_steps_var_values: &'a OriginalQueryValues<'tcx>,
62    steps: &'tcx [CandidateStep<'tcx>],
63
64    inherent_candidates: Vec<Candidate<'tcx>>,
65    extension_candidates: Vec<Candidate<'tcx>>,
66    impl_dups: FxHashSet<DefId>,
67
68    /// When probing for names, include names that are close to the
69    /// requested name (by edit distance)
70    allow_similar_names: bool,
71
72    /// List of potential private candidates. Will be trimmed to ones that
73    /// actually apply and then the result inserted into `private_candidate`
74    private_candidates: Vec<Candidate<'tcx>>,
75
76    /// Some(candidate) if there is a private candidate
77    private_candidate: Cell<Option<(DefKind, DefId)>>,
78
79    /// Collects near misses when the candidate functions are missing a `self` keyword and is only
80    /// used for error reporting
81    static_candidates: RefCell<Vec<CandidateSource>>,
82
83    scope_expr_id: HirId,
84
85    /// Is this probe being done for a diagnostic? This will skip some error reporting
86    /// machinery, since we don't particularly care about, for example, similarly named
87    /// candidates if we're *reporting* similarly named candidates.
88    is_suggestion: IsSuggestion,
89}
90
91impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
92    type Target = FnCtxt<'a, 'tcx>;
93    fn deref(&self) -> &Self::Target {
94        self.fcx
95    }
96}
97
98#[derive(Debug, Clone)]
99pub(crate) struct Candidate<'tcx> {
100    pub(crate) item: ty::AssocItem,
101    pub(crate) kind: CandidateKind<'tcx>,
102    pub(crate) import_ids: SmallVec<[LocalDefId; 1]>,
103}
104
105#[derive(Debug, Clone)]
106pub(crate) enum CandidateKind<'tcx> {
107    InherentImplCandidate { impl_def_id: DefId, receiver_steps: usize },
108    ObjectCandidate(ty::PolyTraitRef<'tcx>),
109    TraitCandidate(ty::PolyTraitRef<'tcx>),
110    WhereClauseCandidate(ty::PolyTraitRef<'tcx>),
111}
112
113#[derive(Debug, PartialEq, Eq, Copy, Clone)]
114enum ProbeResult {
115    NoMatch,
116    BadReturnType,
117    Match,
118}
119
120/// When adjusting a receiver we often want to do one of
121///
122/// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
123/// - If the receiver has type `*mut T`, convert it to `*const T`
124///
125/// This type tells us which one to do.
126///
127/// Note that in principle we could do both at the same time. For example, when the receiver has
128/// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
129/// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
130/// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
131/// `mut`), or it has type `*mut T` and we convert it to `*const T`.
132#[derive(Debug, PartialEq, Copy, Clone)]
133pub(crate) enum AutorefOrPtrAdjustment {
134    /// Receiver has type `T`, add `&` or `&mut` (if `T` is `mut`), and maybe also "unsize" it.
135    /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
136    Autoref {
137        mutbl: hir::Mutability,
138
139        /// Indicates that the source expression should be "unsized" to a target type.
140        /// This is special-cased for just arrays unsizing to slices.
141        unsize: bool,
142    },
143    /// Receiver has type `*mut T`, convert to `*const T`
144    ToConstPtr,
145
146    /// Reborrow a `Pin<&mut T>` or `Pin<&T>`.
147    ReborrowPin(hir::Mutability),
148}
149
150impl AutorefOrPtrAdjustment {
151    fn get_unsize(&self) -> bool {
152        match self {
153            AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
154            AutorefOrPtrAdjustment::ToConstPtr => false,
155            AutorefOrPtrAdjustment::ReborrowPin(_) => false,
156        }
157    }
158}
159
160/// Extra information required only for error reporting.
161#[derive(Debug)]
162struct PickDiagHints<'a, 'tcx> {
163    /// Unstable candidates alongside the stable ones.
164    unstable_candidates: Option<Vec<(Candidate<'tcx>, Symbol)>>,
165
166    /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
167    /// for error reporting
168    unsatisfied_predicates: &'a mut Vec<(
169        ty::Predicate<'tcx>,
170        Option<ty::Predicate<'tcx>>,
171        Option<ObligationCause<'tcx>>,
172    )>,
173}
174
175/// Criteria to apply when searching for a given Pick. This is used during
176/// the search for potentially shadowed methods to ensure we don't search
177/// more candidates than strictly necessary.
178#[derive(Debug)]
179struct PickConstraintsForShadowed {
180    autoderefs: usize,
181    receiver_steps: Option<usize>,
182    def_id: DefId,
183}
184
185impl PickConstraintsForShadowed {
186    fn may_shadow_based_on_autoderefs(&self, autoderefs: usize) -> bool {
187        autoderefs == self.autoderefs
188    }
189
190    fn candidate_may_shadow(&self, candidate: &Candidate<'_>) -> bool {
191        // An item never shadows itself
192        candidate.item.def_id != self.def_id
193            // and we're only concerned about inherent impls doing the shadowing.
194            // Shadowing can only occur if the shadowed is further along
195            // the Receiver dereferencing chain than the shadowed.
196            && match candidate.kind {
197                CandidateKind::InherentImplCandidate { receiver_steps, .. } => match self.receiver_steps {
198                    Some(shadowed_receiver_steps) => receiver_steps > shadowed_receiver_steps,
199                    _ => false
200                },
201                _ => false
202            }
203    }
204}
205
206#[derive(Debug, Clone)]
207pub(crate) struct Pick<'tcx> {
208    pub item: ty::AssocItem,
209    pub kind: PickKind<'tcx>,
210    pub import_ids: SmallVec<[LocalDefId; 1]>,
211
212    /// Indicates that the source expression should be autoderef'd N times
213    /// ```ignore (not-rust)
214    /// A = expr | *expr | **expr | ...
215    /// ```
216    pub autoderefs: usize,
217
218    /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
219    /// `*mut T`, convert it to `*const T`.
220    pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
221    pub self_ty: Ty<'tcx>,
222
223    /// Unstable candidates alongside the stable ones.
224    unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
225
226    /// Number of jumps along the `Receiver::Target` chain we followed
227    /// to identify this method. Used only for deshadowing errors.
228    /// Only applies for inherent impls.
229    pub receiver_steps: Option<usize>,
230
231    /// Candidates that were shadowed by supertraits.
232    pub shadowed_candidates: Vec<ty::AssocItem>,
233}
234
235#[derive(Clone, Debug, PartialEq, Eq)]
236pub(crate) enum PickKind<'tcx> {
237    InherentImplPick,
238    ObjectPick,
239    TraitPick,
240    WhereClausePick(
241        // Trait
242        ty::PolyTraitRef<'tcx>,
243    ),
244}
245
246pub(crate) type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
247
248#[derive(PartialEq, Eq, Copy, Clone, Debug)]
249pub(crate) enum Mode {
250    // An expression of the form `receiver.method_name(...)`.
251    // Autoderefs are performed on `receiver`, lookup is done based on the
252    // `self` argument of the method, and static methods aren't considered.
253    MethodCall,
254    // An expression of the form `Type::item` or `<T>::item`.
255    // No autoderefs are performed, lookup is done based on the type each
256    // implementation is for, and static methods are included.
257    Path,
258}
259
260#[derive(PartialEq, Eq, Copy, Clone, Debug)]
261pub(crate) enum ProbeScope {
262    // Single candidate coming from pre-resolved delegation method.
263    Single(DefId),
264
265    // Assemble candidates coming only from traits in scope.
266    TraitsInScope,
267
268    // Assemble candidates coming from all traits.
269    AllTraits,
270}
271
272impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
273    /// This is used to offer suggestions to users. It returns methods
274    /// that could have been called which have the desired return
275    /// type. Some effort is made to rule out methods that, if called,
276    /// would result in an error (basically, the same criteria we
277    /// would use to decide if a method is a plausible fit for
278    /// ambiguity purposes).
279    #[instrument(level = "debug", skip(self, candidate_filter))]
280    pub(crate) fn probe_for_return_type_for_diagnostic(
281        &self,
282        span: Span,
283        mode: Mode,
284        return_type: Ty<'tcx>,
285        self_ty: Ty<'tcx>,
286        scope_expr_id: HirId,
287        candidate_filter: impl Fn(&ty::AssocItem) -> bool,
288    ) -> Vec<ty::AssocItem> {
289        let method_names = self
290            .probe_op(
291                span,
292                mode,
293                None,
294                Some(return_type),
295                IsSuggestion(true),
296                self_ty,
297                scope_expr_id,
298                ProbeScope::AllTraits,
299                |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
300            )
301            .unwrap_or_default();
302        method_names
303            .iter()
304            .flat_map(|&method_name| {
305                self.probe_op(
306                    span,
307                    mode,
308                    Some(method_name),
309                    Some(return_type),
310                    IsSuggestion(true),
311                    self_ty,
312                    scope_expr_id,
313                    ProbeScope::AllTraits,
314                    |probe_cx| probe_cx.pick(),
315                )
316                .ok()
317                .map(|pick| pick.item)
318            })
319            .collect()
320    }
321
322    #[instrument(level = "debug", skip(self))]
323    pub(crate) fn probe_for_name(
324        &self,
325        mode: Mode,
326        item_name: Ident,
327        return_type: Option<Ty<'tcx>>,
328        is_suggestion: IsSuggestion,
329        self_ty: Ty<'tcx>,
330        scope_expr_id: HirId,
331        scope: ProbeScope,
332    ) -> PickResult<'tcx> {
333        self.probe_op(
334            item_name.span,
335            mode,
336            Some(item_name),
337            return_type,
338            is_suggestion,
339            self_ty,
340            scope_expr_id,
341            scope,
342            |probe_cx| probe_cx.pick(),
343        )
344    }
345
346    #[instrument(level = "debug", skip(self))]
347    pub(crate) fn probe_for_name_many(
348        &self,
349        mode: Mode,
350        item_name: Ident,
351        return_type: Option<Ty<'tcx>>,
352        is_suggestion: IsSuggestion,
353        self_ty: Ty<'tcx>,
354        scope_expr_id: HirId,
355        scope: ProbeScope,
356    ) -> Result<Vec<Candidate<'tcx>>, MethodError<'tcx>> {
357        self.probe_op(
358            item_name.span,
359            mode,
360            Some(item_name),
361            return_type,
362            is_suggestion,
363            self_ty,
364            scope_expr_id,
365            scope,
366            |probe_cx| {
367                Ok(probe_cx
368                    .inherent_candidates
369                    .into_iter()
370                    .chain(probe_cx.extension_candidates)
371                    .collect())
372            },
373        )
374    }
375
376    pub(crate) fn probe_op<OP, R>(
377        &'a self,
378        span: Span,
379        mode: Mode,
380        method_name: Option<Ident>,
381        return_type: Option<Ty<'tcx>>,
382        is_suggestion: IsSuggestion,
383        self_ty: Ty<'tcx>,
384        scope_expr_id: HirId,
385        scope: ProbeScope,
386        op: OP,
387    ) -> Result<R, MethodError<'tcx>>
388    where
389        OP: FnOnce(ProbeContext<'_, 'tcx>) -> Result<R, MethodError<'tcx>>,
390    {
391        let mut orig_values = OriginalQueryValues::default();
392        let query_input = self.canonicalize_query(
393            ParamEnvAnd { param_env: self.param_env, value: self_ty },
394            &mut orig_values,
395        );
396
397        let steps = match mode {
398            Mode::MethodCall => self.tcx.method_autoderef_steps(query_input),
399            Mode::Path => self.probe(|_| {
400                // Mode::Path - the deref steps is "trivial". This turns
401                // our CanonicalQuery into a "trivial" QueryResponse. This
402                // is a bit inefficient, but I don't think that writing
403                // special handling for this "trivial case" is a good idea.
