rustc_metadata/rmeta/
encoder.rs

1use std::borrow::Borrow;
2use std::collections::hash_map::Entry;
3use std::fs::File;
4use std::io::{Read, Seek, Write};
5use std::path::{Path, PathBuf};
6use std::sync::Arc;
7
8use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
9use rustc_data_structures::memmap::{Mmap, MmapMut};
10use rustc_data_structures::sync::{join, par_for_each_in};
11use rustc_data_structures::temp_dir::MaybeTempDir;
12use rustc_data_structures::thousands::usize_with_underscores;
13use rustc_feature::Features;
14use rustc_hir as hir;
15use rustc_hir::attrs::{AttributeKind, EncodeCrossCrate};
16use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId, LocalDefIdSet};
17use rustc_hir::definitions::DefPathData;
18use rustc_hir::find_attr;
19use rustc_hir_pretty::id_to_string;
20use rustc_middle::dep_graph::WorkProductId;
21use rustc_middle::middle::dependency_format::Linkage;
22use rustc_middle::mir::interpret;
23use rustc_middle::query::Providers;
24use rustc_middle::traits::specialization_graph;
25use rustc_middle::ty::AssocContainer;
26use rustc_middle::ty::codec::TyEncoder;
27use rustc_middle::ty::fast_reject::{self, TreatParams};
28use rustc_middle::{bug, span_bug};
29use rustc_serialize::{Decodable, Decoder, Encodable, Encoder, opaque};
30use rustc_session::config::{CrateType, OptLevel, TargetModifier};
31use rustc_span::hygiene::HygieneEncodeContext;
32use rustc_span::{
33    ByteSymbol, ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId,
34    Symbol, SyntaxContext, sym,
35};
36use tracing::{debug, instrument, trace};
37
38use crate::errors::{FailCreateFileEncoder, FailWriteFile};
39use crate::rmeta::*;
40
41pub(super) struct EncodeContext<'a, 'tcx> {
42    opaque: opaque::FileEncoder,
43    tcx: TyCtxt<'tcx>,
44    feat: &'tcx rustc_feature::Features,
45    tables: TableBuilders,
46
47    lazy_state: LazyState,
48    span_shorthands: FxHashMap<Span, usize>,
49    type_shorthands: FxHashMap<Ty<'tcx>, usize>,
50    predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
51
52    interpret_allocs: FxIndexSet<interpret::AllocId>,
53
54    // This is used to speed up Span encoding.
55    // The `usize` is an index into the `MonotonicVec`
56    // that stores the `SourceFile`
57    source_file_cache: (Arc<SourceFile>, usize),
58    // The indices (into the `SourceMap`'s `MonotonicVec`)
59    // of all of the `SourceFiles` that we need to serialize.
60    // When we serialize a `Span`, we insert the index of its
61    // `SourceFile` into the `FxIndexSet`.
62    // The order inside the `FxIndexSet` is used as on-disk
63    // order of `SourceFiles`, and encoded inside `Span`s.
64    required_source_files: Option<FxIndexSet<usize>>,
65    is_proc_macro: bool,
66    hygiene_ctxt: &'a HygieneEncodeContext,
67    // Used for both `Symbol`s and `ByteSymbol`s.
68    symbol_index_table: FxHashMap<u32, usize>,
69}
70
71/// If the current crate is a proc-macro, returns early with `LazyArray::default()`.
72/// This is useful for skipping the encoding of things that aren't needed
73/// for proc-macro crates.
74macro_rules! empty_proc_macro {
75    ($self:ident) => {
76        if $self.is_proc_macro {
77            return LazyArray::default();
78        }
79    };
80}
81
82macro_rules! encoder_methods {
83    ($($name:ident($ty:ty);)*) => {
84        $(fn $name(&mut self, value: $ty) {
85            self.opaque.$name(value)
86        })*
87    }
88}
89
90impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
91    encoder_methods! {
92        emit_usize(usize);
93        emit_u128(u128);
94        emit_u64(u64);
95        emit_u32(u32);
96        emit_u16(u16);
97        emit_u8(u8);
98
99        emit_isize(isize);
100        emit_i128(i128);
101        emit_i64(i64);
102        emit_i32(i32);
103        emit_i16(i16);
104
105        emit_raw_bytes(&[u8]);
106    }
107}
108
109impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyValue<T> {
110    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
111        e.emit_lazy_distance(self.position);
112    }
113}
114
115impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyArray<T> {
116    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
117        e.emit_usize(self.num_elems);
118        if self.num_elems > 0 {
119            e.emit_lazy_distance(self.position)
120        }
121    }
122}
123
124impl<'a, 'tcx, I, T> Encodable<EncodeContext<'a, 'tcx>> for LazyTable<I, T> {
125    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
126        e.emit_usize(self.width);
127        e.emit_usize(self.len);
128        e.emit_lazy_distance(self.position);
129    }
130}
131
132impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex {
133    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
134        s.emit_u32(self.as_u32());
135    }
136}
137
138impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> {
139    fn encode_crate_num(&mut self, crate_num: CrateNum) {
140        if crate_num != LOCAL_CRATE && self.is_proc_macro {
141            panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate");
142        }
143        self.emit_u32(crate_num.as_u32());
144    }
145
146    fn encode_def_index(&mut self, def_index: DefIndex) {
147        self.emit_u32(def_index.as_u32());
148    }
149
150    fn encode_def_id(&mut self, def_id: DefId) {
151        def_id.krate.encode(self);
152        def_id.index.encode(self);
153    }
154
155    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) {
156        rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self);
157    }
158
159    fn encode_expn_id(&mut self, expn_id: ExpnId) {
160        if expn_id.krate == LOCAL_CRATE {
161            // We will only write details for local expansions. Non-local expansions will fetch
162            // data from the corresponding crate's metadata.
163            // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external
164            // metadata from proc-macro crates.
165            self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id);
166        }
167        expn_id.krate.encode(self);
168        expn_id.local_id.encode(self);
169    }
170
171    fn encode_span(&mut self, span: Span) {
172        match self.span_shorthands.entry(span) {
173            Entry::Occupied(o) => {
174                // If an offset is smaller than the absolute position, we encode with the offset.
175                // This saves space since smaller numbers encode in less bits.
176                let last_location = *o.get();
177                // This cannot underflow. Metadata is written with increasing position(), so any
178                // previously saved offset must be smaller than the current position.
179                let offset = self.opaque.position() - last_location;
180                if offset < last_location {
181                    let needed = bytes_needed(offset);
182                    SpanTag::indirect(true, needed as u8).encode(self);
183                    self.opaque.write_with(|dest| {
184                        *dest = offset.to_le_bytes();
185                        needed
186                    });
187                } else {
188                    let needed = bytes_needed(last_location);
189                    SpanTag::indirect(false, needed as u8).encode(self);
190                    self.opaque.write_with(|dest| {
191                        *dest = last_location.to_le_bytes();
192                        needed
193                    });
194                }
195            }
196            Entry::Vacant(v) => {
197                let position = self.opaque.position();
198                v.insert(position);
199                // Data is encoded with a SpanTag prefix (see below).
200                span.data().encode(self);
201            }
202        }
203    }
204
205    fn encode_symbol(&mut self, sym: Symbol) {
206        self.encode_symbol_or_byte_symbol(sym.as_u32(), |this| this.emit_str(sym.as_str()));
207    }
208
209    fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol) {
210        self.encode_symbol_or_byte_symbol(byte_sym.as_u32(), |this| {
211            this.emit_byte_str(byte_sym.as_byte_str())
212        });
213    }
214}
215
216fn bytes_needed(n: usize) -> usize {
217    (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize
218}
219
220impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SpanData {
221    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
222        // Don't serialize any `SyntaxContext`s from a proc-macro crate,
223        // since we don't load proc-macro dependencies during serialization.
224        // This means that any hygiene information from macros used *within*
225        // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
226        // definition) will be lost.
227        //
228        // This can show up in two ways:
229        //
230        // 1. Any hygiene information associated with identifier of
231        // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
232        // Since proc-macros can only be invoked from a different crate,
233        // real code should never need to care about this.
234        //
235        // 2. Using `Span::def_site` or `Span::mixed_site` will not
236        // include any hygiene information associated with the definition
237        // site. This means that a proc-macro cannot emit a `$crate`
238        // identifier which resolves to one of its dependencies,
239        // which also should never come up in practice.
240        //
241        // Additionally, this affects `Span::parent`, and any other
242        // span inspection APIs that would otherwise allow traversing
243        // the `SyntaxContexts` associated with a span.
244        //
245        // None of these user-visible effects should result in any
246        // cross-crate inconsistencies (getting one behavior in the same
247        // crate, and a different behavior in another crate) due to the
248        // limited surface that proc-macros can expose.
249        //
250        // IMPORTANT: If this is ever changed, be sure to update
251        // `rustc_span::hygiene::raw_encode_expn_id` to handle
252        // encoding `ExpnData` for proc-macro crates.
253        let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt };
254
255        if self.is_dummy() {
256            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
257            tag.encode(s);
258            if tag.context().is_none() {
259                ctxt.encode(s);
260            }
261            return;
262        }
263
264        // The Span infrastructure should make sure that this invariant holds:
265        debug_assert!(self.lo <= self.hi);
266
267        if !s.source_file_cache.0.contains(self.lo) {
268            let source_map = s.tcx.sess.source_map();
269            let source_file_index = source_map.lookup_source_file_idx(self.lo);
270            s.source_file_cache =
271                (Arc::clone(&source_map.files()[source_file_index]), source_file_index);
272        }
273        let (ref source_file, source_file_index) = s.source_file_cache;
274        debug_assert!(source_file.contains(self.lo));
275
276        if !source_file.contains(self.hi) {
277            // Unfortunately, macro expansion still sometimes generates Spans
278            // that malformed in this way.
279            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
280            tag.encode(s);
281            if tag.context().is_none() {
282                ctxt.encode(s);
283            }
284            return;
285        }
286
287        // There are two possible cases here:
288        // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
289        // crate we are writing metadata for. When the metadata for *this* crate gets
290        // deserialized, the deserializer will need to know which crate it originally came
291        // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
292        // be deserialized after the rest of the span data, which tells the deserializer
293        // which crate contains the source map information.
294        // 2. This span comes from our own crate. No special handling is needed - we just
295        // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
296        // our own source map information.
297        //
298        // If we're a proc-macro crate, we always treat this as a local `Span`.
299        // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
300        // if we're a proc-macro crate.
301        // This allows us to avoid loading the dependencies of proc-macro crates: all of
302        // the information we need to decode `Span`s is stored in the proc-macro crate.
303        let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro {
304            // To simplify deserialization, we 'rebase' this span onto the crate it originally came
305            // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi'
306            // values are relative to the source map information for the 'foreign' crate whose
307            // CrateNum we write into the metadata. This allows `imported_source_files` to binary
308            // search through the 'foreign' crate's source map information, using the
309            // deserialized 'lo' and 'hi' values directly.
310            //
311            // All of this logic ensures that the final result of deserialization is a 'normal'
312            // Span that can be used without any additional trouble.
313            let metadata_index = {
314                // Introduce a new scope so that we drop the 'read()' temporary
315                match &*source_file.external_src.read() {
316                    ExternalSource::Foreign { metadata_index, .. } => *metadata_index,
317                    src => panic!("Unexpected external source {src:?}"),
318                }
319            };
320
321            (SpanKind::Foreign, metadata_index)
322        } else {
323            // Record the fact that we need to encode the data for this `SourceFile`
324            let source_files =
325                s.required_source_files.as_mut().expect("Already encoded SourceMap!");
326            let (metadata_index, _) = source_files.insert_full(source_file_index);
327            let metadata_index: u32 =
328                metadata_index.try_into().expect("cannot export more than U32_MAX files");
329
330            (SpanKind::Local, metadata_index)
331        };
332
333        // Encode the start position relative to the file start, so we profit more from the
334        // variable-length integer encoding.
