rustc_infer/infer/outlives/obligations.rs
1//! Code that handles "type-outlives" constraints like `T: 'a`. This
2//! is based on the `push_outlives_components` function defined in rustc_infer,
3//! but it adds a bit of heuristics on top, in particular to deal with
4//! associated types and projections.
5//!
6//! When we process a given `T: 'a` obligation, we may produce two
7//! kinds of constraints for the region inferencer:
8//!
9//! - Relationships between inference variables and other regions.
10//! For example, if we have `&'?0 u32: 'a`, then we would produce
11//! a constraint that `'a <= '?0`.
12//! - "Verifys" that must be checked after inferencing is done.
13//! For example, if we know that, for some type parameter `T`,
14//! `T: 'a + 'b`, and we have a requirement that `T: '?1`,
15//! then we add a "verify" that checks that `'?1 <= 'a || '?1 <= 'b`.
16//! - Note the difference with the previous case: here, the region
17//! variable must be less than something else, so this doesn't
18//! affect how inference works (it finds the smallest region that
19//! will do); it's just a post-condition that we have to check.
20//!
21//! **The key point is that once this function is done, we have
22//! reduced all of our "type-region outlives" obligations into relationships
23//! between individual regions.**
24//!
25//! One key input to this function is the set of "region-bound pairs".
26//! These are basically the relationships between type parameters and
27//! regions that are in scope at the point where the outlives
28//! obligation was incurred. **When type-checking a function,
29//! particularly in the face of closures, this is not known until
30//! regionck runs!** This is because some of those bounds come
31//! from things we have yet to infer.
32//!
33//! Consider:
34//!
35//! ```
36//! fn bar<T>(a: T, b: impl for<'a> Fn(&'a T)) {}
37//! fn foo<T>(x: T) {
38//! bar(x, |y| { /* ... */})
39//! // ^ closure arg
40//! }
41//! ```
42//!
43//! Here, the type of `y` may involve inference variables and the
44//! like, and it may also contain implied bounds that are needed to
45//! type-check the closure body (e.g., here it informs us that `T`
46//! outlives the late-bound region `'a`).
47//!
48//! Note that by delaying the gathering of implied bounds until all
49//! inference information is known, we may find relationships between
50//! bound regions and other regions in the environment. For example,
51//! when we first check a closure like the one expected as argument
52//! to `foo`:
53//!
54//! ```
55//! fn foo<U, F: for<'a> FnMut(&'a U)>(_f: F) {}
56//! ```
57//!
58//! the type of the closure's first argument would be `&'a ?U`. We
59//! might later infer `?U` to something like `&'b u32`, which would
60//! imply that `'b: 'a`.
61
62use rustc_data_structures::undo_log::UndoLogs;
63use rustc_middle::bug;
64use rustc_middle::mir::ConstraintCategory;
65use rustc_middle::traits::query::NoSolution;
66use rustc_middle::ty::outlives::{Component, push_outlives_components};
67use rustc_middle::ty::{
68 self, GenericArgKind, GenericArgsRef, PolyTypeOutlivesPredicate, Region, Ty, TyCtxt,
69 TypeFoldable as _, TypeVisitableExt,
70};
71use smallvec::smallvec;
72use tracing::{debug, instrument};
73
74use super::env::OutlivesEnvironment;
75use crate::infer::outlives::env::RegionBoundPairs;
76use crate::infer::outlives::verify::VerifyBoundCx;
77use crate::infer::resolve::OpportunisticRegionResolver;
78use crate::infer::snapshot::undo_log::UndoLog;
79use crate::infer::{
80 self, GenericKind, InferCtxt, SubregionOrigin, TypeOutlivesConstraint, VerifyBound,
81};
82use crate::traits::{ObligationCause, ObligationCauseCode};
83
84impl<'tcx> InferCtxt<'tcx> {
85 pub fn register_outlives_constraint(
86 &self,
87 ty::OutlivesPredicate(arg, r2): ty::OutlivesPredicate<'tcx, ty::GenericArg<'tcx>>,
88 cause: &ObligationCause<'tcx>,
89 ) {
90 match arg.kind() {
91 ty::GenericArgKind::Lifetime(r1) => {
92 self.register_region_outlives_constraint(ty::OutlivesPredicate(r1, r2), cause);
93 }
94 ty::GenericArgKind::Type(ty1) => {
95 self.register_type_outlives_constraint(ty1, r2, cause);
96 }
97 ty::GenericArgKind::Const(_) => unreachable!(),
98 }
99 }
100
101 pub fn register_region_outlives_constraint(
102 &self,
103 ty::OutlivesPredicate(r_a, r_b): ty::RegionOutlivesPredicate<'tcx>,
104 cause: &ObligationCause<'tcx>,
105 ) {
106 let origin = SubregionOrigin::from_obligation_cause(cause, || {
107 SubregionOrigin::RelateRegionParamBound(cause.span, None)
108 });
109 // `'a: 'b` ==> `'b <= 'a`
110 self.sub_regions(origin, r_b, r_a);
111 }
112
113 /// Registers that the given region obligation must be resolved
114 /// from within the scope of `body_id`. These regions are enqueued
115 /// and later processed by regionck, when full type information is
116 /// available (see `region_obligations` field for more
117 /// information).