404
405                let infcx = &self.infcx;
406                let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
407                    infcx.instantiate_canonical(span, &query_input.canonical);
408                debug!(?self_ty, ?query_input, "probe_op: Mode::Path");
409                MethodAutoderefStepsResult {
410                    steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
411                        self_ty: self.make_query_response_ignoring_pending_obligations(
412                            canonical_inference_vars,
413                            self_ty,
414                        ),
415                        autoderefs: 0,
416                        from_unsafe_deref: false,
417                        unsize: false,
418                        reachable_via_deref: true,
419                    }]),
420                    opt_bad_ty: None,
421                    reached_recursion_limit: false,
422                }
423            }),
424        };
425
426        // If our autoderef loop had reached the recursion limit,
427        // report an overflow error, but continue going on with
428        // the truncated autoderef list.
429        if steps.reached_recursion_limit && !is_suggestion.0 {
430            self.probe(|_| {
431                let ty = &steps
432                    .steps
433                    .last()
434                    .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
435                    .self_ty;
436                let ty = self
437                    .probe_instantiate_query_response(span, &orig_values, ty)
438                    .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
439                autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
440            });
441        }
442
443        // If we encountered an `_` type or an error type during autoderef, this is
444        // ambiguous.
445        if let Some(bad_ty) = &steps.opt_bad_ty {
446            if is_suggestion.0 {
447                // Ambiguity was encountered during a suggestion. There's really
448                // not much use in suggesting methods in this case.
449                return Err(MethodError::NoMatch(NoMatchData {
450                    static_candidates: Vec::new(),
451                    unsatisfied_predicates: Vec::new(),
452                    out_of_scope_traits: Vec::new(),
453                    similar_candidate: None,
454                    mode,
455                }));
456            } else if bad_ty.reached_raw_pointer
457                && !self.tcx.features().arbitrary_self_types_pointers()
458                && !self.tcx.sess.at_least_rust_2018()
459            {
460                // this case used to be allowed by the compiler,
461                // so we do a future-compat lint here for the 2015 edition
462                // (see https://github.com/rust-lang/rust/issues/46906)
463                self.tcx.node_span_lint(
464                    lint::builtin::TYVAR_BEHIND_RAW_POINTER,
465                    scope_expr_id,
466                    span,
467                    |lint| {
468                        lint.primary_message("type annotations needed");
469                    },
470                );
471            } else {
472                // Ended up encountering a type variable when doing autoderef,
473                // but it may not be a type variable after processing obligations
474                // in our local `FnCtxt`, so don't call `structurally_resolve_type`.
475                let ty = &bad_ty.ty;
476                let ty = self
477                    .probe_instantiate_query_response(span, &orig_values, ty)
478                    .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
479                let ty = self.resolve_vars_if_possible(ty.value);
480                let guar = match *ty.kind() {
481                    ty::Infer(ty::TyVar(_)) => {
482                        let raw_ptr_call = bad_ty.reached_raw_pointer
483                            && !self.tcx.features().arbitrary_self_types();
484                        let mut err = self.err_ctxt().emit_inference_failure_err(
485                            self.body_id,
486                            span,
487                            ty.into(),
488                            TypeAnnotationNeeded::E0282,
489                            !raw_ptr_call,
490                        );
491                        if raw_ptr_call {
492                            err.span_label(span, "cannot call a method on a raw pointer with an unknown pointee type");
493                        }
494                        err.emit()
495                    }
496                    ty::Error(guar) => guar,
497                    _ => bug!("unexpected bad final type in method autoderef"),
498                };
499                self.demand_eqtype(span, ty, Ty::new_error(self.tcx, guar));
500                return Err(MethodError::ErrorReported(guar));
501            }
502        }
503
504        debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
505
506        // this creates one big transaction so that all type variables etc
507        // that we create during the probe process are removed later
508        self.probe(|_| {
509            let mut probe_cx = ProbeContext::new(
510                self,
511                span,
512                mode,
513                method_name,
514                return_type,
515                &orig_values,
516                steps.steps,
517                scope_expr_id,
518                is_suggestion,
519            );
520
521            match scope {
522                ProbeScope::TraitsInScope => {
523                    probe_cx.assemble_inherent_candidates();
524                    probe_cx.assemble_extension_candidates_for_traits_in_scope();
525                }
526                ProbeScope::AllTraits => {
527                    probe_cx.assemble_inherent_candidates();
528                    probe_cx.assemble_extension_candidates_for_all_traits();
529                }
530                ProbeScope::Single(def_id) => {
531                    let item = self.tcx.associated_item(def_id);
532                    // FIXME(fn_delegation): Delegation to inherent methods is not yet supported.
533                    assert_eq!(item.container, AssocItemContainer::Trait);
534
535                    let trait_def_id = self.tcx.parent(def_id);
536                    let trait_span = self.tcx.def_span(trait_def_id);
537
538                    let trait_args = self.fresh_args_for_item(trait_span, trait_def_id);
539                    let trait_ref = ty::TraitRef::new_from_args(self.tcx, trait_def_id, trait_args);
540
541                    probe_cx.push_candidate(
542                        Candidate {
543                            item,
544                            kind: CandidateKind::TraitCandidate(ty::Binder::dummy(trait_ref)),
545                            import_ids: smallvec![],
546                        },
547                        false,
548                    );
549                }
550            };
551            op(probe_cx)
552        })
553    }
554}
555
556pub(crate) fn method_autoderef_steps<'tcx>(
557    tcx: TyCtxt<'tcx>,
558    goal: CanonicalTyGoal<'tcx>,
559) -> MethodAutoderefStepsResult<'tcx> {
560    debug!("method_autoderef_steps({:?})", goal);
561
562    let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
563    let ParamEnvAnd { param_env, value: self_ty } = goal;
564
565    // If arbitrary self types is not enabled, we follow the chain of
566    // `Deref<Target=T>`. If arbitrary self types is enabled, we instead
567    // follow the chain of `Receiver<Target=T>`, but we also record whether
568    // such types are reachable by following the (potentially shorter)
569    // chain of `Deref<Target=T>`. We will use the first list when finding
570    // potentially relevant function implementations (e.g. relevant impl blocks)
571    // but the second list when determining types that the receiver may be
572    // converted to, in order to find out which of those methods might actually
573    // be callable.
574    let mut autoderef_via_deref =
575        Autoderef::new(infcx, param_env, hir::def_id::CRATE_DEF_ID, DUMMY_SP, self_ty)
576            .include_raw_pointers()
577            .silence_errors();
578
579    let mut reached_raw_pointer = false;
580    let arbitrary_self_types_enabled =
581        tcx.features().arbitrary_self_types() || tcx.features().arbitrary_self_types_pointers();
582    let (mut steps, reached_recursion_limit): (Vec<_>, bool) = if arbitrary_self_types_enabled {
583        let reachable_via_deref =
584            autoderef_via_deref.by_ref().map(|_| true).chain(std::iter::repeat(false));
585
586        let mut autoderef_via_receiver =
587            Autoderef::new(infcx, param_env, hir::def_id::CRATE_DEF_ID, DUMMY_SP, self_ty)
588                .include_raw_pointers()
589                .use_receiver_trait()
590                .silence_errors();
591        let steps = autoderef_via_receiver
592            .by_ref()
593            .zip(reachable_via_deref)
594            .map(|((ty, d), reachable_via_deref)| {
595                let step = CandidateStep {
596                    self_ty: infcx
597                        .make_query_response_ignoring_pending_obligations(inference_vars, ty),
598                    autoderefs: d,
599                    from_unsafe_deref: reached_raw_pointer,
600                    unsize: false,
601                    reachable_via_deref,
602                };
603                if ty.is_raw_ptr() {
604                    // all the subsequent steps will be from_unsafe_deref
605                    reached_raw_pointer = true;
606                }
607                step
608            })
609            .collect();
610        (steps, autoderef_via_receiver.reached_recursion_limit())
611    } else {
612        let steps = autoderef_via_deref
613            .by_ref()
614            .map(|(ty, d)| {
615                let step = CandidateStep {
616                    self_ty: infcx
617                        .make_query_response_ignoring_pending_obligations(inference_vars, ty),
618                    autoderefs: d,
619                    from_unsafe_deref: reached_raw_pointer,
620                    unsize: false,
621                    reachable_via_deref: true,
622                };
623                if ty.is_raw_ptr() {
624                    // all the subsequent steps will be from_unsafe_deref
625                    reached_raw_pointer = true;
626                }
627                step
628            })
629            .collect();
630        (steps, autoderef_via_deref.reached_recursion_limit())
631    };
632    let final_ty = autoderef_via_deref.final_ty(true);
633    let opt_bad_ty = match final_ty.kind() {
634        ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
635            reached_raw_pointer,
636            ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
637        }),
638        ty::Array(elem_ty, _) => {
639            let autoderefs = steps.iter().filter(|s| s.reachable_via_deref).count() - 1;
640            steps.push(CandidateStep {
641                self_ty: infcx.make_query_response_ignoring_pending_obligations(
642                    inference_vars,
643                    Ty::new_slice(infcx.tcx, *elem_ty),
644                ),
645                autoderefs,
646                // this could be from an unsafe deref if we had
647                // a *mut/const [T; N]
648                from_unsafe_deref: reached_raw_pointer,
649                unsize: true,
650                reachable_via_deref: true, // this is always the final type from
651                                           // autoderef_via_deref
652            });
653
654            None
655        }
656        _ => None,
657    };
658
659    debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
660
661    MethodAutoderefStepsResult {
662        steps: tcx.arena.alloc_from_iter(steps),
663        opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
664        reached_recursion_limit,
665    }
666}
667
668impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
669    fn new(
670        fcx: &'a FnCtxt<'a, 'tcx>,
671        span: Span,
672        mode: Mode,
673        method_name: Option<Ident>,
674        return_type: Option<Ty<'tcx>>,
675        orig_steps_var_values: &'a OriginalQueryValues<'tcx>,
676        steps: &'tcx [CandidateStep<'tcx>],
677        scope_expr_id: HirId,
678        is_suggestion: IsSuggestion,
679    ) -> ProbeContext<'a, 'tcx> {
680        ProbeContext {
681            fcx,
682            span,
683            mode,
684            method_name,
685            return_type,
686            inherent_candidates: Vec::new(),
687            extension_candidates: Vec::new(),
688            impl_dups: FxHashSet::default(),
689            orig_steps_var_values,
690            steps,
691            allow_similar_names: false,
692            private_candidates: Vec::new(),
693            private_candidate: Cell::new(None),
694            static_candidates: RefCell::new(Vec::new()),
695            scope_expr_id,
696            is_suggestion,
697        }
698    }
699
700    fn reset(&mut self) {
701        self.inherent_candidates.clear();
702        self.extension_candidates.clear();
703        self.impl_dups.clear();
704        self.private_candidates.clear();
705        self.private_candidate.set(None);
706        self.static_candidates.borrow_mut().clear();
707    }
708
709    /// When we're looking up a method by path (UFCS), we relate the receiver
710    /// types invariantly. When we are looking up a method by the `.` operator,
711    /// we relate them covariantly.