335        let lo = self.lo - source_file.start_pos;
336
337        // Encode length which is usually less than span.hi and profits more
338        // from the variable-length integer encoding that we use.
339        let len = self.hi - self.lo;
340
341        let tag = SpanTag::new(kind, ctxt, len.0 as usize);
342        tag.encode(s);
343        if tag.context().is_none() {
344            ctxt.encode(s);
345        }
346        lo.encode(s);
347        if tag.length().is_none() {
348            len.encode(s);
349        }
350
351        // Encode the index of the `SourceFile` for the span, in order to make decoding faster.
352        metadata_index.encode(s);
353
354        if kind == SpanKind::Foreign {
355            // This needs to be two lines to avoid holding the `s.source_file_cache`
356            // while calling `cnum.encode(s)`
357            let cnum = s.source_file_cache.0.cnum;
358            cnum.encode(s);
359        }
360    }
361}
362
363impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for [u8] {
364    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
365        Encoder::emit_usize(e, self.len());
366        e.emit_raw_bytes(self);
367    }
368}
369
370impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> {
371    const CLEAR_CROSS_CRATE: bool = true;
372
373    fn position(&self) -> usize {
374        self.opaque.position()
375    }
376
377    fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
378        &mut self.type_shorthands
379    }
380
381    fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
382        &mut self.predicate_shorthands
383    }
384
385    fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) {
386        let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
387
388        index.encode(self);
389    }
390}
391
392// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would
393// normally need extra variables to avoid errors about multiple mutable borrows.
394macro_rules! record {
395    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
396        {
397            let value = $value;
398            let lazy = $self.lazy(value);
399            $self.$tables.$table.set_some($def_id.index, lazy);
400        }
401    }};
402}
403
404// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would
405// normally need extra variables to avoid errors about multiple mutable borrows.
406macro_rules! record_array {
407    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
408        {
409            let value = $value;
410            let lazy = $self.lazy_array(value);
411            $self.$tables.$table.set_some($def_id.index, lazy);
412        }
413    }};
414}
415
416macro_rules! record_defaulted_array {
417    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
418        {
419            let value = $value;
420            let lazy = $self.lazy_array(value);
421            $self.$tables.$table.set($def_id.index, lazy);
422        }
423    }};
424}
425
426impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
427    fn emit_lazy_distance(&mut self, position: NonZero<usize>) {
428        let pos = position.get();
429        let distance = match self.lazy_state {
430            LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
431            LazyState::NodeStart(start) => {
432                let start = start.get();
433                assert!(pos <= start);
434                start - pos
435            }
436            LazyState::Previous(last_pos) => {
437                assert!(
438                    last_pos <= position,
439                    "make sure that the calls to `lazy*` \
440                     are in the same order as the metadata fields",
441                );
442                position.get() - last_pos.get()
443            }
444        };
445        self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap());
446        self.emit_usize(distance);
447    }
448
449    fn lazy<T: ParameterizedOverTcx, B: Borrow<T::Value<'tcx>>>(&mut self, value: B) -> LazyValue<T>
450    where
451        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
452    {
453        let pos = NonZero::new(self.position()).unwrap();
454
455        assert_eq!(self.lazy_state, LazyState::NoNode);
456        self.lazy_state = LazyState::NodeStart(pos);
457        value.borrow().encode(self);
458        self.lazy_state = LazyState::NoNode;
459
460        assert!(pos.get() <= self.position());
461
462        LazyValue::from_position(pos)
463    }
464
465    fn lazy_array<T: ParameterizedOverTcx, I: IntoIterator<Item = B>, B: Borrow<T::Value<'tcx>>>(
466        &mut self,
467        values: I,
468    ) -> LazyArray<T>
469    where
470        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
471    {
472        let pos = NonZero::new(self.position()).unwrap();
473
474        assert_eq!(self.lazy_state, LazyState::NoNode);
475        self.lazy_state = LazyState::NodeStart(pos);
476        let len = values.into_iter().map(|value| value.borrow().encode(self)).count();
477        self.lazy_state = LazyState::NoNode;
478
479        assert!(pos.get() <= self.position());
480
481        LazyArray::from_position_and_num_elems(pos, len)
482    }
483
484    fn encode_symbol_or_byte_symbol(
485        &mut self,
486        index: u32,
487        emit_str_or_byte_str: impl Fn(&mut Self),
488    ) {
489        // if symbol/byte symbol is predefined, emit tag and symbol index
490        if Symbol::is_predefined(index) {
491            self.opaque.emit_u8(SYMBOL_PREDEFINED);
492            self.opaque.emit_u32(index);
493        } else {
494            // otherwise write it as string or as offset to it
495            match self.symbol_index_table.entry(index) {
496                Entry::Vacant(o) => {
497                    self.opaque.emit_u8(SYMBOL_STR);
498                    let pos = self.opaque.position();
499                    o.insert(pos);
500                    emit_str_or_byte_str(self);
501                }
502                Entry::Occupied(o) => {
503                    let x = *o.get();
504                    self.emit_u8(SYMBOL_OFFSET);
505                    self.emit_usize(x);
506                }
507            }
508        }
509    }
510
511    fn encode_def_path_table(&mut self) {
512        let table = self.tcx.def_path_table();
513        if self.is_proc_macro {
514            for def_index in std::iter::once(CRATE_DEF_INDEX)
515                .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index))
516            {
517                let def_key = self.lazy(table.def_key(def_index));
518                let def_path_hash = table.def_path_hash(def_index);
519                self.tables.def_keys.set_some(def_index, def_key);
520                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
521            }
522        } else {
523            for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
524                let def_key = self.lazy(def_key);
525                self.tables.def_keys.set_some(def_index, def_key);
526                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
527            }
528        }
529    }
530
531    fn encode_def_path_hash_map(&mut self) -> LazyValue<DefPathHashMapRef<'static>> {
532        self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map()))
533    }
534
535    fn encode_source_map(&mut self) -> LazyTable<u32, Option<LazyValue<rustc_span::SourceFile>>> {
536        let source_map = self.tcx.sess.source_map();
537        let all_source_files = source_map.files();
538
539        // By replacing the `Option` with `None`, we ensure that we can't
540        // accidentally serialize any more `Span`s after the source map encoding
541        // is done.
542        let required_source_files = self.required_source_files.take().unwrap();
543
544        let working_directory = &self.tcx.sess.opts.working_dir;
545
546        let mut adapted = TableBuilder::default();
547
548        let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE);
549
550        // Only serialize `SourceFile`s that were used during the encoding of a `Span`.
551        //
552        // The order in which we encode source files is important here: the on-disk format for
553        // `Span` contains the index of the corresponding `SourceFile`.
554        for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() {
555            let source_file = &all_source_files[source_file_index];
556            // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate.
557            assert!(!source_file.is_imported() || self.is_proc_macro);
558
559            // At export time we expand all source file paths to absolute paths because
560            // downstream compilation sessions can have a different compiler working
561            // directory, so relative paths from this or any other upstream crate
562            // won't be valid anymore.
563            //
564            // At this point we also erase the actual on-disk path and only keep
565            // the remapped version -- as is necessary for reproducible builds.
566            let mut adapted_source_file = (**source_file).clone();
567
568            match source_file.name {
569                FileName::Real(ref original_file_name) => {
570                    let adapted_file_name = source_map
571                        .path_mapping()
572                        .to_embeddable_absolute_path(original_file_name.clone(), working_directory);
573
574                    adapted_source_file.name = FileName::Real(adapted_file_name);
575                }
576                _ => {
577                    // expanded code, not from a file
578                }
579            };
580
581            // We're serializing this `SourceFile` into our crate metadata,
582            // so mark it as coming from this crate.
583            // This also ensures that we don't try to deserialize the
584            // `CrateNum` for a proc-macro dependency - since proc macro
585            // dependencies aren't loaded when we deserialize a proc-macro,
586            // trying to remap the `CrateNum` would fail.
587            if self.is_proc_macro {
588                adapted_source_file.cnum = LOCAL_CRATE;
589            }
590
591            // Update the `StableSourceFileId` to make sure it incorporates the
592            // id of the current crate. This way it will be unique within the
593            // crate graph during downstream compilation sessions.
594            adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export(
595                &adapted_source_file.name,
596                local_crate_stable_id,
597            );
598
599            let on_disk_index: u32 =
600                on_disk_index.try_into().expect("cannot export more than U32_MAX files");
601            adapted.set_some(on_disk_index, self.lazy(adapted_source_file));
602        }
603
604        adapted.encode(&mut self.opaque)
605    }
606
607    fn encode_crate_root(&mut self) -> LazyValue<CrateRoot> {
608        let tcx = self.tcx;
609        let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32);
610
611        macro_rules! stat {
612            ($label:literal, $f:expr) => {{
613                let orig_pos = self.position();
614                let res = $f();
615                stats.push(($label, self.position() - orig_pos));
616                res
617            }};
618        }
619
620        // We have already encoded some things. Get their combined size from the current position.
621        stats.push(("preamble", self.position()));
622
623        let (crate_deps, dylib_dependency_formats) =
624            stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats()));
625
626        let lib_features = stat!("lib-features", || self.encode_lib_features());
627
628        let stability_implications =
629            stat!("stability-implications", || self.encode_stability_implications());
630
631        let (lang_items, lang_items_missing) = stat!("lang-items", || {
632            (self.encode_lang_items(), self.encode_lang_items_missing())
633        });
634
635        let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items());
636
637        let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items());
638
639        let native_libraries = stat!("native-libs", || self.encode_native_libraries());
640
641        let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules());
642
643        _ = stat!("def-path-table", || self.encode_def_path_table());
644
645        // Encode the def IDs of traits, for rustdoc and diagnostics.
646        let traits = stat!("traits", || self.encode_traits());
647
648        // Encode the def IDs of impls, for coherence checking.
649        let impls = stat!("impls", || self.encode_impls());
650
651        let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls());
652
653        _ = stat!("mir", || self.encode_mir());
654
655        _ = stat!("def-ids", || self.encode_def_ids());
656
657        let interpret_alloc_index = stat!("interpret-alloc-index", || {
658            let mut interpret_alloc_index = Vec::new();
659            let mut n = 0;
660            trace!("beginning to encode alloc ids");
661            loop {
662                let new_n = self.interpret_allocs.len();
663                // if we have found new ids, serialize those, too
664                if n == new_n {
665                    // otherwise, abort
666                    break;
667                }
668                trace!("encoding {} further alloc ids", new_n - n);
669                for idx in n..new_n {
670                    let id = self.interpret_allocs[idx];
671                    let pos = self.position() as u64;
672                    interpret_alloc_index.push(pos);
673                    interpret::specialized_encode_alloc_id(self, tcx, id);
674                }
675                n = new_n;
676            }
677            self.lazy_array(interpret_alloc_index)
678        });
679
680        // Encode the proc macro data. This affects `tables`, so we need to do this before we
681        // encode the tables. This overwrites def_keys, so it must happen after
682        // encode_def_path_table.
683        let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros());
684
685        let tables = stat!("tables", || self.tables.encode(&mut self.opaque));
686
687        let debugger_visualizers =
688            stat!("debugger-visualizers", || self.encode_debugger_visualizers());
689
690        let exportable_items = stat!("exportable-items", || self.encode_exportable_items());
691
692        let stable_order_of_exportable_impls =
693            stat!("exportable-items", || self.encode_stable_order_of_exportable_impls());
694
695        // Encode exported symbols info. This is prefetched in `encode_metadata`.
696        let (exported_non_generic_symbols, exported_generic_symbols) =
697            stat!("exported-symbols", || {
698                (
699                    self.encode_exported_symbols(tcx.exported_non_generic_symbols(LOCAL_CRATE)),
700                    self.encode_exported_symbols(tcx.exported_generic_symbols(LOCAL_CRATE)),
701                )
702            });
703
704        // Encode the hygiene data.