118 #[instrument(level = "debug", skip(self))]
119 pub fn register_type_outlives_constraint_inner(
120 &self,
121 obligation: TypeOutlivesConstraint<'tcx>,
122 ) {
123 let mut inner = self.inner.borrow_mut();
124 inner.undo_log.push(UndoLog::PushTypeOutlivesConstraint);
125 inner.region_obligations.push(obligation);
126 }
127
128 pub fn register_type_outlives_constraint(
129 &self,
130 sup_type: Ty<'tcx>,
131 sub_region: Region<'tcx>,
132 cause: &ObligationCause<'tcx>,
133 ) {
134 // `is_global` means the type has no params, infer, placeholder, or non-`'static`
135 // free regions. If the type has none of these things, then we can skip registering
136 // this outlives obligation since it has no components which affect lifetime
137 // checking in an interesting way.
138 if sup_type.is_global() {
139 return;
140 }
141
142 debug!(?sup_type, ?sub_region, ?cause);
143 let origin = SubregionOrigin::from_obligation_cause(cause, || {
144 infer::RelateParamBound(
145 cause.span,
146 sup_type,
147 match cause.code().peel_derives() {
148 ObligationCauseCode::WhereClause(_, span)
149 | ObligationCauseCode::WhereClauseInExpr(_, span, ..)
150 | ObligationCauseCode::OpaqueTypeBound(span, _)
151 if !span.is_dummy() =>
152 {
153 Some(*span)
154 }
155 _ => None,
156 },
157 )
158 });
159
160 self.register_type_outlives_constraint_inner(TypeOutlivesConstraint {
161 sup_type,
162 sub_region,
163 origin,
164 });
165 }
166
167 /// Trait queries just want to pass back type obligations "as is"
168 pub fn take_registered_region_obligations(&self) -> Vec<TypeOutlivesConstraint<'tcx>> {
169 std::mem::take(&mut self.inner.borrow_mut().region_obligations)
170 }
171
172 /// Process the region obligations that must be proven (during
173 /// `regionck`) for the given `body_id`, given information about
174 /// the region bounds in scope and so forth.
175 ///
176 /// See the `region_obligations` field of `InferCtxt` for some
177 /// comments about how this function fits into the overall expected
178 /// flow of the inferencer. The key point is that it is
179 /// invoked after all type-inference variables have been bound --
180 /// right before lexical region resolution.
181 #[instrument(level = "debug", skip(self, outlives_env, deeply_normalize_ty))]
182 pub fn process_registered_region_obligations(
183 &self,
184 outlives_env: &OutlivesEnvironment<'tcx>,
185 mut deeply_normalize_ty: impl FnMut(
186 PolyTypeOutlivesPredicate<'tcx>,
187 SubregionOrigin<'tcx>,
188 )
189 -> Result<PolyTypeOutlivesPredicate<'tcx>, NoSolution>,
190 ) -> Result<(), (PolyTypeOutlivesPredicate<'tcx>, SubregionOrigin<'tcx>)> {
191 assert!(!self.in_snapshot(), "cannot process registered region obligations in a snapshot");
192
193 // Must loop since the process of normalizing may itself register region obligations.
194 for iteration in 0.. {
195 let my_region_obligations = self.take_registered_region_obligations();
196 if my_region_obligations.is_empty() {
197 break;
198 }
199
200 if !self.tcx.recursion_limit().value_within_limit(iteration) {
201 bug!(
202 "FIXME(-Znext-solver): Overflowed when processing region obligations: {my_region_obligations:#?}"
203 );
204 }
205
206 for TypeOutlivesConstraint { sup_type, sub_region, origin } in my_region_obligations {
207 let outlives = ty::Binder::dummy(ty::OutlivesPredicate(sup_type, sub_region));
208 let ty::OutlivesPredicate(sup_type, sub_region) =
209 deeply_normalize_ty(outlives, origin.clone())
210 .map_err(|NoSolution| (outlives, origin.clone()))?