712    fn variance(&self) -> ty::Variance {
713        match self.mode {
714            Mode::MethodCall => ty::Covariant,
715            Mode::Path => ty::Invariant,
716        }
717    }
718
719    ///////////////////////////////////////////////////////////////////////////
720    // CANDIDATE ASSEMBLY
721
722    fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
723        let is_accessible = if let Some(name) = self.method_name {
724            let item = candidate.item;
725            let hir_id = self.tcx.local_def_id_to_hir_id(self.body_id);
726            let def_scope =
727                self.tcx.adjust_ident_and_get_scope(name, item.container_id(self.tcx), hir_id).1;
728            item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
729        } else {
730            true
731        };
732        if is_accessible {
733            if is_inherent {
734                self.inherent_candidates.push(candidate);
735            } else {
736                self.extension_candidates.push(candidate);
737            }
738        } else {
739            self.private_candidates.push(candidate);
740        }
741    }
742
743    fn assemble_inherent_candidates(&mut self) {
744        for step in self.steps.iter() {
745            self.assemble_probe(&step.self_ty, step.autoderefs);
746        }
747    }
748
749    #[instrument(level = "debug", skip(self))]
750    fn assemble_probe(
751        &mut self,
752        self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>,
753        receiver_steps: usize,
754    ) {
755        let raw_self_ty = self_ty.value.value;
756        match *raw_self_ty.kind() {
757            ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
758                // Subtle: we can't use `instantiate_query_response` here: using it will
759                // commit to all of the type equalities assumed by inference going through
760                // autoderef (see the `method-probe-no-guessing` test).
761                //
762                // However, in this code, it is OK if we end up with an object type that is
763                // "more general" than the object type that we are evaluating. For *every*
764                // object type `MY_OBJECT`, a function call that goes through a trait-ref
765                // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
766                // `ObjectCandidate`, and it should be discoverable "exactly" through one
767                // of the iterations in the autoderef loop, so there is no problem with it
768                // being discoverable in another one of these iterations.
769                //
770                // Using `instantiate_canonical` on our
771                // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
772                // `CanonicalVarValues` will exactly give us such a generalization - it
773                // will still match the original object type, but it won't pollute our
774                // type variables in any form, so just do that!
775                let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
776                    self.fcx.instantiate_canonical(self.span, self_ty);
777
778                self.assemble_inherent_candidates_from_object(generalized_self_ty);
779                self.assemble_inherent_impl_candidates_for_type(p.def_id(), receiver_steps);
780                if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
781                    self.assemble_inherent_candidates_for_incoherent_ty(
782                        raw_self_ty,
783                        receiver_steps,
784                    );
785                }
786            }
787            ty::Adt(def, _) => {
788                let def_id = def.did();
789                self.assemble_inherent_impl_candidates_for_type(def_id, receiver_steps);
790                if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
791                    self.assemble_inherent_candidates_for_incoherent_ty(
792                        raw_self_ty,
793                        receiver_steps,
794                    );
795                }
796            }
797            ty::Foreign(did) => {
798                self.assemble_inherent_impl_candidates_for_type(did, receiver_steps);
799                if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
800                    self.assemble_inherent_candidates_for_incoherent_ty(
801                        raw_self_ty,
802                        receiver_steps,
803                    );
804                }
805            }
806            ty::Param(_) => {
807                self.assemble_inherent_candidates_from_param(raw_self_ty);
808            }
809            ty::Bool
810            | ty::Char
811            | ty::Int(_)
812            | ty::Uint(_)
813            | ty::Float(_)
814            | ty::Str
815            | ty::Array(..)
816            | ty::Slice(_)
817            | ty::RawPtr(_, _)
818            | ty::Ref(..)
819            | ty::Never
820            | ty::Tuple(..) => {
821                self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty, receiver_steps)
822            }
823            _ => {}
824        }
825    }
826
827    fn assemble_inherent_candidates_for_incoherent_ty(
828        &mut self,
829        self_ty: Ty<'tcx>,
830        receiver_steps: usize,
831    ) {
832        let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::InstantiateWithInfer) else {
833            bug!("unexpected incoherent type: {:?}", self_ty)
834        };
835        for &impl_def_id in self.tcx.incoherent_impls(simp).into_iter() {
836            self.assemble_inherent_impl_probe(impl_def_id, receiver_steps);
837        }
838    }
839
840    fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId, receiver_steps: usize) {
841        let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id).into_iter();
842        for &impl_def_id in impl_def_ids {
843            self.assemble_inherent_impl_probe(impl_def_id, receiver_steps);
844        }
845    }
846
847    #[instrument(level = "debug", skip(self))]
848    fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId, receiver_steps: usize) {
849        if !self.impl_dups.insert(impl_def_id) {
850            return; // already visited
851        }
852
853        for item in self.impl_or_trait_item(impl_def_id) {
854            if !self.has_applicable_self(&item) {
855                // No receiver declared. Not a candidate.
856                self.record_static_candidate(CandidateSource::Impl(impl_def_id));
857                continue;
858            }
859            self.push_candidate(
860                Candidate {
861                    item,
862                    kind: InherentImplCandidate { impl_def_id, receiver_steps },
863                    import_ids: smallvec![],
864                },
865                true,
866            );
867        }
868    }
869
870    #[instrument(level = "debug", skip(self))]
871    fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
872        let principal = match self_ty.kind() {
873            ty::Dynamic(data, ..) => Some(data),
874            _ => None,
875        }
876        .and_then(|data| data.principal())
877        .unwrap_or_else(|| {
878            span_bug!(
879                self.span,
880                "non-object {:?} in assemble_inherent_candidates_from_object",
881                self_ty
882            )
883        });
884
885        // It is illegal to invoke a method on a trait instance that refers to
886        // the `Self` type. An [`DynCompatibilityViolation::SupertraitSelf`] error
887        // will be reported by `dyn_compatibility.rs` if the method refers to the
888        // `Self` type anywhere other than the receiver. Here, we use a
889        // instantiation that replaces `Self` with the object type itself. Hence,
890        // a `&self` method will wind up with an argument type like `&dyn Trait`.
891        let trait_ref = principal.with_self_ty(self.tcx, self_ty);
892        self.assemble_candidates_for_bounds(
893            traits::supertraits(self.tcx, trait_ref),
894            |this, new_trait_ref, item| {
895                this.push_candidate(
896                    Candidate {
897                        item,
898                        kind: ObjectCandidate(new_trait_ref),
899                        import_ids: smallvec![],
900                    },
901                    true,
902                );
903            },
904        );
905    }
906
907    #[instrument(level = "debug", skip(self))]
908    fn assemble_inherent_candidates_from_param(&mut self, param_ty: Ty<'tcx>) {
909        debug_assert_matches!(param_ty.kind(), ty::Param(_));
910
911        let tcx = self.tcx;
912        let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
913            let bound_predicate = predicate.kind();
914            match bound_predicate.skip_binder() {
915                ty::ClauseKind::Trait(trait_predicate) => DeepRejectCtxt::relate_rigid_rigid(tcx)
916                    .types_may_unify(param_ty, trait_predicate.trait_ref.self_ty())
917                    .then(|| bound_predicate.rebind(trait_predicate.trait_ref)),
918                ty::ClauseKind::RegionOutlives(_)
919                | ty::ClauseKind::TypeOutlives(_)
920                | ty::ClauseKind::Projection(_)
921                | ty::ClauseKind::ConstArgHasType(_, _)
922                | ty::ClauseKind::WellFormed(_)
923                | ty::ClauseKind::ConstEvaluatable(_)
924                | ty::ClauseKind::UnstableFeature(_)
925                | ty::ClauseKind::HostEffect(..) => None,
926            }
927        });
928
929        self.assemble_candidates_for_bounds(bounds, |this, poly_trait_ref, item| {
930            this.push_candidate(
931                Candidate {
932                    item,
933                    kind: WhereClauseCandidate(poly_trait_ref),
934                    import_ids: smallvec![],
935                },
936                true,
937            );
938        });
939    }
940
941    // Do a search through a list of bounds, using a callback to actually
942    // create the candidates.
943    fn assemble_candidates_for_bounds<F>(
944        &mut self,
945        bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
946        mut mk_cand: F,
947    ) where
948        F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
949    {
950        for bound_trait_ref in bounds {
951            debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
952            for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
953                if !self.has_applicable_self(&item) {
954                    self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
955                } else {
956                    mk_cand(self, bound_trait_ref, item);
957                }
958            }
959        }
960    }
961
962    #[instrument(level = "debug", skip(self))]
963    fn assemble_extension_candidates_for_traits_in_scope(&mut self) {
964        let mut duplicates = FxHashSet::default();
965        let opt_applicable_traits = self.tcx.in_scope_traits(self.scope_expr_id);
966        if let Some(applicable_traits) = opt_applicable_traits {
967            for trait_candidate in applicable_traits.iter() {
968                let trait_did = trait_candidate.def_id;
969                if duplicates.insert(trait_did) {
970                    self.assemble_extension_candidates_for_trait(
971                        &trait_candidate.import_ids,
972                        trait_did,
973                    );
974                }
975            }
976        }
977    }
978
979    #[instrument(level = "debug", skip(self))]
980    fn assemble_extension_candidates_for_all_traits(&mut self) {
981        let mut duplicates = FxHashSet::default();
982        for trait_info in suggest::all_traits(self.tcx) {
983            if duplicates.insert(trait_info.def_id) {
984                self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
985            }
986        }
987    }
988
989    fn matches_return_type(&self, method: ty::AssocItem, expected: Ty<'tcx>) -> bool {
990        match method.kind {
991            ty::AssocKind::Fn { .. } => self.probe(|_| {
992                let args = self.fresh_args_for_item(self.span, method.def_id);
993                let fty = self.tcx.fn_sig(method.def_id).instantiate(self.tcx, args);
994                let fty = self.instantiate_binder_with_fresh_vars(
995                    self.span,
996                    BoundRegionConversionTime::FnCall,
997                    fty,
998                );
999                self.can_eq(self.param_env, fty.output(), expected)
1000            }),
1001            _ => false,
1002        }
1003    }
1004
1005    #[instrument(level = "debug", skip(self))]
1006    fn assemble_extension_candidates_for_trait(
1007        &mut self,
1008        import_ids: &SmallVec<[LocalDefId; 1]>,
1009        trait_def_id: DefId,
1010    ) {
1011        let trait_args = self.fresh_args_for_item(self.span, trait_def_id);
1012        let trait_ref = ty::TraitRef::new_from_args(self.tcx, trait_def_id, trait_args);
1013
1014        if self.tcx.is_trait_alias(trait_def_id) {
1015            // For trait aliases, recursively assume all explicitly named traits are relevant
1016            for (bound_trait_pred, _) in
1017                traits::expand_trait_aliases(self.tcx, [(trait_ref.upcast(self.tcx), self.span)]).0
1018            {
1019                assert_eq!(bound_trait_pred.polarity(), ty::PredicatePolarity::Positive);
1020                let bound_trait_ref = bound_trait_pred.map_bound(|pred| pred.trait_ref);
1021                for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
1022                    if !self.has_applicable_self(&item) {
1023                        self.record_static_candidate(CandidateSource::Trait(
1024                            bound_trait_ref.def_id(),
1025                        ));
1026                    } else {
1027                        self.push_candidate(
1028                            Candidate {
1029                                item,
1030                                import_ids: import_ids.clone(),
1031                                kind: TraitCandidate(bound_trait_ref),
1032                            },
1033                            false,
1034                        );
1035                    }
1036                }
1037            }
1038        } else {
1039            debug_assert!(self.tcx.is_trait(trait_def_id));
1040            if self.tcx.trait_is_auto(trait_def_id) {
1041                return;
1042            }
1043            for item in self.impl_or_trait_item(trait_def_id) {
1044                // Check whether `trait_def_id` defines a method with suitable name.