705        // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The
706        // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from
707        // the incremental cache. If this causes us to deserialize a `Span`, then we may load
708        // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode
709        // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used.
710        let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene());
711
712        let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map());
713
714        // Encode source_map. This needs to be done last, because encoding `Span`s tells us which
715        // `SourceFiles` we actually need to encode.
716        let source_map = stat!("source-map", || self.encode_source_map());
717        let target_modifiers = stat!("target-modifiers", || self.encode_target_modifiers());
718
719        let root = stat!("final", || {
720            let attrs = tcx.hir_krate_attrs();
721            self.lazy(CrateRoot {
722                header: CrateHeader {
723                    name: tcx.crate_name(LOCAL_CRATE),
724                    triple: tcx.sess.opts.target_triple.clone(),
725                    hash: tcx.crate_hash(LOCAL_CRATE),
726                    is_proc_macro_crate: proc_macro_data.is_some(),
727                    is_stub: false,
728                },
729                extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
730                stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(),
731                required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE),
732                panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop,
733                edition: tcx.sess.edition(),
734                has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
735                has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE),
736                has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
737                has_default_lib_allocator: ast::attr::contains_name(
738                    attrs,
739                    sym::default_lib_allocator,
740                ),
741                proc_macro_data,
742                debugger_visualizers,
743                compiler_builtins: ast::attr::contains_name(attrs, sym::compiler_builtins),
744                needs_allocator: ast::attr::contains_name(attrs, sym::needs_allocator),
745                needs_panic_runtime: ast::attr::contains_name(attrs, sym::needs_panic_runtime),
746                no_builtins: ast::attr::contains_name(attrs, sym::no_builtins),
747                panic_runtime: ast::attr::contains_name(attrs, sym::panic_runtime),
748                profiler_runtime: ast::attr::contains_name(attrs, sym::profiler_runtime),
749                symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(),
750
751                crate_deps,
752                dylib_dependency_formats,
753                lib_features,
754                stability_implications,
755                lang_items,
756                diagnostic_items,
757                lang_items_missing,
758                stripped_cfg_items,
759                native_libraries,
760                foreign_modules,
761                source_map,
762                target_modifiers,
763                traits,
764                impls,
765                incoherent_impls,
766                exportable_items,
767                stable_order_of_exportable_impls,
768                exported_non_generic_symbols,
769                exported_generic_symbols,
770                interpret_alloc_index,
771                tables,
772                syntax_contexts,
773                expn_data,
774                expn_hashes,
775                def_path_hash_map,
776                specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE),
777            })
778        });
779
780        let total_bytes = self.position();
781
782        let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum();
783        assert_eq!(total_bytes, computed_total_bytes);
784
785        if tcx.sess.opts.unstable_opts.meta_stats {
786            use std::fmt::Write;
787
788            self.opaque.flush();
789
790            // Rewind and re-read all the metadata to count the zero bytes we wrote.
791            let pos_before_rewind = self.opaque.file().stream_position().unwrap();
792            let mut zero_bytes = 0;
793            self.opaque.file().rewind().unwrap();
794            let file = std::io::BufReader::new(self.opaque.file());
795            for e in file.bytes() {
796                if e.unwrap() == 0 {
797                    zero_bytes += 1;
798                }
799            }
800            assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind);
801
802            stats.sort_by_key(|&(_, usize)| usize);
803            stats.reverse(); // bigger items first
804
805            let prefix = "meta-stats";
806            let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64;
807
808            let section_w = 23;
809            let size_w = 10;
810            let banner_w = 64;
811
812            // We write all the text into a string and print it with a single
813            // `eprint!`. This is an attempt to minimize interleaved text if multiple
814            // rustc processes are printing macro-stats at the same time (e.g. with
815            // `RUSTFLAGS='-Zmeta-stats' cargo build`). It still doesn't guarantee
816            // non-interleaving, though.
817            let mut s = String::new();
818            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
819            _ = writeln!(s, "{prefix} METADATA STATS: {}", tcx.crate_name(LOCAL_CRATE));
820            _ = writeln!(s, "{prefix} {:<section_w$}{:>size_w$}", "Section", "Size");
821            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
822            for (label, size) in stats {
823                _ = writeln!(
824                    s,
825                    "{prefix} {:<section_w$}{:>size_w$} ({:4.1}%)",
826                    label,
827                    usize_with_underscores(size),
828                    perc(size)
829                );
830            }
831            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
832            _ = writeln!(
833                s,
834                "{prefix} {:<section_w$}{:>size_w$} (of which {:.1}% are zero bytes)",
835                "Total",
836                usize_with_underscores(total_bytes),
837                perc(zero_bytes)
838            );
839            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
840            eprint!("{s}");
841        }
842
843        root
844    }
845}
846
847struct AnalyzeAttrState<'a> {
848    is_exported: bool,
849    is_doc_hidden: bool,
850    features: &'a Features,
851}
852
853/// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and
854/// useful in downstream crates. Local-only attributes are an obvious example, but some
855/// rustdoc-specific attributes can equally be of use while documenting the current crate only.
856///
857/// Removing these superfluous attributes speeds up compilation by making the metadata smaller.
858///
859/// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public
860/// visibility: this is a piece of data that can be computed once per defid, and not once per
861/// attribute. Some attributes would only be usable downstream if they are public.
862#[inline]
863fn analyze_attr(attr: &hir::Attribute, state: &mut AnalyzeAttrState<'_>) -> bool {
864    let mut should_encode = false;
865    if let hir::Attribute::Parsed(p) = attr
866        && p.encode_cross_crate() == EncodeCrossCrate::No
867    {
868        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
869    } else if let Some(name) = attr.name()
870        && !rustc_feature::encode_cross_crate(name)
871    {
872        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
873    } else if attr.doc_str().is_some() {
874        // We keep all doc comments reachable to rustdoc because they might be "imported" into
875        // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into
876        // their own.
877        if state.is_exported {
878            should_encode = true;
879        }
880    } else if attr.has_name(sym::doc) {
881        // If this is a `doc` attribute that doesn't have anything except maybe `inline` (as in
882        // `#[doc(inline)]`), then we can remove it. It won't be inlinable in downstream crates.
883        if let Some(item_list) = attr.meta_item_list() {
884            for item in item_list {
885                if !item.has_name(sym::inline) {
886                    should_encode = true;
887                    if item.has_name(sym::hidden) {
888                        state.is_doc_hidden = true;
889                        break;
890                    }
891                }
892            }
893        }
894    } else if let &[sym::diagnostic, seg] = &*attr.path() {
895        should_encode = rustc_feature::is_stable_diagnostic_attribute(seg, state.features);
896    } else {
897        should_encode = true;
898    }
899    should_encode
900}
901
902fn should_encode_span(def_kind: DefKind) -> bool {
903    match def_kind {
904        DefKind::Mod
905        | DefKind::Struct
906        | DefKind::Union
907        | DefKind::Enum
908        | DefKind::Variant
909        | DefKind::Trait
910        | DefKind::TyAlias
911        | DefKind::ForeignTy
912        | DefKind::TraitAlias
913        | DefKind::AssocTy
914        | DefKind::TyParam
915        | DefKind::ConstParam
916        | DefKind::LifetimeParam
917        | DefKind::Fn
918        | DefKind::Const
919        | DefKind::Static { .. }
920        | DefKind::Ctor(..)
921        | DefKind::AssocFn
922        | DefKind::AssocConst
923        | DefKind::Macro(_)
924        | DefKind::ExternCrate
925        | DefKind::Use
926        | DefKind::AnonConst
927        | DefKind::InlineConst
928        | DefKind::OpaqueTy
929        | DefKind::Field
930        | DefKind::Impl { .. }
931        | DefKind::Closure
932        | DefKind::SyntheticCoroutineBody => true,
933        DefKind::ForeignMod | DefKind::GlobalAsm => false,
934    }
935}
936
937fn should_encode_attrs(def_kind: DefKind) -> bool {
938    match def_kind {
939        DefKind::Mod
940        | DefKind::Struct
941        | DefKind::Union
942        | DefKind::Enum
943        | DefKind::Variant
944        | DefKind::Trait
945        | DefKind::TyAlias
946        | DefKind::ForeignTy
947        | DefKind::TraitAlias
948        | DefKind::AssocTy
949        | DefKind::Fn
950        | DefKind::Const
951        | DefKind::Static { nested: false, .. }
952        | DefKind::AssocFn
953        | DefKind::AssocConst
954        | DefKind::Macro(_)
955        | DefKind::Field
956        | DefKind::Impl { .. } => true,
957        // Tools may want to be able to detect their tool lints on
958        // closures from upstream crates, too. This is used by
959        // https://github.com/model-checking/kani and is not a performance
960        // or maintenance issue for us.
961        DefKind::Closure => true,
962        DefKind::SyntheticCoroutineBody => false,
963        DefKind::TyParam
964        | DefKind::ConstParam
965        | DefKind::Ctor(..)
966        | DefKind::ExternCrate
967        | DefKind::Use
968        | DefKind::ForeignMod
969        | DefKind::AnonConst
970        | DefKind::InlineConst
971        | DefKind::OpaqueTy
972        | DefKind::LifetimeParam
973        | DefKind::Static { nested: true, .. }
974        | DefKind::GlobalAsm => false,
975    }
976}
977
978fn should_encode_expn_that_defined(def_kind: DefKind) -> bool {
979    match def_kind {
980        DefKind::Mod
981        | DefKind::Struct
982        | DefKind::Union
983        | DefKind::Enum
984        | DefKind::Variant
985        | DefKind::Trait
986        | DefKind::Impl { .. } => true,
987        DefKind::TyAlias
988        | DefKind::ForeignTy
989        | DefKind::TraitAlias
990        | DefKind::AssocTy
991        | DefKind::TyParam
992        | DefKind::Fn
993        | DefKind::Const
994        | DefKind::ConstParam
995        | DefKind::Static { .. }
996        | DefKind::Ctor(..)
997        | DefKind::AssocFn
998        | DefKind::AssocConst
999        | DefKind::Macro(_)
1000        | DefKind::ExternCrate
1001        | DefKind::Use
1002        | DefKind::ForeignMod
1003        | DefKind::AnonConst
1004        | DefKind::InlineConst
1005        | DefKind::OpaqueTy
1006        | DefKind::Field
1007        | DefKind::LifetimeParam
1008        | DefKind::GlobalAsm
1009        | DefKind::Closure
1010        | DefKind::SyntheticCoroutineBody => false,
1011    }
1012}
1013
1014fn should_encode_visibility(def_kind: DefKind) -> bool {
1015    match def_kind {
1016        DefKind::Mod
1017        | DefKind::Struct
1018        | DefKind::Union
1019        | DefKind::Enum
1020        | DefKind::Variant
1021        | DefKind::Trait
1022        | DefKind::TyAlias
1023        | DefKind::ForeignTy
1024        | DefKind::TraitAlias
1025        | DefKind::AssocTy
1026        | DefKind::Fn
1027        | DefKind::Const
1028        | DefKind::Static { nested: false, .. }
1029        | DefKind::Ctor(..)
1030        | DefKind::AssocFn
1031        | DefKind::AssocConst
1032        | DefKind::Macro(..)
1033        | DefKind::Field => true,
1034        DefKind::Use
1035        | DefKind::ForeignMod
1036        | DefKind::TyParam
1037        | DefKind::ConstParam
1038        | DefKind::LifetimeParam
1039        | DefKind::AnonConst
1040        | DefKind::InlineConst
1041        | DefKind::Static { nested: true, .. }
1042        | DefKind::OpaqueTy
1043        | DefKind::GlobalAsm
1044        | DefKind::Impl { .. }
1045        | DefKind::Closure
1046        | DefKind::ExternCrate
1047        | DefKind::SyntheticCoroutineBody => false,
1048    }
1049}
1050
1051fn should_encode_stability(def_kind: DefKind) -> bool {
1052    match def_kind {
1053        DefKind::Mod
1054        | DefKind::Ctor(..)