211 .no_bound_vars()
212 .expect("started with no bound vars, should end with no bound vars");
213 // `TypeOutlives` is structural, so we should try to opportunistically resolve all
214 // region vids before processing regions, so we have a better chance to match clauses
215 // in our param-env.
216 let (sup_type, sub_region) =
217 (sup_type, sub_region).fold_with(&mut OpportunisticRegionResolver::new(self));
218
219 debug!(?sup_type, ?sub_region, ?origin);
220
221 let outlives = &mut TypeOutlives::new(
222 self,
223 self.tcx,
224 outlives_env.region_bound_pairs(),
225 None,
226 outlives_env.known_type_outlives(),
227 );
228 let category = origin.to_constraint_category();
229 outlives.type_must_outlive(origin, sup_type, sub_region, category);
230 }
231 }
232
233 Ok(())
234 }
235}
236
237/// The `TypeOutlives` struct has the job of "lowering" a `T: 'a`
238/// obligation into a series of `'a: 'b` constraints and "verify"s, as
239/// described on the module comment. The final constraints are emitted
240/// via a "delegate" of type `D` -- this is usually the `infcx`, which
241/// accrues them into the `region_obligations` code, but for NLL we
242/// use something else.
243pub struct TypeOutlives<'cx, 'tcx, D>
244where
245 D: TypeOutlivesDelegate<'tcx>,
246{
247 // See the comments on `process_registered_region_obligations` for the meaning
248 // of these fields.
249 delegate: D,
250 tcx: TyCtxt<'tcx>,
251 verify_bound: VerifyBoundCx<'cx, 'tcx>,
252}
253
254pub trait TypeOutlivesDelegate<'tcx> {
255 fn push_sub_region_constraint(
256 &mut self,
257 origin: SubregionOrigin<'tcx>,
258 a: ty::Region<'tcx>,
259 b: ty::Region<'tcx>,
260 constraint_category: ConstraintCategory<'tcx>,
261 );
262
263 fn push_verify(
264 &mut self,
265 origin: SubregionOrigin<'tcx>,
266 kind: GenericKind<'tcx>,
267 a: ty::Region<'tcx>,
268 bound: VerifyBound<'tcx>,
269 );
270}
271
272impl<'cx, 'tcx, D> TypeOutlives<'cx, 'tcx, D>
273where
274 D: TypeOutlivesDelegate<'tcx>,
275{
276 pub fn new(
277 delegate: D,
278 tcx: TyCtxt<'tcx>,
279 region_bound_pairs: &'cx RegionBoundPairs<'tcx>,
280 implicit_region_bound: Option<ty::Region<'tcx>>,
281 caller_bounds: &'cx [ty::PolyTypeOutlivesPredicate<'tcx>],
282 ) -> Self {
283 Self {
284 delegate,
285 tcx,
286 verify_bound: VerifyBoundCx::new(
287 tcx,
288 region_bound_pairs,
289 implicit_region_bound,
290 caller_bounds,
291 ),
292 }
293 }
294
295 /// Adds constraints to inference such that `T: 'a` holds (or
296 /// reports an error if it cannot).
297 ///
298 /// # Parameters
299 ///
300 /// - `origin`, the reason we need this constraint
301 /// - `ty`, the type `T`
302 /// - `region`, the region `'a`
303 #[instrument(level = "debug", skip(self))]
304 pub fn type_must_outlive(
305 &mut self,
306 origin: infer::SubregionOrigin<'tcx>,
307 ty: Ty<'tcx>,
308 region: ty::Region<'tcx>,
309 category: ConstraintCategory<'tcx>,
310 ) {
311 assert!(!ty.has_escaping_bound_vars());
312
313 let mut components = smallvec![];
314 push_outlives_components(self.tcx, ty, &mut components);
315 self.components_must_outlive(origin, &components, region, category);
316 }
317
318 fn components_must_outlive(
319 &mut self,
320 origin: infer::SubregionOrigin<'tcx>,
321 components: &[Component<TyCtxt<'tcx>>],
322 region: ty::Region<'tcx>,
323 category: ConstraintCategory<'tcx>,
324 ) {
325 for component in components.iter() {
326 let origin = origin.clone();
327 match component {
328 Component::Region(region1) => {
329 self.delegate.push_sub_region_constraint(origin, region, *region1, category);
330 }
331 Component::Param(param_ty) => {
332 self.param_ty_must_outlive(origin, region, *param_ty);
333 }
334 Component::Placeholder(placeholder_ty) => {
335 self.placeholder_ty_must_outlive(origin, region, *placeholder_ty);
336 }
337 Component::Alias(alias_ty) => self.alias_ty_must_outlive(origin, region, *alias_ty),
338 Component::EscapingAlias(subcomponents) => {
339 self.components_must_outlive(origin, subcomponents, region, category);
340 }
341 Component::UnresolvedInferenceVariable(v) => {
342 // Ignore this, we presume it will yield an error later,
343 // since if a type variable is not resolved by this point
344 // it never will be.