1045                if !self.has_applicable_self(&item) {
1046                    debug!("method has inapplicable self");
1047                    self.record_static_candidate(CandidateSource::Trait(trait_def_id));
1048                    continue;
1049                }
1050                self.push_candidate(
1051                    Candidate {
1052                        item,
1053                        import_ids: import_ids.clone(),
1054                        kind: TraitCandidate(ty::Binder::dummy(trait_ref)),
1055                    },
1056                    false,
1057                );
1058            }
1059        }
1060    }
1061
1062    fn candidate_method_names(
1063        &self,
1064        candidate_filter: impl Fn(&ty::AssocItem) -> bool,
1065    ) -> Vec<Ident> {
1066        let mut set = FxHashSet::default();
1067        let mut names: Vec<_> = self
1068            .inherent_candidates
1069            .iter()
1070            .chain(&self.extension_candidates)
1071            .filter(|candidate| candidate_filter(&candidate.item))
1072            .filter(|candidate| {
1073                if let Some(return_ty) = self.return_type {
1074                    self.matches_return_type(candidate.item, return_ty)
1075                } else {
1076                    true
1077                }
1078            })
1079            // ensure that we don't suggest unstable methods
1080            .filter(|candidate| {
1081                // note that `DUMMY_SP` is ok here because it is only used for
1082                // suggestions and macro stuff which isn't applicable here.
1083                !matches!(
1084                    self.tcx.eval_stability(candidate.item.def_id, None, DUMMY_SP, None),
1085                    stability::EvalResult::Deny { .. }
1086                )
1087            })
1088            .map(|candidate| candidate.item.ident(self.tcx))
1089            .filter(|&name| set.insert(name))
1090            .collect();
1091
1092        // Sort them by the name so we have a stable result.
1093        names.sort_by(|a, b| a.as_str().cmp(b.as_str()));
1094        names
1095    }
1096
1097    ///////////////////////////////////////////////////////////////////////////
1098    // THE ACTUAL SEARCH
1099
1100    #[instrument(level = "debug", skip(self))]
1101    fn pick(mut self) -> PickResult<'tcx> {
1102        assert!(self.method_name.is_some());
1103
1104        let mut unsatisfied_predicates = Vec::new();
1105
1106        if let Some(r) = self.pick_core(&mut unsatisfied_predicates) {
1107            return r;
1108        }
1109
1110        // If it's a `lookup_probe_for_diagnostic`, then quit early. No need to
1111        // probe for other candidates.
1112        if self.is_suggestion.0 {
1113            return Err(MethodError::NoMatch(NoMatchData {
1114                static_candidates: vec![],
1115                unsatisfied_predicates: vec![],
1116                out_of_scope_traits: vec![],
1117                similar_candidate: None,
1118                mode: self.mode,
1119            }));
1120        }
1121
1122        debug!("pick: actual search failed, assemble diagnostics");
1123
1124        let static_candidates = std::mem::take(self.static_candidates.get_mut());
1125        let private_candidate = self.private_candidate.take();
1126
1127        // things failed, so lets look at all traits, for diagnostic purposes now:
1128        self.reset();
1129
1130        let span = self.span;
1131        let tcx = self.tcx;
1132
1133        self.assemble_extension_candidates_for_all_traits();
1134
1135        let out_of_scope_traits = match self.pick_core(&mut Vec::new()) {
1136            Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1137            Some(Err(MethodError::Ambiguity(v))) => v
1138                .into_iter()
1139                .map(|source| match source {
1140                    CandidateSource::Trait(id) => id,
1141                    CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1142                        Some(id) => id,
1143                        None => span_bug!(span, "found inherent method when looking at traits"),
1144                    },
1145                })
1146                .collect(),
1147            Some(Err(MethodError::NoMatch(NoMatchData {
1148                out_of_scope_traits: others, ..
1149            }))) => {
1150                assert!(others.is_empty());
1151                vec![]
1152            }
1153            _ => vec![],
1154        };
1155
1156        if let Some((kind, def_id)) = private_candidate {
1157            return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1158        }
1159        let similar_candidate = self.probe_for_similar_candidate()?;
1160
1161        Err(MethodError::NoMatch(NoMatchData {
1162            static_candidates,
1163            unsatisfied_predicates,
1164            out_of_scope_traits,
1165            similar_candidate,
1166            mode: self.mode,
1167        }))
1168    }
1169
1170    fn pick_core(
1171        &self,
1172        unsatisfied_predicates: &mut Vec<(
1173            ty::Predicate<'tcx>,
1174            Option<ty::Predicate<'tcx>>,
1175            Option<ObligationCause<'tcx>>,
1176        )>,
1177    ) -> Option<PickResult<'tcx>> {
1178        // Pick stable methods only first, and consider unstable candidates if not found.
1179        self.pick_all_method(&mut PickDiagHints {
1180            // This first cycle, maintain a list of unstable candidates which
1181            // we encounter. This will end up in the Pick for diagnostics.
1182            unstable_candidates: Some(Vec::new()),
1183            // Contribute to the list of unsatisfied predicates which may
1184            // also be used for diagnostics.
1185            unsatisfied_predicates,
1186        })
1187        .or_else(|| {
1188            self.pick_all_method(&mut PickDiagHints {
1189                // On the second search, don't provide a special list of unstable
1190                // candidates. This indicates to the picking code that it should
1191                // in fact include such unstable candidates in the actual
1192                // search.
1193                unstable_candidates: None,
1194                // And there's no need to duplicate ourselves in the
1195                // unsatisifed predicates list. Provide a throwaway list.
1196                unsatisfied_predicates: &mut Vec::new(),
1197            })
1198        })
1199    }
1200
1201    fn pick_all_method<'b>(
1202        &self,
1203        pick_diag_hints: &mut PickDiagHints<'b, 'tcx>,
1204    ) -> Option<PickResult<'tcx>> {
1205        let track_unstable_candidates = pick_diag_hints.unstable_candidates.is_some();
1206        self.steps
1207            .iter()
1208            // At this point we're considering the types to which the receiver can be converted,
1209            // so we want to follow the `Deref` chain not the `Receiver` chain. Filter out
1210            // steps which can only be reached by following the (longer) `Receiver` chain.
1211            .filter(|step| step.reachable_via_deref)
1212            .filter(|step| {
1213                debug!("pick_all_method: step={:?}", step);
1214                // skip types that are from a type error or that would require dereferencing
1215                // a raw pointer
1216                !step.self_ty.value.references_error() && !step.from_unsafe_deref
1217            })
1218            .find_map(|step| {
1219                let InferOk { value: self_ty, obligations: _ } = self
1220                    .fcx
1221                    .probe_instantiate_query_response(
1222                        self.span,
1223                        self.orig_steps_var_values,
1224                        &step.self_ty,
1225                    )
1226                    .unwrap_or_else(|_| {
1227                        span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1228                    });
1229
1230                let by_value_pick = self.pick_by_value_method(step, self_ty, pick_diag_hints);
1231
1232                // Check for shadowing of a by-reference method by a by-value method (see comments on check_for_shadowing)
1233                if let Some(by_value_pick) = by_value_pick {
1234                    if let Ok(by_value_pick) = by_value_pick.as_ref() {
1235                        if by_value_pick.kind == PickKind::InherentImplPick {
1236                            for mutbl in [hir::Mutability::Not, hir::Mutability::Mut] {
1237                                if let Err(e) = self.check_for_shadowed_autorefd_method(
1238                                    by_value_pick,
1239                                    step,
1240                                    self_ty,
1241                                    mutbl,
1242                                    track_unstable_candidates,
1243                                ) {
1244                                    return Some(Err(e));
1245                                }
1246                            }
1247                        }
1248                    }
1249                    return Some(by_value_pick);
1250                }
1251
1252                let autoref_pick = self.pick_autorefd_method(
1253                    step,
1254                    self_ty,
1255                    hir::Mutability::Not,
1256                    pick_diag_hints,
1257                    None,
1258                );
1259                // Check for shadowing of a by-mut-ref method by a by-reference method (see comments on check_for_shadowing)
1260                if let Some(autoref_pick) = autoref_pick {
1261                    if let Ok(autoref_pick) = autoref_pick.as_ref() {
1262                        // Check we're not shadowing others
1263                        if autoref_pick.kind == PickKind::InherentImplPick {
1264                            if let Err(e) = self.check_for_shadowed_autorefd_method(
1265                                autoref_pick,
1266                                step,
1267                                self_ty,
1268                                hir::Mutability::Mut,
1269                                track_unstable_candidates,
1270                            ) {
1271                                return Some(Err(e));
1272                            }
1273                        }
1274                    }
1275                    return Some(autoref_pick);
1276                }
1277
1278                // Note that no shadowing errors are produced from here on,
1279                // as we consider const ptr methods.
1280                // We allow new methods that take *mut T to shadow
1281                // methods which took *const T, so there is no entry in
1282                // this list for the results of `pick_const_ptr_method`.
1283                // The reason is that the standard pointer cast method
1284                // (on a mutable pointer) always already shadows the
1285                // cast method (on a const pointer). So, if we added
1286                // `pick_const_ptr_method` to this method, the anti-
1287                // shadowing algorithm would always complain about
1288                // the conflict between *const::cast and *mut::cast.
1289                // In practice therefore this does constrain us:
1290                // we cannot add new
1291                //   self: *mut Self
1292                // methods to types such as NonNull or anything else
1293                // which implements Receiver, because this might in future
1294                // shadow existing methods taking
1295                //   self: *const NonNull<Self>
1296                // in the pointee. In practice, methods taking raw pointers
1297                // are rare, and it seems that it should be easily possible
1298                // to avoid such compatibility breaks.
1299                // We also don't check for reborrowed pin methods which
1300                // may be shadowed; these also seem unlikely to occur.