1055        | DefKind::Variant
1056        | DefKind::Field
1057        | DefKind::Struct
1058        | DefKind::AssocTy
1059        | DefKind::AssocFn
1060        | DefKind::AssocConst
1061        | DefKind::TyParam
1062        | DefKind::ConstParam
1063        | DefKind::Static { .. }
1064        | DefKind::Const
1065        | DefKind::Fn
1066        | DefKind::ForeignMod
1067        | DefKind::TyAlias
1068        | DefKind::OpaqueTy
1069        | DefKind::Enum
1070        | DefKind::Union
1071        | DefKind::Impl { .. }
1072        | DefKind::Trait
1073        | DefKind::TraitAlias
1074        | DefKind::Macro(..)
1075        | DefKind::ForeignTy => true,
1076        DefKind::Use
1077        | DefKind::LifetimeParam
1078        | DefKind::AnonConst
1079        | DefKind::InlineConst
1080        | DefKind::GlobalAsm
1081        | DefKind::Closure
1082        | DefKind::ExternCrate
1083        | DefKind::SyntheticCoroutineBody => false,
1084    }
1085}
1086
1087/// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM.
1088///
1089/// Computing, optimizing and encoding the MIR is a relatively expensive operation.
1090/// We want to avoid this work when not required. Therefore:
1091/// - we only compute `mir_for_ctfe` on items with const-eval semantics;
1092/// - we skip `optimized_mir` for check runs.
1093/// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that
1094///   is either generic or has inline hint, and is reachable from the other crates (contained
1095///   in reachable set).
1096///
1097/// Note: Reachable set describes definitions that might be generated or referenced from other
1098/// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand,
1099/// the reachable set doesn't have much to say about which definitions might be evaluated at compile
1100/// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is
1101/// unreachable and yet it can be evaluated in other crates:
1102///
1103/// ```
1104/// const fn f() -> usize { 0 }
1105/// pub struct S { pub a: [usize; f()] }
1106/// ```
1107fn should_encode_mir(
1108    tcx: TyCtxt<'_>,
1109    reachable_set: &LocalDefIdSet,
1110    def_id: LocalDefId,
1111) -> (bool, bool) {
1112    match tcx.def_kind(def_id) {
1113        // Constructors
1114        DefKind::Ctor(_, _) => {
1115            let mir_opt_base = tcx.sess.opts.output_types.should_codegen()
1116                || tcx.sess.opts.unstable_opts.always_encode_mir;
1117            (true, mir_opt_base)
1118        }
1119        // Constants
1120        DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => {
1121            (true, false)
1122        }
1123        // Coroutines require optimized MIR to compute layout.
1124        DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true),
1125        DefKind::SyntheticCoroutineBody => (false, true),
1126        // Full-fledged functions + closures
1127        DefKind::AssocFn | DefKind::Fn | DefKind::Closure => {
1128            let generics = tcx.generics_of(def_id);
1129            let opt = tcx.sess.opts.unstable_opts.always_encode_mir
1130                || (tcx.sess.opts.output_types.should_codegen()
1131                    && reachable_set.contains(&def_id)
1132                    && (generics.requires_monomorphization(tcx)
1133                        || tcx.cross_crate_inlinable(def_id)));
1134            // The function has a `const` modifier or is in a `const trait`.
1135            let is_const_fn = tcx.is_const_fn(def_id.to_def_id())
1136                || tcx.is_const_default_method(def_id.to_def_id());
1137            (is_const_fn, opt)
1138        }
1139        // The others don't have MIR.
1140        _ => (false, false),
1141    }
1142}
1143
1144fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1145    match def_kind {
1146        DefKind::Struct
1147        | DefKind::Union
1148        | DefKind::Enum
1149        | DefKind::OpaqueTy
1150        | DefKind::Fn
1151        | DefKind::Ctor(..)
1152        | DefKind::AssocFn => true,
1153        DefKind::AssocTy => {
1154            // Only encode variances for RPITITs (for traits)
1155            matches!(tcx.opt_rpitit_info(def_id), Some(ty::ImplTraitInTraitData::Trait { .. }))
1156        }
1157        DefKind::Mod
1158        | DefKind::Variant
1159        | DefKind::Field
1160        | DefKind::AssocConst
1161        | DefKind::TyParam
1162        | DefKind::ConstParam
1163        | DefKind::Static { .. }
1164        | DefKind::Const
1165        | DefKind::ForeignMod
1166        | DefKind::Impl { .. }
1167        | DefKind::Trait
1168        | DefKind::TraitAlias
1169        | DefKind::Macro(..)
1170        | DefKind::ForeignTy
1171        | DefKind::Use
1172        | DefKind::LifetimeParam
1173        | DefKind::AnonConst
1174        | DefKind::InlineConst
1175        | DefKind::GlobalAsm
1176        | DefKind::Closure
1177        | DefKind::ExternCrate
1178        | DefKind::SyntheticCoroutineBody => false,
1179        DefKind::TyAlias => tcx.type_alias_is_lazy(def_id),
1180    }
1181}
1182
1183fn should_encode_generics(def_kind: DefKind) -> bool {
1184    match def_kind {
1185        DefKind::Struct
1186        | DefKind::Union
1187        | DefKind::Enum
1188        | DefKind::Variant
1189        | DefKind::Trait
1190        | DefKind::TyAlias
1191        | DefKind::ForeignTy
1192        | DefKind::TraitAlias
1193        | DefKind::AssocTy
1194        | DefKind::Fn
1195        | DefKind::Const
1196        | DefKind::Static { .. }
1197        | DefKind::Ctor(..)
1198        | DefKind::AssocFn
1199        | DefKind::AssocConst
1200        | DefKind::AnonConst
1201        | DefKind::InlineConst
1202        | DefKind::OpaqueTy
1203        | DefKind::Impl { .. }
1204        | DefKind::Field
1205        | DefKind::TyParam
1206        | DefKind::Closure
1207        | DefKind::SyntheticCoroutineBody => true,
1208        DefKind::Mod
1209        | DefKind::ForeignMod
1210        | DefKind::ConstParam
1211        | DefKind::Macro(..)
1212        | DefKind::Use
1213        | DefKind::LifetimeParam
1214        | DefKind::GlobalAsm
1215        | DefKind::ExternCrate => false,
1216    }
1217}
1218
1219fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool {
1220    match def_kind {
1221        DefKind::Struct
1222        | DefKind::Union
1223        | DefKind::Enum
1224        | DefKind::Variant
1225        | DefKind::Ctor(..)
1226        | DefKind::Field
1227        | DefKind::Fn
1228        | DefKind::Const
1229        | DefKind::Static { nested: false, .. }
1230        | DefKind::TyAlias
1231        | DefKind::ForeignTy
1232        | DefKind::Impl { .. }
1233        | DefKind::AssocFn
1234        | DefKind::AssocConst
1235        | DefKind::Closure
1236        | DefKind::ConstParam
1237        | DefKind::AnonConst
1238        | DefKind::InlineConst
1239        | DefKind::SyntheticCoroutineBody => true,
1240
1241        DefKind::OpaqueTy => {
1242            let origin = tcx.local_opaque_ty_origin(def_id);
1243            if let hir::OpaqueTyOrigin::FnReturn { parent, .. }
1244            | hir::OpaqueTyOrigin::AsyncFn { parent, .. } = origin
1245                && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(parent)
1246                && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
1247            {
1248                false
1249            } else {
1250                true
1251            }
1252        }
1253
1254        DefKind::AssocTy => {
1255            let assoc_item = tcx.associated_item(def_id);
1256            match assoc_item.container {
1257                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1258                ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1259            }
1260        }
1261        DefKind::TyParam => {
1262            let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() };
1263            let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() };
1264            default.is_some()
1265        }
1266
1267        DefKind::Trait
1268        | DefKind::TraitAlias
1269        | DefKind::Mod
1270        | DefKind::ForeignMod
1271        | DefKind::Macro(..)
1272        | DefKind::Static { nested: true, .. }
1273        | DefKind::Use
1274        | DefKind::LifetimeParam
1275        | DefKind::GlobalAsm
1276        | DefKind::ExternCrate => false,
1277    }
1278}
1279
1280fn should_encode_fn_sig(def_kind: DefKind) -> bool {
1281    match def_kind {
1282        DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true,
1283
1284        DefKind::Struct
1285        | DefKind::Union
1286        | DefKind::Enum
1287        | DefKind::Variant
1288        | DefKind::Field
1289        | DefKind::Const
1290        | DefKind::Static { .. }
1291        | DefKind::Ctor(..)
1292        | DefKind::TyAlias
1293        | DefKind::OpaqueTy
1294        | DefKind::ForeignTy
1295        | DefKind::Impl { .. }
1296        | DefKind::AssocConst
1297        | DefKind::Closure
1298        | DefKind::ConstParam
1299        | DefKind::AnonConst
1300        | DefKind::InlineConst
1301        | DefKind::AssocTy
1302        | DefKind::TyParam
1303        | DefKind::Trait
1304        | DefKind::TraitAlias
1305        | DefKind::Mod
1306        | DefKind::ForeignMod
1307        | DefKind::Macro(..)
1308        | DefKind::Use
1309        | DefKind::LifetimeParam
1310        | DefKind::GlobalAsm
1311        | DefKind::ExternCrate
1312        | DefKind::SyntheticCoroutineBody => false,
1313    }
1314}
1315
1316fn should_encode_constness(def_kind: DefKind) -> bool {
1317    match def_kind {
1318        DefKind::Fn
1319        | DefKind::AssocFn
1320        | DefKind::Closure
1321        | DefKind::Ctor(_, CtorKind::Fn)
1322        | DefKind::Impl { of_trait: false } => true,
1323
1324        DefKind::Struct
1325        | DefKind::Union
1326        | DefKind::Enum
1327        | DefKind::Field
1328        | DefKind::Const
1329        | DefKind::AssocConst
1330        | DefKind::AnonConst
1331        | DefKind::Static { .. }
1332        | DefKind::TyAlias
1333        | DefKind::OpaqueTy
1334        | DefKind::Impl { .. }
1335        | DefKind::ForeignTy
1336        | DefKind::ConstParam
1337        | DefKind::InlineConst
1338        | DefKind::AssocTy
1339        | DefKind::TyParam
1340        | DefKind::Trait
1341        | DefKind::TraitAlias
1342        | DefKind::Mod
1343        | DefKind::ForeignMod
1344        | DefKind::Macro(..)
1345        | DefKind::Use
1346        | DefKind::LifetimeParam
1347        | DefKind::GlobalAsm
1348        | DefKind::ExternCrate
1349        | DefKind::Ctor(_, CtorKind::Const)
1350        | DefKind::Variant
1351        | DefKind::SyntheticCoroutineBody => false,
1352    }
1353}
1354
1355fn should_encode_const(def_kind: DefKind) -> bool {
1356    match def_kind {
1357        // FIXME(mgca): should we remove Const and AssocConst here?
1358        DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true,
1359
1360        DefKind::Struct
1361        | DefKind::Union
1362        | DefKind::Enum
1363        | DefKind::Variant
1364        | DefKind::Ctor(..)
1365        | DefKind::Field
1366        | DefKind::Fn
1367        | DefKind::Static { .. }
1368        | DefKind::TyAlias
1369        | DefKind::OpaqueTy
1370        | DefKind::ForeignTy
1371        | DefKind::Impl { .. }
1372        | DefKind::AssocFn
1373        | DefKind::Closure
1374        | DefKind::ConstParam
1375        | DefKind::AssocTy
1376        | DefKind::TyParam
1377        | DefKind::Trait
1378        | DefKind::TraitAlias
1379        | DefKind::Mod
1380        | DefKind::ForeignMod
1381        | DefKind::Macro(..)