345 self.tcx.dcx().span_delayed_bug(
346 origin.span(),
347 format!("unresolved inference variable in outlives: {v:?}"),
348 );
349 }
350 }
351 }
352 }
353
354 #[instrument(level = "debug", skip(self))]
355 fn param_ty_must_outlive(
356 &mut self,
357 origin: infer::SubregionOrigin<'tcx>,
358 region: ty::Region<'tcx>,
359 param_ty: ty::ParamTy,
360 ) {
361 let verify_bound = self.verify_bound.param_or_placeholder_bound(param_ty.to_ty(self.tcx));
362 self.delegate.push_verify(origin, GenericKind::Param(param_ty), region, verify_bound);
363 }
364
365 #[instrument(level = "debug", skip(self))]
366 fn placeholder_ty_must_outlive(
367 &mut self,
368 origin: infer::SubregionOrigin<'tcx>,
369 region: ty::Region<'tcx>,
370 placeholder_ty: ty::PlaceholderType,
371 ) {
372 let verify_bound = self
373 .verify_bound
374 .param_or_placeholder_bound(Ty::new_placeholder(self.tcx, placeholder_ty));
375 self.delegate.push_verify(
376 origin,
377 GenericKind::Placeholder(placeholder_ty),
378 region,
379 verify_bound,
380 );
381 }
382
383 #[instrument(level = "debug", skip(self))]
384 fn alias_ty_must_outlive(
385 &mut self,
386 origin: infer::SubregionOrigin<'tcx>,
387 region: ty::Region<'tcx>,
388 alias_ty: ty::AliasTy<'tcx>,
389 ) {
390 // An optimization for a common case with opaque types.
391 if alias_ty.args.is_empty() {
392 return;
393 }
394
395 if alias_ty.has_non_region_infer() {
396 self.tcx
397 .dcx()
398 .span_delayed_bug(origin.span(), "an alias has infers during region solving");
399 return;
400 }
401
402 // This case is thorny for inference. The fundamental problem is
403 // that there are many cases where we have choice, and inference
404 // doesn't like choice (the current region inference in
405 // particular). :) First off, we have to choose between using the
406 // OutlivesProjectionEnv, OutlivesProjectionTraitDef, and
407 // OutlivesProjectionComponent rules, any one of which is
408 // sufficient. If there are no inference variables involved, it's
409 // not hard to pick the right rule, but if there are, we're in a
410 // bit of a catch 22: if we picked which rule we were going to
411 // use, we could add constraints to the region inference graph
412 // that make it apply, but if we don't add those constraints, the
413 // rule might not apply (but another rule might). For now, we err
414 // on the side of adding too few edges into the graph.
415
416 // Compute the bounds we can derive from the trait definition.
417 // These are guaranteed to apply, no matter the inference
418 // results.
419 let trait_bounds: Vec<_> =
420 self.verify_bound.declared_bounds_from_definition(alias_ty).collect();
421
422 debug!(?trait_bounds);
423
424 // Compute the bounds we can derive from the environment. This
425 // is an "approximate" match -- in some cases, these bounds
426 // may not apply.
427 let approx_env_bounds = self.verify_bound.approx_declared_bounds_from_env(alias_ty);
428 debug!(?approx_env_bounds);
429
430 // If declared bounds list is empty, the only applicable rule is
431 // OutlivesProjectionComponent. If there are inference variables,
432 // then, we can break down the outlives into more primitive
433 // components without adding unnecessary edges.
434 //
435 // If there are *no* inference variables, however, we COULD do
436 // this, but we choose not to, because the error messages are less
437 // good. For example, a requirement like `T::Item: 'r` would be
438 // translated to a requirement that `T: 'r`; when this is reported
439 // to the user, it will thus say "T: 'r must hold so that T::Item:
440 // 'r holds". But that makes it sound like the only way to fix
441 // the problem is to add `T: 'r`, which isn't true. So, if there are no
442 // inference variables, we use a verify constraint instead of adding
443 // edges, which winds up enforcing the same condition.