1301                self.pick_autorefd_method(
1302                    step,
1303                    self_ty,
1304                    hir::Mutability::Mut,
1305                    pick_diag_hints,
1306                    None,
1307                )
1308                .or_else(|| self.pick_const_ptr_method(step, self_ty, pick_diag_hints))
1309                .or_else(|| self.pick_reborrow_pin_method(step, self_ty, pick_diag_hints))
1310            })
1311    }
1312
1313    /// Check for cases where arbitrary self types allows shadowing
1314    /// of methods that might be a compatibility break. Specifically,
1315    /// we have something like:
1316    /// ```ignore (illustrative)
1317    /// struct A;
1318    /// impl A {
1319    ///   fn foo(self: &NonNull<A>) {}
1320    ///      // note this is by reference
1321    /// }
1322    /// ```
1323    /// then we've come along and added this method to `NonNull`:
1324    /// ```ignore (illustrative)
1325    ///   fn foo(self)  // note this is by value
1326    /// ```
1327    /// Report an error in this case.
1328    fn check_for_shadowed_autorefd_method(
1329        &self,
1330        possible_shadower: &Pick<'tcx>,
1331        step: &CandidateStep<'tcx>,
1332        self_ty: Ty<'tcx>,
1333        mutbl: hir::Mutability,
1334        track_unstable_candidates: bool,
1335    ) -> Result<(), MethodError<'tcx>> {
1336        // The errors emitted by this function are part of
1337        // the arbitrary self types work, and should not impact
1338        // other users.
1339        if !self.tcx.features().arbitrary_self_types()
1340            && !self.tcx.features().arbitrary_self_types_pointers()
1341        {
1342            return Ok(());
1343        }
1344
1345        // We don't want to remember any of the diagnostic hints from this
1346        // shadow search, but we do need to provide Some/None for the
1347        // unstable_candidates in order to reflect the behavior of the
1348        // main search.
1349        let mut pick_diag_hints = PickDiagHints {
1350            unstable_candidates: if track_unstable_candidates { Some(Vec::new()) } else { None },
1351            unsatisfied_predicates: &mut Vec::new(),
1352        };
1353        // Set criteria for how we find methods possibly shadowed by 'possible_shadower'
1354        let pick_constraints = PickConstraintsForShadowed {
1355            // It's the same `self` type...
1356            autoderefs: possible_shadower.autoderefs,
1357            // ... but the method was found in an impl block determined
1358            // by searching further along the Receiver chain than the other,
1359            // showing that it's a smart pointer type causing the problem...
1360            receiver_steps: possible_shadower.receiver_steps,
1361            // ... and they don't end up pointing to the same item in the
1362            // first place (could happen with things like blanket impls for T)
1363            def_id: possible_shadower.item.def_id,
1364        };
1365        // A note on the autoderefs above. Within pick_by_value_method, an extra
1366        // autoderef may be applied in order to reborrow a reference with
1367        // a different lifetime. That seems as though it would break the
1368        // logic of these constraints, since the number of autoderefs could
1369        // no longer be used to identify the fundamental type of the receiver.
1370        // However, this extra autoderef is applied only to by-value calls
1371        // where the receiver is already a reference. So this situation would
1372        // only occur in cases where the shadowing looks like this:
1373        // ```
1374        // struct A;
1375        // impl A {
1376        //   fn foo(self: &&NonNull<A>) {}
1377        //      // note this is by DOUBLE reference
1378        // }
1379        // ```
1380        // then we've come along and added this method to `NonNull`:
1381        // ```
1382        //   fn foo(&self)  // note this is by single reference
1383        // ```
1384        // and the call is:
1385        // ```
1386        // let bar = NonNull<Foo>;
1387        // let bar = &foo;
1388        // bar.foo();
1389        // ```
1390        // In these circumstances, the logic is wrong, and we wouldn't spot
1391        // the shadowing, because the autoderef-based maths wouldn't line up.
1392        // This is a niche case and we can live without generating an error
1393        // in the case of such shadowing.
1394        let potentially_shadowed_pick = self.pick_autorefd_method(
1395            step,
1396            self_ty,
1397            mutbl,
1398            &mut pick_diag_hints,
1399            Some(&pick_constraints),
1400        );
1401        // Look for actual pairs of shadower/shadowed which are
1402        // the sort of shadowing case we want to avoid. Specifically...
1403        if let Some(Ok(possible_shadowed)) = potentially_shadowed_pick.as_ref() {
1404            let sources = [possible_shadower, possible_shadowed]
1405                .into_iter()
1406                .map(|p| self.candidate_source_from_pick(p))
1407                .collect();
1408            return Err(MethodError::Ambiguity(sources));
1409        }
1410        Ok(())
1411    }
1412
1413    /// For each type `T` in the step list, this attempts to find a method where
1414    /// the (transformed) self type is exactly `T`. We do however do one
1415    /// transformation on the adjustment: if we are passing a region pointer in,
1416    /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1417    /// to transparently pass `&mut` pointers, in particular, without consuming
1418    /// them for their entire lifetime.
1419    fn pick_by_value_method(
1420        &self,
1421        step: &CandidateStep<'tcx>,
1422        self_ty: Ty<'tcx>,
1423        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1424    ) -> Option<PickResult<'tcx>> {
1425        if step.unsize {
1426            return None;
1427        }
1428
1429        self.pick_method(self_ty, pick_diag_hints, None).map(|r| {
1430            r.map(|mut pick| {
1431                pick.autoderefs = step.autoderefs;
1432
1433                match *step.self_ty.value.value.kind() {
1434                    // Insert a `&*` or `&mut *` if this is a reference type:
1435                    ty::Ref(_, _, mutbl) => {
1436                        pick.autoderefs += 1;
1437                        pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1438                            mutbl,
1439                            unsize: pick.autoref_or_ptr_adjustment.is_some_and(|a| a.get_unsize()),
1440                        })
1441                    }
1442
1443                    ty::Adt(def, args)
1444                        if self.tcx.features().pin_ergonomics()
1445                            && self.tcx.is_lang_item(def.did(), hir::LangItem::Pin) =>
1446                    {
1447                        // make sure this is a pinned reference (and not a `Pin<Box>` or something)
1448                        if let ty::Ref(_, _, mutbl) = args[0].expect_ty().kind() {
1449                            pick.autoref_or_ptr_adjustment =
1450                                Some(AutorefOrPtrAdjustment::ReborrowPin(*mutbl));
1451                        }
1452                    }
1453
1454                    _ => (),
1455                }
1456
1457                pick
1458            })
1459        })
1460    }
1461
1462    fn pick_autorefd_method(
1463        &self,
1464        step: &CandidateStep<'tcx>,
1465        self_ty: Ty<'tcx>,
1466        mutbl: hir::Mutability,
1467        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1468        pick_constraints: Option<&PickConstraintsForShadowed>,
1469    ) -> Option<PickResult<'tcx>> {
1470        let tcx = self.tcx;
1471
1472        if let Some(pick_constraints) = pick_constraints {
1473            if !pick_constraints.may_shadow_based_on_autoderefs(step.autoderefs) {
1474                return None;
1475            }
1476        }
1477
1478        // In general, during probing we erase regions.
1479        let region = tcx.lifetimes.re_erased;
1480
1481        let autoref_ty = Ty::new_ref(tcx, region, self_ty, mutbl);
1482        self.pick_method(autoref_ty, pick_diag_hints, pick_constraints).map(|r| {
1483            r.map(|mut pick| {
1484                pick.autoderefs = step.autoderefs;
1485                pick.autoref_or_ptr_adjustment =
1486                    Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1487                pick
1488            })
1489        })
1490    }
1491
1492    /// Looks for applicable methods if we reborrow a `Pin<&mut T>` as a `Pin<&T>`.
1493    #[instrument(level = "debug", skip(self, step, pick_diag_hints))]
1494    fn pick_reborrow_pin_method(
1495        &self,
1496        step: &CandidateStep<'tcx>,
1497        self_ty: Ty<'tcx>,
1498        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1499    ) -> Option<PickResult<'tcx>> {
1500        if !self.tcx.features().pin_ergonomics() {
1501            return None;
1502        }
1503
1504        // make sure self is a Pin<&mut T>
1505        let inner_ty = match self_ty.kind() {
1506            ty::Adt(def, args) if self.tcx.is_lang_item(def.did(), hir::LangItem::Pin) => {
1507                match args[0].expect_ty().kind() {
1508                    ty::Ref(_, ty, hir::Mutability::Mut) => *ty,
1509                    _ => {
1510                        return None;
1511                    }
1512                }
1513            }
1514            _ => return None,
1515        };
1516
1517        let region = self.tcx.lifetimes.re_erased;
1518        let autopin_ty = Ty::new_pinned_ref(self.tcx, region, inner_ty, hir::Mutability::Not);
1519        self.pick_method(autopin_ty, pick_diag_hints, None).map(|r| {
1520            r.map(|mut pick| {
1521                pick.autoderefs = step.autoderefs;
1522                pick.autoref_or_ptr_adjustment =
1523                    Some(AutorefOrPtrAdjustment::ReborrowPin(hir::Mutability::Not));
1524                pick
1525            })
1526        })
1527    }
1528
1529    /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1530    /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1531    /// autorefs would require dereferencing the pointer, which is not safe.
1532    fn pick_const_ptr_method(
1533        &self,
1534        step: &CandidateStep<'tcx>,
1535        self_ty: Ty<'tcx>,
1536        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1537    ) -> Option<PickResult<'tcx>> {
1538        // Don't convert an unsized reference to ptr
1539        if step.unsize {
1540            return None;
1541        }
1542
1543        let &ty::RawPtr(ty, hir::Mutability::Mut) = self_ty.kind() else {
1544            return None;
1545        };
1546
1547        let const_ptr_ty = Ty::new_imm_ptr(self.tcx, ty);
1548        self.pick_method(const_ptr_ty, pick_diag_hints, None).map(|r| {
1549            r.map(|mut pick| {
1550                pick.autoderefs = step.autoderefs;
1551                pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1552                pick
1553            })
1554        })
1555    }
1556
1557    fn pick_method(
1558        &self,
1559        self_ty: Ty<'tcx>,
1560        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1561        pick_constraints: Option<&PickConstraintsForShadowed>,
1562    ) -> Option<PickResult<'tcx>> {
1563        debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1564
1565        for (kind, candidates) in
1566            [("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1567        {
1568            debug!("searching {} candidates", kind);
1569            let res =
1570                self.consider_candidates(self_ty, candidates, pick_diag_hints, pick_constraints);
1571            if let Some(pick) = res {
1572                return Some(pick);
1573            }
1574        }
1575
1576        if self.private_candidate.get().is_none() {
1577            if let Some(Ok(pick)) = self.consider_candidates(
1578                self_ty,
1579                &self.private_candidates,
1580                &mut PickDiagHints {
1581                    unstable_candidates: None,
1582                    unsatisfied_predicates: &mut vec![],
1583                },
1584                None,
1585            ) {
1586                self.private_candidate.set(Some((pick.item.as_def_kind(), pick.item.def_id)));
1587            }
1588        }
1589        None
1590    }
1591
1592    fn consider_candidates(
1593        &self,
1594        self_ty: Ty<'tcx>,
1595        candidates: &[Candidate<'tcx>],
1596        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1597        pick_constraints: Option<&PickConstraintsForShadowed>,
1598    ) -> Option<PickResult<'tcx>> {
1599        let mut applicable_candidates: Vec<_> = candidates
1600            .iter()
1601            .filter(|candidate| {
1602                pick_constraints
1603                    .map(|pick_constraints| pick_constraints.candidate_may_shadow(&candidate))
1604                    .unwrap_or(true)
1605            })
1606            .map(|probe| {
1607                (
1608                    probe,
1609                    self.consider_probe(
1610                        self_ty,
1611                        probe,
1612                        &mut pick_diag_hints.unsatisfied_predicates,
1613                    ),
1614                )
1615            })
1616            .filter(|&(_, status)| status != ProbeResult::NoMatch)
1617            .collect();
1618
1619        debug!("applicable_candidates: {:?}", applicable_candidates);
1620
1621        if applicable_candidates.len() > 1 {
1622            if let Some(pick) =
1623                self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1624            {
1625                return Some(Ok(pick));
1626            }
1627        }
1628
1629        if let Some(uc) = &mut pick_diag_hints.unstable_candidates {
1630            applicable_candidates.retain(|&(candidate, _)| {
1631                if let stability::EvalResult::Deny { feature, .. } =
1632                    self.tcx.eval_stability(candidate.item.def_id, None, self.span, None)
1633                {
1634                    uc.push((candidate.clone(), feature));
1635                    return false;
1636                }
1637                true
1638            });
1639        }
1640
1641        if applicable_candidates.len() > 1 {
1642            // We collapse to a subtrait pick *after* filtering unstable candidates
1643            // to make sure we don't prefer a unstable subtrait method over a stable
1644            // supertrait method.