1382        | DefKind::Use
1383        | DefKind::LifetimeParam
1384        | DefKind::GlobalAsm
1385        | DefKind::ExternCrate
1386        | DefKind::SyntheticCoroutineBody => false,
1387    }
1388}
1389
1390fn should_encode_const_of_item<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1391    matches!(def_kind, DefKind::Const | DefKind::AssocConst)
1392        && find_attr!(tcx.get_all_attrs(def_id), AttributeKind::TypeConst(_))
1393        // AssocConst ==> assoc item has value
1394        && (!matches!(def_kind, DefKind::AssocConst) || assoc_item_has_value(tcx, def_id))
1395}
1396
1397fn assoc_item_has_value<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool {
1398    let assoc_item = tcx.associated_item(def_id);
1399    match assoc_item.container {
1400        ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1401        ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1402    }
1403}
1404
1405impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
1406    fn encode_attrs(&mut self, def_id: LocalDefId) {
1407        let tcx = self.tcx;
1408        let mut state = AnalyzeAttrState {
1409            is_exported: tcx.effective_visibilities(()).is_exported(def_id),
1410            is_doc_hidden: false,
1411            features: &tcx.features(),
1412        };
1413        let attr_iter = tcx
1414            .hir_attrs(tcx.local_def_id_to_hir_id(def_id))
1415            .iter()
1416            .filter(|attr| analyze_attr(*attr, &mut state));
1417
1418        record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter);
1419
1420        let mut attr_flags = AttrFlags::empty();
1421        if state.is_doc_hidden {
1422            attr_flags |= AttrFlags::IS_DOC_HIDDEN;
1423        }
1424        self.tables.attr_flags.set(def_id.local_def_index, attr_flags);
1425    }
1426
1427    fn encode_def_ids(&mut self) {
1428        self.encode_info_for_mod(CRATE_DEF_ID);
1429
1430        // Proc-macro crates only export proc-macro items, which are looked
1431        // up using `proc_macro_data`
1432        if self.is_proc_macro {
1433            return;
1434        }
1435
1436        let tcx = self.tcx;
1437
1438        for local_id in tcx.iter_local_def_id() {
1439            let def_id = local_id.to_def_id();
1440            let def_kind = tcx.def_kind(local_id);
1441            self.tables.def_kind.set_some(def_id.index, def_kind);
1442
1443            // The `DefCollector` will sometimes create unnecessary `DefId`s
1444            // for trivial const arguments which are directly lowered to
1445            // `ConstArgKind::Path`. We never actually access this `DefId`
1446            // anywhere so we don't need to encode it for other crates.
1447            if def_kind == DefKind::AnonConst
1448                && match tcx.hir_node_by_def_id(local_id) {
1449                    hir::Node::ConstArg(hir::ConstArg { kind, .. }) => match kind {
1450                        // Skip encoding defs for these as they should not have had a `DefId` created
1451                        hir::ConstArgKind::Error(..)
1452                        | hir::ConstArgKind::Path(..)
1453                        | hir::ConstArgKind::Infer(..) => true,
1454                        hir::ConstArgKind::Anon(..) => false,
1455                    },
1456                    _ => false,
1457                }
1458            {
1459                continue;
1460            }
1461
1462            if def_kind == DefKind::Field
1463                && let hir::Node::Field(field) = tcx.hir_node_by_def_id(local_id)
1464                && let Some(anon) = field.default
1465            {
1466                record!(self.tables.default_fields[def_id] <- anon.def_id.to_def_id());
1467            }
1468
1469            if should_encode_span(def_kind) {
1470                let def_span = tcx.def_span(local_id);
1471                record!(self.tables.def_span[def_id] <- def_span);
1472            }
1473            if should_encode_attrs(def_kind) {
1474                self.encode_attrs(local_id);
1475            }
1476            if should_encode_expn_that_defined(def_kind) {
1477                record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id));
1478            }
1479            if should_encode_span(def_kind)
1480                && let Some(ident_span) = tcx.def_ident_span(def_id)
1481            {
1482                record!(self.tables.def_ident_span[def_id] <- ident_span);
1483            }
1484            if def_kind.has_codegen_attrs() {
1485                record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id));
1486            }
1487            if should_encode_visibility(def_kind) {
1488                let vis =
1489                    self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index);
1490                record!(self.tables.visibility[def_id] <- vis);
1491            }
1492            if should_encode_stability(def_kind) {
1493                self.encode_stability(def_id);
1494                self.encode_const_stability(def_id);
1495                self.encode_default_body_stability(def_id);
1496                self.encode_deprecation(def_id);
1497            }
1498            if should_encode_variances(tcx, def_id, def_kind) {
1499                let v = self.tcx.variances_of(def_id);
1500                record_array!(self.tables.variances_of[def_id] <- v);
1501            }
1502            if should_encode_fn_sig(def_kind) {
1503                record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1504            }
1505            if should_encode_generics(def_kind) {
1506                let g = tcx.generics_of(def_id);
1507                record!(self.tables.generics_of[def_id] <- g);
1508                record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id));
1509                let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
1510                record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives);
1511
1512                for param in &g.own_params {
1513                    if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind {
1514                        let default = self.tcx.const_param_default(param.def_id);
1515                        record!(self.tables.const_param_default[param.def_id] <- default);
1516                    }
1517                }
1518            }
1519            if tcx.is_conditionally_const(def_id) {
1520                record!(self.tables.const_conditions[def_id] <- self.tcx.const_conditions(def_id));
1521            }
1522            if should_encode_type(tcx, local_id, def_kind) {
1523                record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id));
1524            }
1525            if should_encode_constness(def_kind) {
1526                let constness = self.tcx.constness(def_id);
1527                self.tables.constness.set(def_id.index, constness);
1528            }
1529            if let DefKind::Fn | DefKind::AssocFn = def_kind {
1530                let asyncness = tcx.asyncness(def_id);
1531                self.tables.asyncness.set(def_id.index, asyncness);
1532                record_array!(self.tables.fn_arg_idents[def_id] <- tcx.fn_arg_idents(def_id));
1533            }
1534            if let Some(name) = tcx.intrinsic(def_id) {
1535                record!(self.tables.intrinsic[def_id] <- name);
1536            }
1537            if let DefKind::TyParam = def_kind {
1538                let default = self.tcx.object_lifetime_default(def_id);
1539                record!(self.tables.object_lifetime_default[def_id] <- default);
1540            }
1541            if let DefKind::Trait = def_kind {
1542                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1543                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1544                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1545                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1546                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1547                let module_children = self.tcx.module_children_local(local_id);
1548                record_array!(self.tables.module_children_non_reexports[def_id] <-
1549                    module_children.iter().map(|child| child.res.def_id().index));
1550                if self.tcx.is_const_trait(def_id) {
1551                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1552                        <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1553                }
1554            }
1555            if let DefKind::TraitAlias = def_kind {
1556                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1557                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1558                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1559                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1560                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1561            }
1562            if let DefKind::Trait | DefKind::Impl { .. } = def_kind {
1563                let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1564                record_array!(self.tables.associated_item_or_field_def_ids[def_id] <-
1565                    associated_item_def_ids.iter().map(|&def_id| {
1566                        assert!(def_id.is_local());
1567                        def_id.index
1568                    })
1569                );
1570                for &def_id in associated_item_def_ids {
1571                    self.encode_info_for_assoc_item(def_id);
1572                }
1573            }
1574            if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind
1575                && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id)
1576            {
1577                self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind))
1578            }
1579            if def_kind == DefKind::Closure
1580                && tcx.type_of(def_id).skip_binder().is_coroutine_closure()
1581            {
1582                let coroutine_for_closure = self.tcx.coroutine_for_closure(def_id);
1583                self.tables
1584                    .coroutine_for_closure
1585                    .set_some(def_id.index, coroutine_for_closure.into());
1586
1587                // If this async closure has a by-move body, record it too.
1588                if tcx.needs_coroutine_by_move_body_def_id(coroutine_for_closure) {
1589                    self.tables.coroutine_by_move_body_def_id.set_some(
1590                        coroutine_for_closure.index,
1591                        self.tcx.coroutine_by_move_body_def_id(coroutine_for_closure).into(),
1592                    );
1593                }
1594            }
1595            if let DefKind::Static { .. } = def_kind {
1596                if !self.tcx.is_foreign_item(def_id) {
1597                    let data = self.tcx.eval_static_initializer(def_id).unwrap();
1598                    record!(self.tables.eval_static_initializer[def_id] <- data);
1599                }
1600            }
1601            if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind {
1602                self.encode_info_for_adt(local_id);
1603            }
1604            if let DefKind::Mod = def_kind {
1605                self.encode_info_for_mod(local_id);
1606            }
1607            if let DefKind::Macro(_) = def_kind {
1608                self.encode_info_for_macro(local_id);
1609            }
1610            if let DefKind::TyAlias = def_kind {
1611                self.tables
1612                    .type_alias_is_lazy
1613                    .set(def_id.index, self.tcx.type_alias_is_lazy(def_id));
1614            }
1615            if let DefKind::OpaqueTy = def_kind {
1616                self.encode_explicit_item_bounds(def_id);
1617                self.encode_explicit_item_self_bounds(def_id);
1618                record!(self.tables.opaque_ty_origin[def_id] <- self.tcx.opaque_ty_origin(def_id));
1619                self.encode_precise_capturing_args(def_id);
1620                if tcx.is_conditionally_const(def_id) {
1621                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1622                        <- tcx.explicit_implied_const_bounds(def_id).skip_binder());
1623                }
1624            }
1625            if let DefKind::AnonConst = def_kind {
1626                record!(self.tables.anon_const_kind[def_id] <- self.tcx.anon_const_kind(def_id));
1627            }
1628            if should_encode_const_of_item(self.tcx, def_id, def_kind) {
1629                record!(self.tables.const_of_item[def_id] <- self.tcx.const_of_item(def_id));
1630            }
1631            if tcx.impl_method_has_trait_impl_trait_tys(def_id)
1632                && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id)
1633            {
1634                record!(self.tables.trait_impl_trait_tys[def_id] <- table);
1635            }
1636            if let DefKind::Impl { .. } | DefKind::Trait = def_kind {
1637                let table = tcx.associated_types_for_impl_traits_in_trait_or_impl(def_id);
1638                record!(self.tables.associated_types_for_impl_traits_in_trait_or_impl[def_id] <- table);
1639            }
1640        }
1641
1642        for (def_id, impls) in &tcx.crate_inherent_impls(()).0.inherent_impls {
1643            record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| {
1644                assert!(def_id.is_local());
1645                def_id.index
1646            }));
1647        }
1648
1649        for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions {
1650            record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map);
1651        }
1652
1653        for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope {
1654            record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits);
1655        }
1656    }
1657
1658    #[instrument(level = "trace", skip(self))]
1659    fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) {
1660        let def_id = local_def_id.to_def_id();
1661        let tcx = self.tcx;
1662        let adt_def = tcx.adt_def(def_id);
1663        record!(self.tables.repr_options[def_id] <- adt_def.repr());
1664
1665        let params_in_repr = self.tcx.params_in_repr(def_id);
1666        record!(self.tables.params_in_repr[def_id] <- params_in_repr);
1667
1668        if adt_def.is_enum() {
1669            let module_children = tcx.module_children_local(local_def_id);
1670            record_array!(self.tables.module_children_non_reexports[def_id] <-
1671                module_children.iter().map(|child| child.res.def_id().index));
1672        } else {
1673            // For non-enum, there is only one variant, and its def_id is the adt's.
1674            debug_assert_eq!(adt_def.variants().len(), 1);
1675            debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id);
1676            // Therefore, the loop over variants will encode its fields as the adt's children.