444 let kind = alias_ty.kind(self.tcx);
445 if approx_env_bounds.is_empty()
446 && trait_bounds.is_empty()
447 && (alias_ty.has_infer_regions() || kind == ty::Opaque)
448 {
449 debug!("no declared bounds");
450 let opt_variances = self.tcx.opt_alias_variances(kind, alias_ty.def_id);
451 self.args_must_outlive(alias_ty.args, origin, region, opt_variances);
452 return;
453 }
454
455 // If we found a unique bound `'b` from the trait, and we
456 // found nothing else from the environment, then the best
457 // action is to require that `'b: 'r`, so do that.
458 //
459 // This is best no matter what rule we use:
460 //
461 // - OutlivesProjectionEnv: these would translate to the requirement that `'b:'r`
462 // - OutlivesProjectionTraitDef: these would translate to the requirement that `'b:'r`
463 // - OutlivesProjectionComponent: this would require `'b:'r`
464 // in addition to other conditions
465 if !trait_bounds.is_empty()
466 && trait_bounds[1..]
467 .iter()
468 .map(|r| Some(*r))
469 .chain(
470 // NB: The environment may contain `for<'a> T: 'a` style bounds.
471 // In that case, we don't know if they are equal to the trait bound
472 // or not (since we don't *know* whether the environment bound even applies),
473 // so just map to `None` here if there are bound vars, ensuring that
474 // the call to `all` will fail below.
475 approx_env_bounds.iter().map(|b| b.map_bound(|b| b.1).no_bound_vars()),
476 )
477 .all(|b| b == Some(trait_bounds[0]))
478 {
479 let unique_bound = trait_bounds[0];
480 debug!(?unique_bound);
481 debug!("unique declared bound appears in trait ref");
482 let category = origin.to_constraint_category();
483 self.delegate.push_sub_region_constraint(origin, region, unique_bound, category);
484 return;
485 }
486
487 // Fallback to verifying after the fact that there exists a
488 // declared bound, or that all the components appearing in the
489 // projection outlive; in some cases, this may add insufficient
490 // edges into the inference graph, leading to inference failures
491 // even though a satisfactory solution exists.
492 let verify_bound = self.verify_bound.alias_bound(alias_ty);
493 debug!("alias_must_outlive: pushing {:?}", verify_bound);
494 self.delegate.push_verify(origin, GenericKind::Alias(alias_ty), region, verify_bound);
495 }
496
497 #[instrument(level = "debug", skip(self))]
498 fn args_must_outlive(
499 &mut self,
500 args: GenericArgsRef<'tcx>,
501 origin: infer::SubregionOrigin<'tcx>,
502 region: ty::Region<'tcx>,
503 opt_variances: Option<&[ty::Variance]>,
504 ) {
505 let constraint = origin.to_constraint_category();
506 for (index, arg) in args.iter().enumerate() {
507 match arg.kind() {
508 GenericArgKind::Lifetime(lt) => {
509 let variance = if let Some(variances) = opt_variances {
510 variances[index]
511 } else {
512 ty::Invariant
513 };
514 if variance == ty::Invariant {
515 self.delegate.push_sub_region_constraint(
516 origin.clone(),
517 region,
518 lt,
519 constraint,
520 );
521 }
522 }
523 GenericArgKind::Type(ty) => {
524 self.type_must_outlive(origin.clone(), ty, region, constraint);
525 }
526 GenericArgKind::Const(_) => {
527 // Const parameters don't impose constraints.
528 }
529 }
530 }
531 }
532}
533
534impl<'cx, 'tcx> TypeOutlivesDelegate<'tcx> for &'cx InferCtxt<'tcx> {
535 fn push_sub_region_constraint(
536 &mut self,
537 origin: SubregionOrigin<'tcx>,
538 a: ty::Region<'tcx>,
539 b: ty::Region<'tcx>,
540 _constraint_category: ConstraintCategory<'tcx>,
541 ) {
542 self.sub_regions(origin, a, b)
543 }
544
545 fn push_verify(
546 &mut self,
547 origin: SubregionOrigin<'tcx>,
548 kind: GenericKind<'tcx>,
549 a: ty::Region<'tcx>,
550 bound: VerifyBound<'tcx>,
551 ) {
552 self.verify_generic_bound(origin, kind, a, bound)
553 }
554}