1645            if self.tcx.features().supertrait_item_shadowing() {
1646                if let Some(pick) =
1647                    self.collapse_candidates_to_subtrait_pick(self_ty, &applicable_candidates)
1648                {
1649                    return Some(Ok(pick));
1650                }
1651            }
1652
1653            let sources =
1654                applicable_candidates.iter().map(|p| self.candidate_source(p.0, self_ty)).collect();
1655            return Some(Err(MethodError::Ambiguity(sources)));
1656        }
1657
1658        applicable_candidates.pop().map(|(probe, status)| match status {
1659            ProbeResult::Match => Ok(probe.to_unadjusted_pick(
1660                self_ty,
1661                pick_diag_hints.unstable_candidates.clone().unwrap_or_default(),
1662            )),
1663            ProbeResult::NoMatch | ProbeResult::BadReturnType => Err(MethodError::BadReturnType),
1664        })
1665    }
1666}
1667
1668impl<'tcx> Pick<'tcx> {
1669    /// In case there were unstable name collisions, emit them as a lint.
1670    /// Checks whether two picks do not refer to the same trait item for the same `Self` type.
1671    /// Only useful for comparisons of picks in order to improve diagnostics.
1672    /// Do not use for type checking.
1673    pub(crate) fn differs_from(&self, other: &Self) -> bool {
1674        let Self {
1675            item: AssocItem { def_id, kind: _, container: _, trait_item_def_id: _ },
1676            kind: _,
1677            import_ids: _,
1678            autoderefs: _,
1679            autoref_or_ptr_adjustment: _,
1680            self_ty,
1681            unstable_candidates: _,
1682            receiver_steps: _,
1683            shadowed_candidates: _,
1684        } = *self;
1685        self_ty != other.self_ty || def_id != other.item.def_id
1686    }
1687
1688    /// In case there were unstable name collisions, emit them as a lint.
1689    pub(crate) fn maybe_emit_unstable_name_collision_hint(
1690        &self,
1691        tcx: TyCtxt<'tcx>,
1692        span: Span,
1693        scope_expr_id: HirId,
1694    ) {
1695        if self.unstable_candidates.is_empty() {
1696            return;
1697        }
1698        let def_kind = self.item.as_def_kind();
1699        tcx.node_span_lint(lint::builtin::UNSTABLE_NAME_COLLISIONS, scope_expr_id, span, |lint| {
1700            lint.primary_message(format!(
1701                "{} {} with this name may be added to the standard library in the future",
1702                tcx.def_kind_descr_article(def_kind, self.item.def_id),
1703                tcx.def_kind_descr(def_kind, self.item.def_id),
1704            ));
1705
1706            match (self.item.kind, self.item.container) {
1707                (ty::AssocKind::Fn { .. }, _) => {
1708                    // FIXME: This should be a `span_suggestion` instead of `help`
1709                    // However `self.span` only
1710                    // highlights the method name, so we can't use it. Also consider reusing
1711                    // the code from `report_method_error()`.
1712                    lint.help(format!(
1713                        "call with fully qualified syntax `{}(...)` to keep using the current \
1714                             method",
1715                        tcx.def_path_str(self.item.def_id),
1716                    ));
1717                }
1718                (ty::AssocKind::Const { name }, ty::AssocItemContainer::Trait) => {
1719                    let def_id = self.item.container_id(tcx);
1720                    lint.span_suggestion(
1721                        span,
1722                        "use the fully qualified path to the associated const",
1723                        format!("<{} as {}>::{}", self.self_ty, tcx.def_path_str(def_id), name),
1724                        Applicability::MachineApplicable,
1725                    );
1726                }
1727                _ => {}
1728            }
1729            tcx.disabled_nightly_features(
1730                lint,
1731                self.unstable_candidates.iter().map(|(candidate, feature)| {
1732                    (format!(" `{}`", tcx.def_path_str(candidate.item.def_id)), *feature)
1733                }),
1734            );
1735        });
1736    }
1737}
1738
1739impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
1740    fn select_trait_candidate(
1741        &self,
1742        trait_ref: ty::TraitRef<'tcx>,
1743    ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1744        let obligation =
1745            traits::Obligation::new(self.tcx, self.misc(self.span), self.param_env, trait_ref);
1746        traits::SelectionContext::new(self).select(&obligation)
1747    }
1748
1749    /// Used for ambiguous method call error reporting. Uses probing that throws away the result internally,
1750    /// so do not use to make a decision that may lead to a successful compilation.
1751    fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1752        match candidate.kind {
1753            InherentImplCandidate { .. } => {
1754                CandidateSource::Impl(candidate.item.container_id(self.tcx))
1755            }
1756            ObjectCandidate(_) | WhereClauseCandidate(_) => {
1757                CandidateSource::Trait(candidate.item.container_id(self.tcx))
1758            }
1759            TraitCandidate(trait_ref) => self.probe(|_| {
1760                let trait_ref = self.instantiate_binder_with_fresh_vars(
1761                    self.span,
1762                    BoundRegionConversionTime::FnCall,
1763                    trait_ref,
1764                );
1765                let (xform_self_ty, _) =
1766                    self.xform_self_ty(candidate.item, trait_ref.self_ty(), trait_ref.args);
1767                // Guide the trait selection to show impls that have methods whose type matches
1768                // up with the `self` parameter of the method.
1769                let _ = self.at(&ObligationCause::dummy(), self.param_env).sup(
1770                    DefineOpaqueTypes::Yes,
1771                    xform_self_ty,
1772                    self_ty,
1773                );
1774                match self.select_trait_candidate(trait_ref) {
1775                    Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1776                        // If only a single impl matches, make the error message point
1777                        // to that impl.
1778                        CandidateSource::Impl(impl_data.impl_def_id)
1779                    }
1780                    _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1781                }
1782            }),
1783        }
1784    }
1785
1786    fn candidate_source_from_pick(&self, pick: &Pick<'tcx>) -> CandidateSource {
1787        match pick.kind {
1788            InherentImplPick => CandidateSource::Impl(pick.item.container_id(self.tcx)),
1789            ObjectPick | WhereClausePick(_) | TraitPick => {
1790                CandidateSource::Trait(pick.item.container_id(self.tcx))
1791            }
1792        }
1793    }
1794
1795    #[instrument(level = "trace", skip(self, possibly_unsatisfied_predicates), ret)]
1796    fn consider_probe(
1797        &self,
1798        self_ty: Ty<'tcx>,
1799        probe: &Candidate<'tcx>,
1800        possibly_unsatisfied_predicates: &mut Vec<(
1801            ty::Predicate<'tcx>,
1802            Option<ty::Predicate<'tcx>>,
1803            Option<ObligationCause<'tcx>>,
1804        )>,
1805    ) -> ProbeResult {
1806        debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1807
1808        self.probe(|snapshot| {
1809            let outer_universe = self.universe();
1810
1811            let mut result = ProbeResult::Match;
1812            let cause = &self.misc(self.span);
1813            let ocx = ObligationCtxt::new_with_diagnostics(self);
1814
1815            let mut trait_predicate = None;
1816            let (mut xform_self_ty, mut xform_ret_ty);
1817
1818            match probe.kind {
1819                InherentImplCandidate { impl_def_id, .. } => {
1820                    let impl_args = self.fresh_args_for_item(self.span, impl_def_id);
1821                    let impl_ty = self.tcx.type_of(impl_def_id).instantiate(self.tcx, impl_args);
1822                    (xform_self_ty, xform_ret_ty) =
1823                        self.xform_self_ty(probe.item, impl_ty, impl_args);
1824                    xform_self_ty = ocx.normalize(cause, self.param_env, xform_self_ty);
1825                    match ocx.relate(cause, self.param_env, self.variance(), self_ty, xform_self_ty)
1826                    {
1827                        Ok(()) => {}
1828                        Err(err) => {
1829                            debug!("--> cannot relate self-types {:?}", err);
1830                            return ProbeResult::NoMatch;
1831                        }
1832                    }
1833                    // FIXME: Weirdly, we normalize the ret ty in this candidate, but no other candidates.
1834                    xform_ret_ty = ocx.normalize(cause, self.param_env, xform_ret_ty);
1835                    // Check whether the impl imposes obligations we have to worry about.
1836                    let impl_def_id = probe.item.container_id(self.tcx);
1837                    let impl_bounds =
1838                        self.tcx.predicates_of(impl_def_id).instantiate(self.tcx, impl_args);
1839                    let impl_bounds = ocx.normalize(cause, self.param_env, impl_bounds);
1840                    // Convert the bounds into obligations.
1841                    ocx.register_obligations(traits::predicates_for_generics(
1842                        |idx, span| {
1843                            let code = ObligationCauseCode::WhereClauseInExpr(
1844                                impl_def_id,
1845                                span,
1846                                self.scope_expr_id,
1847                                idx,
1848                            );
1849                            self.cause(self.span, code)
1850                        },
1851                        self.param_env,
1852                        impl_bounds,
1853                    ));
1854                }
1855                TraitCandidate(poly_trait_ref) => {
1856                    // Some trait methods are excluded for arrays before 2021.
1857                    // (`array.into_iter()` wants a slice iterator for compatibility.)
1858                    if let Some(method_name) = self.method_name {
1859                        if self_ty.is_array() && !method_name.span.at_least_rust_2021() {
1860                            let trait_def = self.tcx.trait_def(poly_trait_ref.def_id());
1861                            if trait_def.skip_array_during_method_dispatch {
1862                                return ProbeResult::NoMatch;
1863                            }
1864                        }
1865
1866                        // Some trait methods are excluded for boxed slices before 2024.
1867                        // (`boxed_slice.into_iter()` wants a slice iterator for compatibility.)