1677        }
1678
1679        for (idx, variant) in adt_def.variants().iter_enumerated() {
1680            let data = VariantData {
1681                discr: variant.discr,
1682                idx,
1683                ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)),
1684                is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1685            };
1686            record!(self.tables.variant_data[variant.def_id] <- data);
1687
1688            record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| {
1689                assert!(f.did.is_local());
1690                f.did.index
1691            }));
1692
1693            for field in &variant.fields {
1694                self.tables.safety.set(field.did.index, field.safety);
1695            }
1696
1697            if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor {
1698                let fn_sig = tcx.fn_sig(ctor_def_id);
1699                // FIXME only encode signature for ctor_def_id
1700                record!(self.tables.fn_sig[variant.def_id] <- fn_sig);
1701            }
1702        }
1703
1704        if let Some(destructor) = tcx.adt_destructor(local_def_id) {
1705            record!(self.tables.adt_destructor[def_id] <- destructor);
1706        }
1707
1708        if let Some(destructor) = tcx.adt_async_destructor(local_def_id) {
1709            record!(self.tables.adt_async_destructor[def_id] <- destructor);
1710        }
1711    }
1712
1713    #[instrument(level = "debug", skip(self))]
1714    fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) {
1715        let tcx = self.tcx;
1716        let def_id = local_def_id.to_def_id();
1717
1718        // If we are encoding a proc-macro crates, `encode_info_for_mod` will
1719        // only ever get called for the crate root. We still want to encode
1720        // the crate root for consistency with other crates (some of the resolver
1721        // code uses it). However, we skip encoding anything relating to child
1722        // items - we encode information about proc-macros later on.
1723        if self.is_proc_macro {
1724            // Encode this here because we don't do it in encode_def_ids.
1725            record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id));
1726        } else {
1727            let module_children = tcx.module_children_local(local_def_id);
1728
1729            record_array!(self.tables.module_children_non_reexports[def_id] <-
1730                module_children.iter().filter(|child| child.reexport_chain.is_empty())
1731                    .map(|child| child.res.def_id().index));
1732
1733            record_defaulted_array!(self.tables.module_children_reexports[def_id] <-
1734                module_children.iter().filter(|child| !child.reexport_chain.is_empty()));
1735        }
1736    }
1737
1738    fn encode_explicit_item_bounds(&mut self, def_id: DefId) {
1739        debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id);
1740        let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder();
1741        record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds);
1742    }
1743
1744    fn encode_explicit_item_self_bounds(&mut self, def_id: DefId) {
1745        debug!("EncodeContext::encode_explicit_item_self_bounds({:?})", def_id);
1746        let bounds = self.tcx.explicit_item_self_bounds(def_id).skip_binder();
1747        record_defaulted_array!(self.tables.explicit_item_self_bounds[def_id] <- bounds);
1748    }
1749
1750    #[instrument(level = "debug", skip(self))]
1751    fn encode_info_for_assoc_item(&mut self, def_id: DefId) {
1752        let tcx = self.tcx;
1753        let item = tcx.associated_item(def_id);
1754
1755        if matches!(item.container, AssocContainer::Trait | AssocContainer::TraitImpl(_)) {
1756            self.tables.defaultness.set(def_id.index, item.defaultness(tcx));
1757        }
1758
1759        record!(self.tables.assoc_container[def_id] <- item.container);
1760
1761        if let AssocContainer::Trait = item.container
1762            && item.is_type()
1763        {
1764            self.encode_explicit_item_bounds(def_id);
1765            self.encode_explicit_item_self_bounds(def_id);
1766            if tcx.is_conditionally_const(def_id) {
1767                record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1768                    <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1769            }
1770        }
1771        if let ty::AssocKind::Type { data: ty::AssocTypeData::Rpitit(rpitit_info) } = item.kind {
1772            record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info);
1773            if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) {
1774                record_array!(
1775                    self.tables.assumed_wf_types_for_rpitit[def_id]
1776                        <- self.tcx.assumed_wf_types_for_rpitit(def_id)
1777                );
1778                self.encode_precise_capturing_args(def_id);
1779            }
1780        }
1781    }
1782
1783    fn encode_precise_capturing_args(&mut self, def_id: DefId) {
1784        let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else {
1785            return;
1786        };
1787
1788        record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args);
1789    }
1790
1791    fn encode_mir(&mut self) {
1792        if self.is_proc_macro {
1793            return;
1794        }
1795
1796        let tcx = self.tcx;
1797        let reachable_set = tcx.reachable_set(());
1798
1799        let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| {
1800            let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
1801            if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None }
1802        });
1803        for (def_id, encode_const, encode_opt) in keys_and_jobs {
1804            debug_assert!(encode_const || encode_opt);
1805
1806            debug!("EntryBuilder::encode_mir({:?})", def_id);
1807            if encode_opt {
1808                record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id));
1809                self.tables
1810                    .cross_crate_inlinable
1811                    .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id));
1812                record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()]
1813                    <- tcx.closure_saved_names_of_captured_variables(def_id));
1814
1815                if self.tcx.is_coroutine(def_id.to_def_id())
1816                    && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1817                {
1818                    record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1819                }
1820            }
1821            let mut is_trivial = false;
1822            if encode_const {
1823                if let Some((val, ty)) = tcx.trivial_const(def_id) {
1824                    is_trivial = true;
1825                    record!(self.tables.trivial_const[def_id.to_def_id()] <- (val, ty));
1826                } else {
1827                    is_trivial = false;
1828                    record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id));
1829                }
1830
1831                // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir`
1832                let abstract_const = tcx.thir_abstract_const(def_id);
1833                if let Ok(Some(abstract_const)) = abstract_const {
1834                    record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const);
1835                }
1836
1837                if should_encode_const(tcx.def_kind(def_id)) {
1838                    let qualifs = tcx.mir_const_qualif(def_id);
1839                    record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs);
1840                    let body = tcx.hir_maybe_body_owned_by(def_id);
1841                    if let Some(body) = body {
1842                        let const_data = rendered_const(self.tcx, &body, def_id);
1843                        record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data);
1844                    }
1845                }
1846            }
1847            if !is_trivial {
1848                record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id));
1849            }
1850
1851            if self.tcx.is_coroutine(def_id.to_def_id())
1852                && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1853            {
1854                record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1855            }
1856        }
1857
1858        // Encode all the deduced parameter attributes for everything that has MIR, even for items
1859        // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to
1860        // save the query traffic.
1861        if tcx.sess.opts.output_types.should_codegen()
1862            && tcx.sess.opts.optimize != OptLevel::No
1863            && tcx.sess.opts.incremental.is_none()
1864        {
1865            for &local_def_id in tcx.mir_keys(()) {
1866                if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) {
1867                    record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <-
1868                        self.tcx.deduced_param_attrs(local_def_id.to_def_id()));
1869                }
1870            }
1871        }
1872    }
1873
1874    #[instrument(level = "debug", skip(self))]
1875    fn encode_stability(&mut self, def_id: DefId) {
1876        // The query lookup can take a measurable amount of time in crates with many items. Check if
1877        // the stability attributes are even enabled before using their queries.
1878        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1879            if let Some(stab) = self.tcx.lookup_stability(def_id) {
1880                record!(self.tables.lookup_stability[def_id] <- stab)
1881            }
1882        }
1883    }
1884
1885    #[instrument(level = "debug", skip(self))]
1886    fn encode_const_stability(&mut self, def_id: DefId) {
1887        // The query lookup can take a measurable amount of time in crates with many items. Check if
1888        // the stability attributes are even enabled before using their queries.
1889        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1890            if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1891                record!(self.tables.lookup_const_stability[def_id] <- stab)
1892            }
1893        }
1894    }
1895
1896    #[instrument(level = "debug", skip(self))]
1897    fn encode_default_body_stability(&mut self, def_id: DefId) {
1898        // The query lookup can take a measurable amount of time in crates with many items. Check if
1899        // the stability attributes are even enabled before using their queries.
1900        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1901            if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) {
1902                record!(self.tables.lookup_default_body_stability[def_id] <- stab)
1903            }
1904        }
1905    }
1906
1907    #[instrument(level = "debug", skip(self))]
1908    fn encode_deprecation(&mut self, def_id: DefId) {
1909        if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1910            record!(self.tables.lookup_deprecation_entry[def_id] <- depr);
1911        }
1912    }
1913
1914    #[instrument(level = "debug", skip(self))]
1915    fn encode_info_for_macro(&mut self, def_id: LocalDefId) {
1916        let tcx = self.tcx;
1917
1918        let (_, macro_def, _) = tcx.hir_expect_item(def_id).expect_macro();
1919        self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules);
1920        record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body);
1921    }
1922
1923    fn encode_native_libraries(&mut self) -> LazyArray<NativeLib> {
1924        empty_proc_macro!(self);
1925        let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1926        self.lazy_array(used_libraries.iter())
1927    }
1928
1929    fn encode_foreign_modules(&mut self) -> LazyArray<ForeignModule> {
1930        empty_proc_macro!(self);
1931        let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1932        self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned())
1933    }
1934
1935    fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) {
1936        let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1937        let mut expn_data_table: TableBuilder<_, _> = Default::default();
1938        let mut expn_hash_table: TableBuilder<_, _> = Default::default();
1939
1940        self.hygiene_ctxt.encode(
1941            &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table),
1942            |(this, syntax_contexts, _, _), index, ctxt_data| {
1943                syntax_contexts.set_some(index, this.lazy(ctxt_data));
1944            },
1945            |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| {
1946                if let Some(index) = index.as_local() {
1947                    expn_data_table.set_some(index.as_raw(), this.lazy(expn_data));
1948                    expn_hash_table.set_some(index.as_raw(), this.lazy(hash));
1949                }
1950            },
1951        );
1952
1953        (
1954            syntax_contexts.encode(&mut self.opaque),
1955            expn_data_table.encode(&mut self.opaque),
1956            expn_hash_table.encode(&mut self.opaque),
1957        )
1958    }
1959
1960    fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1961        let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro);
1962        if is_proc_macro {
1963            let tcx = self.tcx;
1964            let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index;
1965            let stability = tcx.lookup_stability(CRATE_DEF_ID);
1966            let macros =
1967                self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index));
1968            for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() {
1969                let span = self.lazy(span);
1970                self.tables.proc_macro_quoted_spans.set_some(i, span);
1971            }
1972
1973            self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod);
1974            record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id()));
1975            self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local());
1976            let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index);
1977            record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis);
1978            if let Some(stability) = stability {
1979                record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability);
1980            }
1981            self.encode_deprecation(LOCAL_CRATE.as_def_id());
1982            if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) {
1983                record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map);
1984            }
1985            if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) {
1986                record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits);
1987            }
1988
1989            // Normally, this information is encoded when we walk the items
1990            // defined in this crate. However, we skip doing that for proc-macro crates,
1991            // so we manually encode just the information that we need
1992            for &proc_macro in &tcx.resolutions(()).proc_macros {
1993                let id = proc_macro;
1994                let proc_macro = tcx.local_def_id_to_hir_id(proc_macro);
1995                let mut name = tcx.hir_name(proc_macro);
1996                let span = tcx.hir_span(proc_macro);
1997                // Proc-macros may have attributes like `#[allow_internal_unstable]`,
1998                // so downstream crates need access to them.
1999                let attrs = tcx.hir_attrs(proc_macro);
2000                let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
2001                    MacroKind::Bang
2002                } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
2003                    MacroKind::Attr
2004                } else if let Some(trait_name) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, ..} => trait_name)
2005                {
2006                    name = *trait_name;
2007                    MacroKind::Derive
2008                } else {
2009                    bug!("Unknown proc-macro type for item {:?}", id);
2010                };
2011
2012                let mut def_key = self.tcx.hir_def_key(id);
2013                def_key.disambiguated_data.data = DefPathData::MacroNs(name);
2014
2015                let def_id = id.to_def_id();
2016                self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind.into()));
2017                self.tables.proc_macro.set_some(def_id.index, macro_kind);
2018                self.encode_attrs(id);
2019                record!(self.tables.def_keys[def_id] <- def_key);
2020                record!(self.tables.def_ident_span[def_id] <- span);
2021                record!(self.tables.def_span[def_id] <- span);
2022                record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
2023                if let Some(stability) = stability {
2024                    record!(self.tables.lookup_stability[def_id] <- stability);
2025                }
2026            }
2027
2028            Some(ProcMacroData { proc_macro_decls_static, stability, macros })
2029        } else {
2030            None
2031        }
2032    }
2033
2034    fn encode_debugger_visualizers(&mut self) -> LazyArray<DebuggerVisualizerFile> {
2035        empty_proc_macro!(self);
2036        self.lazy_array(
2037            self.tcx
2038                .debugger_visualizers(LOCAL_CRATE)
2039                .iter()
2040                // Erase the path since it may contain privacy sensitive data
2041                // that we don't want to end up in crate metadata.