1868                        if self_ty.boxed_ty().is_some_and(Ty::is_slice)
1869                            && !method_name.span.at_least_rust_2024()
1870                        {
1871                            let trait_def = self.tcx.trait_def(poly_trait_ref.def_id());
1872                            if trait_def.skip_boxed_slice_during_method_dispatch {
1873                                return ProbeResult::NoMatch;
1874                            }
1875                        }
1876                    }
1877
1878                    let trait_ref = self.instantiate_binder_with_fresh_vars(
1879                        self.span,
1880                        BoundRegionConversionTime::FnCall,
1881                        poly_trait_ref,
1882                    );
1883                    let trait_ref = ocx.normalize(cause, self.param_env, trait_ref);
1884                    (xform_self_ty, xform_ret_ty) =
1885                        self.xform_self_ty(probe.item, trait_ref.self_ty(), trait_ref.args);
1886                    xform_self_ty = ocx.normalize(cause, self.param_env, xform_self_ty);
1887                    match self_ty.kind() {
1888                        // HACK: opaque types will match anything for which their bounds hold.
1889                        // Thus we need to prevent them from trying to match the `&_` autoref
1890                        // candidates that get created for `&self` trait methods.
1891                        ty::Alias(ty::Opaque, alias_ty)
1892                            if !self.next_trait_solver()
1893                                && self.infcx.can_define_opaque_ty(alias_ty.def_id)
1894                                && !xform_self_ty.is_ty_var() =>
1895                        {
1896                            return ProbeResult::NoMatch;
1897                        }
1898                        _ => match ocx.relate(
1899                            cause,
1900                            self.param_env,
1901                            self.variance(),
1902                            self_ty,
1903                            xform_self_ty,
1904                        ) {
1905                            Ok(()) => {}
1906                            Err(err) => {
1907                                debug!("--> cannot relate self-types {:?}", err);
1908                                return ProbeResult::NoMatch;
1909                            }
1910                        },
1911                    }
1912                    let obligation = traits::Obligation::new(
1913                        self.tcx,
1914                        cause.clone(),
1915                        self.param_env,
1916                        ty::Binder::dummy(trait_ref),
1917                    );
1918
1919                    // We only need this hack to deal with fatal overflow in the old solver.
1920                    if self.infcx.next_trait_solver() || self.infcx.predicate_may_hold(&obligation)
1921                    {
1922                        ocx.register_obligation(obligation);
1923                    } else {
1924                        result = ProbeResult::NoMatch;
1925                        if let Ok(Some(candidate)) = self.select_trait_candidate(trait_ref) {
1926                            for nested_obligation in candidate.nested_obligations() {
1927                                if !self.infcx.predicate_may_hold(&nested_obligation) {
1928                                    possibly_unsatisfied_predicates.push((
1929                                        self.resolve_vars_if_possible(nested_obligation.predicate),
1930                                        Some(self.resolve_vars_if_possible(obligation.predicate)),
1931                                        Some(nested_obligation.cause),
1932                                    ));
1933                                }
1934                            }
1935                        }
1936                    }
1937
1938                    trait_predicate = Some(trait_ref.upcast(self.tcx));
1939                }
1940                ObjectCandidate(poly_trait_ref) | WhereClauseCandidate(poly_trait_ref) => {
1941                    let trait_ref = self.instantiate_binder_with_fresh_vars(
1942                        self.span,
1943                        BoundRegionConversionTime::FnCall,
1944                        poly_trait_ref,
1945                    );
1946                    (xform_self_ty, xform_ret_ty) =
1947                        self.xform_self_ty(probe.item, trait_ref.self_ty(), trait_ref.args);
1948                    xform_self_ty = ocx.normalize(cause, self.param_env, xform_self_ty);
1949                    match ocx.relate(cause, self.param_env, self.variance(), self_ty, xform_self_ty)
1950                    {
1951                        Ok(()) => {}
1952                        Err(err) => {
1953                            debug!("--> cannot relate self-types {:?}", err);
1954                            return ProbeResult::NoMatch;
1955                        }
1956                    }
1957                }
1958            }
1959
1960            // See <https://github.com/rust-lang/trait-system-refactor-initiative/issues/134>.
1961            //
1962            // In the new solver, check the well-formedness of the return type.
1963            // This emulates, in a way, the predicates that fall out of
1964            // normalizing the return type in the old solver.
1965            //
1966            // FIXME(-Znext-solver): We alternatively could check the predicates of
1967            // the method itself hold, but we intentionally do not do this in the old
1968            // solver b/c of cycles, and doing it in the new solver would be stronger.
1969            // This should be fixed in the future, since it likely leads to much better
1970            // method winnowing.
1971            if let Some(xform_ret_ty) = xform_ret_ty
1972                && self.infcx.next_trait_solver()
1973            {
1974                ocx.register_obligation(traits::Obligation::new(
1975                    self.tcx,
1976                    cause.clone(),
1977                    self.param_env,
1978                    ty::ClauseKind::WellFormed(xform_ret_ty.into()),
1979                ));
1980            }
1981
1982            // Evaluate those obligations to see if they might possibly hold.
1983            for error in ocx.select_where_possible() {
1984                result = ProbeResult::NoMatch;
1985                let nested_predicate = self.resolve_vars_if_possible(error.obligation.predicate);
1986                if let Some(trait_predicate) = trait_predicate
1987                    && nested_predicate == self.resolve_vars_if_possible(trait_predicate)
1988                {
1989                    // Don't report possibly unsatisfied predicates if the root
1990                    // trait obligation from a `TraitCandidate` is unsatisfied.
1991                    // That just means the candidate doesn't hold.
1992                } else {
1993                    possibly_unsatisfied_predicates.push((
1994                        nested_predicate,
1995                        Some(self.resolve_vars_if_possible(error.root_obligation.predicate))
1996                            .filter(|root_predicate| *root_predicate != nested_predicate),
1997                        Some(error.obligation.cause),
1998                    ));
1999                }
2000            }
2001
2002            if let ProbeResult::Match = result
2003                && let Some(return_ty) = self.return_type
2004                && let Some(mut xform_ret_ty) = xform_ret_ty
2005            {
2006                // `xform_ret_ty` has only been normalized for `InherentImplCandidate`.
2007                // We don't normalize the other candidates for perf/backwards-compat reasons...
2008                // but `self.return_type` is only set on the diagnostic-path, so we
2009                // should be okay doing it here.
2010                if !matches!(probe.kind, InherentImplCandidate { .. }) {
2011                    xform_ret_ty = ocx.normalize(&cause, self.param_env, xform_ret_ty);
2012                }
2013
2014                debug!("comparing return_ty {:?} with xform ret ty {:?}", return_ty, xform_ret_ty);
2015                match ocx.relate(cause, self.param_env, self.variance(), xform_ret_ty, return_ty) {
2016                    Ok(()) => {}
2017                    Err(_) => {
2018                        result = ProbeResult::BadReturnType;
2019                    }
2020                }
2021
2022                // Evaluate those obligations to see if they might possibly hold.
2023                for error in ocx.select_where_possible() {
2024                    result = ProbeResult::NoMatch;
2025                    possibly_unsatisfied_predicates.push((
2026                        error.obligation.predicate,
2027                        Some(error.root_obligation.predicate)
2028                            .filter(|predicate| *predicate != error.obligation.predicate),
2029                        Some(error.root_obligation.cause),
2030                    ));
2031                }
2032            }
2033
2034            // Previously, method probe used `evaluate_predicate` to determine if a predicate
2035            // was impossible to satisfy. This did a leak check, so we must also do a leak
2036            // check here to prevent backwards-incompatible ambiguity being introduced. See
2037            // `tests/ui/methods/leak-check-disquality.rs` for a simple example of when this
2038            // may happen.
2039            if let Err(_) = self.leak_check(outer_universe, Some(snapshot)) {
2040                result = ProbeResult::NoMatch;
2041            }
2042
2043            result
2044        })
2045    }
2046
2047    /// Sometimes we get in a situation where we have multiple probes that are all impls of the
2048    /// same trait, but we don't know which impl to use. In this case, since in all cases the
2049    /// external interface of the method can be determined from the trait, it's ok not to decide.
2050    /// We can basically just collapse all of the probes for various impls into one where-clause
2051    /// probe. This will result in a pending obligation so when more type-info is available we can
2052    /// make the final decision.
2053    ///
2054    /// Example (`tests/ui/methods/method-two-trait-defer-resolution-1.rs`):
2055    ///
2056    /// ```ignore (illustrative)
2057    /// trait Foo { ... }
2058    /// impl Foo for Vec<i32> { ... }
2059    /// impl Foo for Vec<usize> { ... }
2060    /// ```
2061    ///
2062    /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
2063    /// use, so it's ok to just commit to "using the method from the trait Foo".
2064    fn collapse_candidates_to_trait_pick(
2065        &self,
2066        self_ty: Ty<'tcx>,
2067        probes: &[(&Candidate<'tcx>, ProbeResult)],
2068    ) -> Option<Pick<'tcx>> {
2069        // Do all probes correspond to the same trait?
2070        let container = probes[0].0.item.trait_container(self.tcx)?;
2071        for (p, _) in &probes[1..] {
2072            let p_container = p.item.trait_container(self.tcx)?;
2073            if p_container != container {
2074                return None;
2075            }
2076        }
2077
2078        // FIXME: check the return type here somehow.
2079        // If so, just use this trait and call it a day.
2080        Some(Pick {
2081            item: probes[0].0.item,
2082            kind: TraitPick,
2083            import_ids: probes[0].0.import_ids.clone(),
2084            autoderefs: 0,
2085            autoref_or_ptr_adjustment: None,
2086            self_ty,
2087            unstable_candidates: vec![],
2088            receiver_steps: None,
2089            shadowed_candidates: vec![],
2090        })
2091    }
2092
2093    /// Much like `collapse_candidates_to_trait_pick`, this method allows us to collapse
2094    /// multiple conflicting picks if there is one pick whose trait container is a subtrait
2095    /// of the trait containers of all of the other picks.
2096    ///
2097    /// This implements RFC #3624.
2098    fn collapse_candidates_to_subtrait_pick(
2099        &self,
2100        self_ty: Ty<'tcx>,
2101        probes: &[(&Candidate<'tcx>, ProbeResult)],
2102    ) -> Option<Pick<'tcx>> {
2103        let mut child_candidate = probes[0].0;
2104        let mut child_trait = child_candidate.item.trait_container(self.tcx)?;
2105        let mut supertraits: SsoHashSet<_> = supertrait_def_ids(self.tcx, child_trait).collect();
2106
2107        let mut remaining_candidates: Vec<_> = probes[1..].iter().map(|&(p, _)| p).collect();
2108        while !remaining_candidates.is_empty() {
2109            let mut made_progress = false;
2110            let mut next_round = vec![];
2111
2112            for remaining_candidate in remaining_candidates {
2113                let remaining_trait = remaining_candidate.item.trait_container(self.tcx)?;
2114                if supertraits.contains(&remaining_trait) {
2115                    made_progress = true;
2116                    continue;
2117                }
2118
2119                // This pick is not a supertrait of the `child_pick`.
2120                // Check if it's a subtrait of the `child_pick`, instead.
2121                // If it is, then it must have been a subtrait of every
2122                // other pick we've eliminated at this point. It will
2123                // take over at this point.
2124                let remaining_trait_supertraits: SsoHashSet<_> =
2125                    supertrait_def_ids(self.tcx, remaining_trait).collect();
2126                if remaining_trait_supertraits.contains(&child_trait) {
2127                    child_candidate = remaining_candidate;
2128                    child_trait = remaining_trait;
2129                    supertraits = remaining_trait_supertraits;
2130                    made_progress = true;
2131                    continue;
2132                }
2133
2134                // `child_pick` is not a supertrait of this pick.
2135                // Don't bail here, since we may be comparing two supertraits
2136                // of a common subtrait. These two supertraits won't be related
2137                // at all, but we will pick them up next round when we find their
2138                // child as we continue iterating in this round.
2139                next_round.push(remaining_candidate);
2140            }
2141
2142            if made_progress {
2143                // If we've made progress, iterate again.
2144                remaining_candidates = next_round;
2145            } else {
2146                // Otherwise, we must have at least two candidates which
2147                // are not related to each other at all.
2148                return None;
2149            }
2150        }
2151
2152        Some(Pick {
2153            item: child_candidate.item,
2154            kind: TraitPick,
2155            import_ids: child_candidate.import_ids.clone(),
2156            autoderefs: 0,
2157            autoref_or_ptr_adjustment: None,
2158            self_ty,
2159            unstable_candidates: vec![],
2160            shadowed_candidates: probes
2161                .iter()
2162                .map(|(c, _)| c.item)
2163                .filter(|item| item.def_id != child_candidate.item.def_id)
2164                .collect(),
2165            receiver_steps: None,
2166        })
2167    }
2168
2169    /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
2170    /// candidate method where the method name may have been misspelled. Similarly to other
2171    /// edit distance based suggestions, we provide at most one such suggestion.
2172    #[instrument(level = "debug", skip(self))]
2173    pub(crate) fn probe_for_similar_candidate(
2174        &mut self,
2175    ) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
2176        debug!("probing for method names similar to {:?}", self.method_name);
2177
2178        self.probe(|_| {
2179            let mut pcx = ProbeContext::new(
2180                self.fcx,
2181                self.span,
2182                self.mode,
2183                self.method_name,
2184                self.return_type,
2185                self.orig_steps_var_values,
2186                self.steps,
2187                self.scope_expr_id,
2188                IsSuggestion(true),
2189            );
2190            pcx.allow_similar_names = true;
2191            pcx.assemble_inherent_candidates();
2192            pcx.assemble_extension_candidates_for_all_traits();
2193
2194            let method_names = pcx.candidate_method_names(|_| true);
2195            pcx.allow_similar_names = false;
2196            let applicable_close_candidates: Vec<ty::AssocItem> = method_names
2197                .iter()
2198                .filter_map(|&method_name| {
2199                    pcx.reset();
2200                    pcx.method_name = Some(method_name);
2201                    pcx.assemble_inherent_candidates();
2202                    pcx.assemble_extension_candidates_for_all_traits();
2203                    pcx.pick_core(&mut Vec::new()).and_then(|pick| pick.ok()).map(|pick| pick.item)
2204                })
2205                .collect();
2206
2207            if applicable_close_candidates.is_empty() {
2208                Ok(None)
2209            } else {
2210                let best_name = {
2211                    let names = applicable_close_candidates
2212                        .iter()
2213                        .map(|cand| cand.name())
2214                        .collect::<Vec<Symbol>>();
2215                    find_best_match_for_name_with_substrings(
2216                        &names,
2217                        self.method_name.unwrap().name,
2218                        None,
2219                    )
2220                }
2221                .or_else(|| {
2222                    applicable_close_candidates
2223                        .iter()
2224                        .find(|cand| self.matches_by_doc_alias(cand.def_id))
2225                        .map(|cand| cand.name())
2226                });
2227                Ok(best_name.and_then(|best_name| {
2228                    applicable_close_candidates
2229                        .into_iter()
2230                        .find(|method| method.name() == best_name)
2231                }))
2232            }
2233        })
2234    }
2235
2236    ///////////////////////////////////////////////////////////////////////////
2237    // MISCELLANY
2238    fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
2239        // "Fast track" -- check for usage of sugar when in method call
2240        // mode.
2241        //
2242        // In Path mode (i.e., resolving a value like `T::next`), consider any
2243        // associated value (i.e., methods, constants) but not types.
2244        match self.mode {
2245            Mode::MethodCall => item.is_method(),
2246            Mode::Path => match item.kind {
2247                ty::AssocKind::Type { .. } => false,
2248                ty::AssocKind::Fn { .. } | ty::AssocKind::Const { .. } => true,
2249            },
2250        }
2251        // FIXME -- check for types that deref to `Self`,
2252        // like `Rc<Self>` and so on.
2253        //
2254        // Note also that the current code will break if this type
2255        // includes any of the type parameters defined on the method
2256        // -- but this could be overcome.
2257    }
2258
2259    fn record_static_candidate(&self, source: CandidateSource) {
2260        self.static_candidates.borrow_mut().push(source);
2261    }
2262
2263    #[instrument(level = "debug", skip(self))]
2264    fn xform_self_ty(
2265        &self,
2266        item: ty::AssocItem,
2267        impl_ty: Ty<'tcx>,
2268        args: GenericArgsRef<'tcx>,
2269    ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
2270        if item.is_fn() && self.mode == Mode::MethodCall {
2271            let sig = self.xform_method_sig(item.def_id, args);
2272            (sig.inputs()[0], Some(sig.output()))
2273        } else {
2274            (impl_ty, None)
2275        }
2276    }
2277
2278    #[instrument(level = "debug", skip(self))]
2279    fn xform_method_sig(&self, method: DefId, args: GenericArgsRef<'tcx>) -> ty::FnSig<'tcx> {
2280        let fn_sig = self.tcx.fn_sig(method);
2281        debug!(?fn_sig);
2282
2283        assert!(!args.has_escaping_bound_vars());
2284
2285        // It is possible for type parameters or early-bound lifetimes
2286        // to appear in the signature of `self`. The generic parameters
2287        // we are given do not include type/lifetime parameters for the
2288        // method yet. So create fresh variables here for those too,
2289        // if there are any.
2290        let generics = self.tcx.generics_of(method);
2291        assert_eq!(args.len(), generics.parent_count);
2292
2293        let xform_fn_sig = if generics.is_own_empty() {
2294            fn_sig.instantiate(self.tcx, args)
2295        } else {
2296            let args = GenericArgs::for_item(self.tcx, method, |param, _| {
2297                let i = param.index as usize;
2298                if i < args.len() {
2299                    args[i]
2300                } else {
2301                    match param.kind {
2302                        GenericParamDefKind::Lifetime => {
2303                            // In general, during probe we erase regions.
2304                            self.tcx.lifetimes.re_erased.into()
2305                        }
2306                        GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
2307                            self.var_for_def(self.span, param)
2308                        }
2309                    }
2310                }
2311            });
2312            fn_sig.instantiate(self.tcx, args)
2313        };
2314
2315        self.tcx.instantiate_bound_regions_with_erased(xform_fn_sig)
2316    }
2317
2318    /// Determine if the given associated item type is relevant in the current context.
2319    fn is_relevant_kind_for_mode(&self, kind: ty::AssocKind) -> bool {
2320        match (self.mode, kind) {
2321            (Mode::MethodCall, ty::AssocKind::Fn { .. }) => true,
2322            (Mode::Path, ty::AssocKind::Const { .. } | ty::AssocKind::Fn { .. }) => true,
2323            _ => false,
2324        }
2325    }
2326
2327    /// Determine if the associated item with the given DefId matches
2328    /// the desired name via a doc alias.
2329    fn matches_by_doc_alias(&self, def_id: DefId) -> bool {
2330        let Some(method) = self.method_name else {
2331            return false;
2332        };
2333        let Some(local_def_id) = def_id.as_local() else {
2334            return false;
2335        };
2336        let hir_id = self.fcx.tcx.local_def_id_to_hir_id(local_def_id);
2337        let attrs = self.fcx.tcx.hir_attrs(hir_id);
2338
2339        if is_doc_alias_attrs_contain_symbol(attrs.into_iter(), method.name) {
2340            return true;
2341        }
2342
2343        for attr in attrs {
2344            if attr.has_name(sym::rustc_confusables) {
2345                let Some(confusables) = attr.meta_item_list() else {
2346                    continue;
2347                };
2348                // #[rustc_confusables("foo", "bar"))]
2349                for n in confusables {
2350                    if let Some(lit) = n.lit()
2351                        && method.name == lit.symbol
2352                    {
2353                        return true;
2354                    }
2355                }
2356            }
2357        }
2358        false
2359    }
2360
2361    /// Finds the method with the appropriate name (or return type, as the case may be). If
2362    /// `allow_similar_names` is set, find methods with close-matching names.
2363    // The length of the returned iterator is nearly always 0 or 1 and this
2364    // method is fairly hot.
2365    fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
2366        if let Some(name) = self.method_name {
2367            if self.allow_similar_names {
2368                let max_dist = max(name.as_str().len(), 3) / 3;
2369                self.tcx
2370                    .associated_items(def_id)
2371                    .in_definition_order()
2372                    .filter(|x| {
2373                        if !self.is_relevant_kind_for_mode(x.kind) {
2374                            return false;
2375                        }
2376                        if self.matches_by_doc_alias(x.def_id) {
2377                            return true;
2378                        }
2379                        match edit_distance_with_substrings(
2380                            name.as_str(),
2381                            x.name().as_str(),
2382                            max_dist,
2383                        ) {
2384                            Some(d) => d > 0,
2385                            None => false,
2386                        }
2387                    })
2388                    .copied()
2389                    .collect()
2390            } else {
2391                self.fcx
2392                    .associated_value(def_id, name)
2393                    .filter(|x| self.is_relevant_kind_for_mode(x.kind))
2394                    .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
2395            }
2396        } else {
2397            self.tcx
2398                .associated_items(def_id)
2399                .in_definition_order()
2400                .filter(|x| self.is_relevant_kind_for_mode(x.kind))
2401                .copied()
2402                .collect()
2403        }
2404    }
2405}
2406
2407impl<'tcx> Candidate<'tcx> {
2408    fn to_unadjusted_pick(
2409        &self,
2410        self_ty: Ty<'tcx>,
2411        unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
2412    ) -> Pick<'tcx> {
2413        Pick {
2414            item: self.item,
2415            kind: match self.kind {
2416                InherentImplCandidate { .. } => InherentImplPick,
2417                ObjectCandidate(_) => ObjectPick,
2418                TraitCandidate(_) => TraitPick,
2419                WhereClauseCandidate(trait_ref) => {
2420                    // Only trait derived from where-clauses should
2421                    // appear here, so they should not contain any
2422                    // inference variables or other artifacts. This
2423                    // means they are safe to put into the
2424                    // `WhereClausePick`.
2425                    assert!(
2426                        !trait_ref.skip_binder().args.has_infer()
2427                            && !trait_ref.skip_binder().args.has_placeholders()
2428                    );
2429
2430                    WhereClausePick(trait_ref)
2431                }
2432            },
2433            import_ids: self.import_ids.clone(),
2434            autoderefs: 0,
2435            autoref_or_ptr_adjustment: None,
2436            self_ty,
2437            unstable_candidates,
2438            receiver_steps: match self.kind {
2439                InherentImplCandidate { receiver_steps, .. } => Some(receiver_steps),
2440                _ => None,
2441            },
2442            shadowed_candidates: vec![],
2443        }
2444    }
2445}