2042                // The path is only needed for the local crate because of
2043                // `--emit dep-info`.
2044                .map(DebuggerVisualizerFile::path_erased),
2045        )
2046    }
2047
2048    fn encode_crate_deps(&mut self) -> LazyArray<CrateDep> {
2049        empty_proc_macro!(self);
2050
2051        let deps = self
2052            .tcx
2053            .crates(())
2054            .iter()
2055            .map(|&cnum| {
2056                let dep = CrateDep {
2057                    name: self.tcx.crate_name(cnum),
2058                    hash: self.tcx.crate_hash(cnum),
2059                    host_hash: self.tcx.crate_host_hash(cnum),
2060                    kind: self.tcx.dep_kind(cnum),
2061                    extra_filename: self.tcx.extra_filename(cnum).clone(),
2062                    is_private: self.tcx.is_private_dep(cnum),
2063                };
2064                (cnum, dep)
2065            })
2066            .collect::<Vec<_>>();
2067
2068        {
2069            // Sanity-check the crate numbers
2070            let mut expected_cnum = 1;
2071            for &(n, _) in &deps {
2072                assert_eq!(n, CrateNum::new(expected_cnum));
2073                expected_cnum += 1;
2074            }
2075        }
2076
2077        // We're just going to write a list of crate 'name-hash-version's, with
2078        // the assumption that they are numbered 1 to n.
2079        // FIXME (#2166): This is not nearly enough to support correct versioning
2080        // but is enough to get transitive crate dependencies working.
2081        self.lazy_array(deps.iter().map(|(_, dep)| dep))
2082    }
2083
2084    fn encode_target_modifiers(&mut self) -> LazyArray<TargetModifier> {
2085        empty_proc_macro!(self);
2086        let tcx = self.tcx;
2087        self.lazy_array(tcx.sess.opts.gather_target_modifiers())
2088    }
2089
2090    fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> {
2091        empty_proc_macro!(self);
2092        let tcx = self.tcx;
2093        let lib_features = tcx.lib_features(LOCAL_CRATE);
2094        self.lazy_array(lib_features.to_sorted_vec())
2095    }
2096
2097    fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> {
2098        empty_proc_macro!(self);
2099        let tcx = self.tcx;
2100        let implications = tcx.stability_implications(LOCAL_CRATE);
2101        let sorted = implications.to_sorted_stable_ord();
2102        self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v)))
2103    }
2104
2105    fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> {
2106        empty_proc_macro!(self);
2107        let tcx = self.tcx;
2108        let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id;
2109        self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
2110    }
2111
2112    fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> {
2113        empty_proc_macro!(self);
2114        let lang_items = self.tcx.lang_items().iter();
2115        self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| {
2116            def_id.as_local().map(|id| (id.local_def_index, lang_item))
2117        }))
2118    }
2119
2120    fn encode_lang_items_missing(&mut self) -> LazyArray<LangItem> {
2121        empty_proc_macro!(self);
2122        let tcx = self.tcx;
2123        self.lazy_array(&tcx.lang_items().missing)
2124    }
2125
2126    fn encode_stripped_cfg_items(&mut self) -> LazyArray<StrippedCfgItem<DefIndex>> {
2127        self.lazy_array(
2128            self.tcx
2129                .stripped_cfg_items(LOCAL_CRATE)
2130                .into_iter()
2131                .map(|item| item.clone().map_mod_id(|def_id| def_id.index)),
2132        )
2133    }
2134
2135    fn encode_traits(&mut self) -> LazyArray<DefIndex> {
2136        empty_proc_macro!(self);
2137        self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2138    }
2139
2140    /// Encodes an index, mapping each trait to its (local) implementations.
2141    #[instrument(level = "debug", skip(self))]
2142    fn encode_impls(&mut self) -> LazyArray<TraitImpls> {
2143        empty_proc_macro!(self);
2144        let tcx = self.tcx;
2145        let mut trait_impls: FxIndexMap<DefId, Vec<(DefIndex, Option<SimplifiedType>)>> =
2146            FxIndexMap::default();
2147
2148        for id in tcx.hir_free_items() {
2149            let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else {
2150                continue;
2151            };
2152            let def_id = id.owner_id.to_def_id();
2153
2154            if of_trait {
2155                let header = tcx.impl_trait_header(def_id);
2156                record!(self.tables.impl_trait_header[def_id] <- header);
2157
2158                self.tables.defaultness.set(def_id.index, tcx.defaultness(def_id));
2159
2160                let trait_ref = header.trait_ref.instantiate_identity();
2161                let simplified_self_ty = fast_reject::simplify_type(
2162                    self.tcx,
2163                    trait_ref.self_ty(),
2164                    TreatParams::InstantiateWithInfer,
2165                );
2166                trait_impls
2167                    .entry(trait_ref.def_id)
2168                    .or_default()
2169                    .push((id.owner_id.def_id.local_def_index, simplified_self_ty));
2170
2171                let trait_def = tcx.trait_def(trait_ref.def_id);
2172                if let Ok(mut an) = trait_def.ancestors(tcx, def_id)
2173                    && let Some(specialization_graph::Node::Impl(parent)) = an.nth(1)
2174                {
2175                    self.tables.impl_parent.set_some(def_id.index, parent.into());
2176                }
2177
2178                // if this is an impl of `CoerceUnsized`, create its
2179                // "unsized info", else just store None
2180                if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) {
2181                    let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap();
2182                    record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info);
2183                }
2184            }
2185        }
2186
2187        let trait_impls: Vec<_> = trait_impls
2188            .into_iter()
2189            .map(|(trait_def_id, impls)| TraitImpls {
2190                trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
2191                impls: self.lazy_array(&impls),
2192            })
2193            .collect();
2194
2195        self.lazy_array(&trait_impls)
2196    }
2197
2198    #[instrument(level = "debug", skip(self))]
2199    fn encode_incoherent_impls(&mut self) -> LazyArray<IncoherentImpls> {
2200        empty_proc_macro!(self);
2201        let tcx = self.tcx;
2202
2203        let all_impls: Vec<_> = tcx
2204            .crate_inherent_impls(())
2205            .0
2206            .incoherent_impls
2207            .iter()
2208            .map(|(&simp, impls)| IncoherentImpls {
2209                self_ty: simp,
2210                impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)),
2211            })
2212            .collect();
2213
2214        self.lazy_array(&all_impls)
2215    }
2216
2217    fn encode_exportable_items(&mut self) -> LazyArray<DefIndex> {
2218        empty_proc_macro!(self);
2219        self.lazy_array(self.tcx.exportable_items(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2220    }
2221
2222    fn encode_stable_order_of_exportable_impls(&mut self) -> LazyArray<(DefIndex, usize)> {
2223        empty_proc_macro!(self);
2224        let stable_order_of_exportable_impls =
2225            self.tcx.stable_order_of_exportable_impls(LOCAL_CRATE);
2226        self.lazy_array(
2227            stable_order_of_exportable_impls.iter().map(|(def_id, idx)| (def_id.index, *idx)),
2228        )
2229    }
2230
2231    // Encodes all symbols exported from this crate into the metadata.
2232    //
2233    // This pass is seeded off the reachability list calculated in the
2234    // middle::reachable module but filters out items that either don't have a
2235    // symbol associated with them (they weren't translated) or if they're an FFI
2236    // definition (as that's not defined in this crate).
2237    fn encode_exported_symbols(
2238        &mut self,
2239        exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)],
2240    ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> {
2241        empty_proc_macro!(self);
2242
2243        self.lazy_array(exported_symbols.iter().cloned())
2244    }
2245
2246    fn encode_dylib_dependency_formats(&mut self) -> LazyArray<Option<LinkagePreference>> {
2247        empty_proc_macro!(self);
2248        let formats = self.tcx.dependency_formats(());
2249        if let Some(arr) = formats.get(&CrateType::Dylib) {
2250            return self.lazy_array(arr.iter().skip(1 /* skip LOCAL_CRATE */).map(
2251                |slot| match *slot {
2252                    Linkage::NotLinked | Linkage::IncludedFromDylib => None,
2253
2254                    Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
2255                    Linkage::Static => Some(LinkagePreference::RequireStatic),
2256                },
2257            ));
2258        }
2259        LazyArray::default()
2260    }
2261}
2262
2263/// Used to prefetch queries which will be needed later by metadata encoding.
2264/// Only a subset of the queries are actually prefetched to keep this code smaller.
2265fn prefetch_mir(tcx: TyCtxt<'_>) {
2266    if !tcx.sess.opts.output_types.should_codegen() {
2267        // We won't emit MIR, so don't prefetch it.
2268        return;
2269    }
2270
2271    let reachable_set = tcx.reachable_set(());
2272    par_for_each_in(tcx.mir_keys(()), |&&def_id| {
2273        if tcx.is_trivial_const(def_id) {
2274            return;
2275        }
2276        let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
2277
2278        if encode_const {
2279            tcx.ensure_done().mir_for_ctfe(def_id);
2280        }
2281        if encode_opt {
2282            tcx.ensure_done().optimized_mir(def_id);
2283        }
2284        if encode_opt || encode_const {
2285            tcx.ensure_done().promoted_mir(def_id);
2286        }
2287    })
2288}
2289
2290// NOTE(eddyb) The following comment was preserved for posterity, even
2291// though it's no longer relevant as EBML (which uses nested & tagged
2292// "documents") was replaced with a scheme that can't go out of bounds.
2293//
2294// And here we run into yet another obscure archive bug: in which metadata
2295// loaded from archives may have trailing garbage bytes. Awhile back one of
2296// our tests was failing sporadically on the macOS 64-bit builders (both nopt
2297// and opt) by having ebml generate an out-of-bounds panic when looking at
2298// metadata.
2299//
2300// Upon investigation it turned out that the metadata file inside of an rlib
2301// (and ar archive) was being corrupted. Some compilations would generate a
2302// metadata file which would end in a few extra bytes, while other
2303// compilations would not have these extra bytes appended to the end. These
2304// extra bytes were interpreted by ebml as an extra tag, so they ended up
2305// being interpreted causing the out-of-bounds.
2306//
2307// The root cause of why these extra bytes were appearing was never
2308// discovered, and in the meantime the solution we're employing is to insert
2309// the length of the metadata to the start of the metadata. Later on this
2310// will allow us to slice the metadata to the precise length that we just
2311// generated regardless of trailing bytes that end up in it.
2312
2313pub struct EncodedMetadata {
2314    // The declaration order matters because `full_metadata` should be dropped
2315    // before `_temp_dir`.
2316    full_metadata: Option<Mmap>,
2317    // This is an optional stub metadata containing only the crate header.
2318    // The header should be very small, so we load it directly into memory.
2319    stub_metadata: Option<Vec<u8>>,
2320    // The path containing the metadata, to record as work product.
2321    path: Option<Box<Path>>,
2322    // We need to carry MaybeTempDir to avoid deleting the temporary
2323    // directory while accessing the Mmap.
2324    _temp_dir: Option<MaybeTempDir>,
2325}
2326
2327impl EncodedMetadata {
2328    #[inline]
2329    pub fn from_path(
2330        path: PathBuf,
2331        stub_path: Option<PathBuf>,
2332        temp_dir: Option<MaybeTempDir>,
2333    ) -> std::io::Result<Self> {
2334        let file = std::fs::File::open(&path)?;
2335        let file_metadata = file.metadata()?;
2336        if file_metadata.len() == 0 {
2337            return Ok(Self {
2338                full_metadata: None,
2339                stub_metadata: None,
2340                path: None,
2341                _temp_dir: None,
2342            });
2343        }
2344        let full_mmap = unsafe { Some(Mmap::map(file)?) };
2345
2346        let stub =
2347            if let Some(stub_path) = stub_path { Some(std::fs::read(stub_path)?) } else { None };
2348
2349        Ok(Self {
2350            full_metadata: full_mmap,
2351            stub_metadata: stub,
2352            path: Some(path.into()),
2353            _temp_dir: temp_dir,
2354        })
2355    }
2356
2357    #[inline]
2358    pub fn full(&self) -> &[u8] {
2359        &self.full_metadata.as_deref().unwrap_or_default()
2360    }
2361
2362    #[inline]
2363    pub fn stub_or_full(&self) -> &[u8] {
2364        self.stub_metadata.as_deref().unwrap_or(self.full())
2365    }
2366
2367    #[inline]
2368    pub fn path(&self) -> Option<&Path> {
2369        self.path.as_deref()
2370    }
2371}
2372
2373impl<S: Encoder> Encodable<S> for EncodedMetadata {
2374    fn encode(&self, s: &mut S) {
2375        self.stub_metadata.encode(s);
2376
2377        let slice = self.full();
2378        slice.encode(s)
2379    }
2380}
2381
2382impl<D: Decoder> Decodable<D> for EncodedMetadata {
2383    fn decode(d: &mut D) -> Self {
2384        let stub = <Option<Vec<u8>>>::decode(d);
2385
2386        let len = d.read_usize();
2387        let full_metadata = if len > 0 {
2388            let mut mmap = MmapMut::map_anon(len).unwrap();
2389            mmap.copy_from_slice(d.read_raw_bytes(len));
2390            Some(mmap.make_read_only().unwrap())
2391        } else {
2392            None
2393        };
2394
2395        Self { full_metadata, stub_metadata: stub, path: None, _temp_dir: None }
2396    }
2397}
2398
2399#[instrument(level = "trace", skip(tcx))]
2400pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path, ref_path: Option<&Path>) {
2401    // Since encoding metadata is not in a query, and nothing is cached,
2402    // there's no need to do dep-graph tracking for any of it.
2403    tcx.dep_graph.assert_ignored();
2404
2405    // Generate the metadata stub manually, as that is a small file compared to full metadata.
2406    if let Some(ref_path) = ref_path {
2407        let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata_stub");
2408
2409        with_encode_metadata_header(tcx, ref_path, |ecx| {
2410            let header: LazyValue<CrateHeader> = ecx.lazy(CrateHeader {
2411                name: tcx.crate_name(LOCAL_CRATE),
2412                triple: tcx.sess.opts.target_triple.clone(),
2413                hash: tcx.crate_hash(LOCAL_CRATE),
2414                is_proc_macro_crate: false,
2415                is_stub: true,
2416            });
2417            header.position.get()
2418        })
2419    }
2420
2421    let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata");
2422
2423    let dep_node = tcx.metadata_dep_node();
2424
2425    // If the metadata dep-node is green, try to reuse the saved work product.
2426    if tcx.dep_graph.is_fully_enabled()
2427        && let work_product_id = WorkProductId::from_cgu_name("metadata")
2428        && let Some(work_product) = tcx.dep_graph.previous_work_product(&work_product_id)
2429        && tcx.try_mark_green(&dep_node)
2430    {
2431        let saved_path = &work_product.saved_files["rmeta"];
2432        let incr_comp_session_dir = tcx.sess.incr_comp_session_dir_opt().unwrap();
2433        let source_file = rustc_incremental::in_incr_comp_dir(&incr_comp_session_dir, saved_path);
2434        debug!("copying preexisting metadata from {source_file:?} to {path:?}");
2435        match rustc_fs_util::link_or_copy(&source_file, path) {
2436            Ok(_) => {}
2437            Err(err) => tcx.dcx().emit_fatal(FailCreateFileEncoder { err }),
2438        };
2439        return;
2440    };
2441
2442    if tcx.sess.threads() != 1 {
2443        // Prefetch some queries used by metadata encoding.
2444        // This is not necessary for correctness, but is only done for performance reasons.
2445        // It can be removed if it turns out to cause trouble or be detrimental to performance.
2446        join(
2447            || prefetch_mir(tcx),
2448            || {
2449                let _ = tcx.exported_non_generic_symbols(LOCAL_CRATE);
2450                let _ = tcx.exported_generic_symbols(LOCAL_CRATE);
2451            },
2452        );
2453    }
2454
2455    // Perform metadata encoding inside a task, so the dep-graph can check if any encoded
2456    // information changes, and maybe reuse the work product.
2457    tcx.dep_graph.with_task(
2458        dep_node,
2459        tcx,
2460        path,
2461        |tcx, path| {
2462            with_encode_metadata_header(tcx, path, |ecx| {
2463                // Encode all the entries and extra information in the crate,
2464                // culminating in the `CrateRoot` which points to all of it.
2465                let root = ecx.encode_crate_root();
2466
2467                // Flush buffer to ensure backing file has the correct size.
2468                ecx.opaque.flush();
2469                // Record metadata size for self-profiling
2470                tcx.prof.artifact_size(
2471                    "crate_metadata",
2472                    "crate_metadata",
2473                    ecx.opaque.file().metadata().unwrap().len(),
2474                );
2475
2476                root.position.get()
2477            })
2478        },
2479        None,
2480    );
2481}
2482
2483fn with_encode_metadata_header(
2484    tcx: TyCtxt<'_>,
2485    path: &Path,
2486    f: impl FnOnce(&mut EncodeContext<'_, '_>) -> usize,
2487) {
2488    let mut encoder = opaque::FileEncoder::new(path)
2489        .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err }));
2490    encoder.emit_raw_bytes(METADATA_HEADER);
2491
2492    // Will be filled with the root position after encoding everything.
2493    encoder.emit_raw_bytes(&0u64.to_le_bytes());
2494
2495    let source_map_files = tcx.sess.source_map().files();
2496    let source_file_cache = (Arc::clone(&source_map_files[0]), 0);
2497    let required_source_files = Some(FxIndexSet::default());
2498    drop(source_map_files);
2499
2500    let hygiene_ctxt = HygieneEncodeContext::default();
2501
2502    let mut ecx = EncodeContext {
2503        opaque: encoder,
2504        tcx,
2505        feat: tcx.features(),
2506        tables: Default::default(),
2507        lazy_state: LazyState::NoNode,
2508        span_shorthands: Default::default(),
2509        type_shorthands: Default::default(),
2510        predicate_shorthands: Default::default(),
2511        source_file_cache,
2512        interpret_allocs: Default::default(),
2513        required_source_files,
2514        is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro),
2515        hygiene_ctxt: &hygiene_ctxt,
2516        symbol_index_table: Default::default(),
2517    };
2518
2519    // Encode the rustc version string in a predictable location.
2520    rustc_version(tcx.sess.cfg_version).encode(&mut ecx);
2521
2522    let root_position = f(&mut ecx);
2523
2524    // Make sure we report any errors from writing to the file.
2525    // If we forget this, compilation can succeed with an incomplete rmeta file,
2526    // causing an ICE when the rmeta file is read by another compilation.
2527    if let Err((path, err)) = ecx.opaque.finish() {
2528        tcx.dcx().emit_fatal(FailWriteFile { path: &path, err });
2529    }
2530
2531    let file = ecx.opaque.file();
2532    if let Err(err) = encode_root_position(file, root_position) {
2533        tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err });
2534    }
2535}
2536
2537fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> {
2538    // We will return to this position after writing the root position.
2539    let pos_before_seek = file.stream_position().unwrap();
2540
2541    // Encode the root position.
2542    let header = METADATA_HEADER.len();
2543    file.seek(std::io::SeekFrom::Start(header as u64))?;
2544    file.write_all(&pos.to_le_bytes())?;
2545
2546    // Return to the position where we are before writing the root position.
2547    file.seek(std::io::SeekFrom::Start(pos_before_seek))?;
2548    Ok(())
2549}
2550
2551pub(crate) fn provide(providers: &mut Providers) {
2552    *providers = Providers {
2553        doc_link_resolutions: |tcx, def_id| {
2554            tcx.resolutions(())
2555                .doc_link_resolutions
2556                .get(&def_id)
2557                .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link"))
2558        },
2559        doc_link_traits_in_scope: |tcx, def_id| {
2560            tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| {
2561                span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link")
2562            })
2563        },
2564
2565        ..*providers
2566    }
2567}
2568
2569/// Build a textual representation of an unevaluated constant expression.
2570///
2571/// If the const expression is too complex, an underscore `_` is returned.
2572/// For const arguments, it's `{ _ }` to be precise.
2573/// This means that the output is not necessarily valid Rust code.
2574///
2575/// Currently, only
2576///
2577/// * literals (optionally with a leading `-`)
2578/// * unit `()`
2579/// * blocks (`{ … }`) around simple expressions and
2580/// * paths without arguments
2581///
2582/// are considered simple enough. Simple blocks are included since they are
2583/// necessary to disambiguate unit from the unit type.
2584/// This list might get extended in the future.
2585///
2586/// Without this censoring, in a lot of cases the output would get too large
2587/// and verbose. Consider `match` expressions, blocks and deeply nested ADTs.
2588/// Further, private and `doc(hidden)` fields of structs would get leaked
2589/// since HIR datatypes like the `body` parameter do not contain enough
2590/// semantic information for this function to be able to hide them –
2591/// at least not without significant performance overhead.
2592///
2593/// Whenever possible, prefer to evaluate the constant first and try to
2594/// use a different method for pretty-printing. Ideally this function
2595/// should only ever be used as a fallback.
2596pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String {
2597    let value = body.value;
2598
2599    #[derive(PartialEq, Eq)]
2600    enum Classification {
2601        Literal,
2602        Simple,
2603        Complex,
2604    }
2605
2606    use Classification::*;
2607
2608    fn classify(expr: &hir::Expr<'_>) -> Classification {
2609        match &expr.kind {
2610            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
2611                if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex }
2612            }
2613            hir::ExprKind::Lit(_) => Literal,
2614            hir::ExprKind::Tup([]) => Simple,
2615            hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => {
2616                if classify(expr) == Complex { Complex } else { Simple }
2617            }
2618            // Paths with a self-type or arguments are too “complex” following our measure since
2619            // they may leak private fields of structs (with feature `adt_const_params`).
2620            // Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`.
2621            // Paths without arguments are definitely harmless though.
2622            hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => {
2623                if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex }
2624            }
2625            // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty
2626            //        contains const arguments. Is there a *concise* way to check for this?
2627            hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple,
2628            _ => Complex,
2629        }
2630    }
2631
2632    match classify(value) {
2633        // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet
2634        // instead to preserve certain stylistic choices the user likely made for the sake of
2635        // legibility, like:
2636        //
2637        // * hexadecimal notation
2638        // * underscores
2639        // * character escapes
2640        //
2641        // FIXME: This passes through `-/*spacer*/0` verbatim.
2642        Literal
2643            if !value.span.from_expansion()
2644                && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) =>
2645        {
2646            snippet
2647        }
2648
2649        // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and
2650        // other formatting artifacts.
2651        Literal | Simple => id_to_string(&tcx, body.id().hir_id),
2652
2653        // FIXME: Omit the curly braces if the enclosing expression is an array literal
2654        //        with a repeated element (an `ExprKind::Repeat`) as in such case it
2655        //        would not actually need any disambiguation.
2656        Complex => {
2657            if tcx.def_kind(def_id) == DefKind::AnonConst {
2658                "{ _ }".to_owned()
2659            } else {
2660                "_".to_owned()
2661            }
2662        }
2663    }
2664}