rustc_mir_build/builder/expr/
as_rvalue.rs

1//! See docs in `build/expr/mod.rs`.
2
3use rustc_abi::FieldIdx;
4use rustc_hir::lang_items::LangItem;
5use rustc_index::{Idx, IndexVec};
6use rustc_middle::bug;
7use rustc_middle::middle::region;
8use rustc_middle::mir::interpret::Scalar;
9use rustc_middle::mir::*;
10use rustc_middle::thir::*;
11use rustc_middle::ty::cast::{CastTy, mir_cast_kind};
12use rustc_middle::ty::util::IntTypeExt;
13use rustc_middle::ty::{self, Ty, UpvarArgs};
14use rustc_span::source_map::Spanned;
15use rustc_span::{DUMMY_SP, Span};
16use tracing::debug;
17
18use crate::builder::expr::as_place::PlaceBase;
19use crate::builder::expr::category::{Category, RvalueFunc};
20use crate::builder::{BlockAnd, BlockAndExtension, Builder, NeedsTemporary};
21
22impl<'a, 'tcx> Builder<'a, 'tcx> {
23    /// Returns an rvalue suitable for use until the end of the current
24    /// scope expression.
25    ///
26    /// The operand returned from this function will *not be valid* after
27    /// an ExprKind::Scope is passed, so please do *not* return it from
28    /// functions to avoid bad miscompiles.
29    pub(crate) fn as_local_rvalue(
30        &mut self,
31        block: BasicBlock,
32        expr_id: ExprId,
33    ) -> BlockAnd<Rvalue<'tcx>> {
34        let local_scope = self.local_scope();
35        self.as_rvalue(
36            block,
37            TempLifetime { temp_lifetime: Some(local_scope), backwards_incompatible: None },
38            expr_id,
39        )
40    }
41
42    /// Compile `expr`, yielding an rvalue.
43    pub(crate) fn as_rvalue(
44        &mut self,
45        mut block: BasicBlock,
46        scope: TempLifetime,
47        expr_id: ExprId,
48    ) -> BlockAnd<Rvalue<'tcx>> {
49        let this = self;
50        let expr = &this.thir[expr_id];
51        debug!("expr_as_rvalue(block={:?}, scope={:?}, expr={:?})", block, scope, expr);
52
53        let expr_span = expr.span;
54        let source_info = this.source_info(expr_span);
55
56        match expr.kind {
57            ExprKind::ThreadLocalRef(did) => block.and(Rvalue::ThreadLocalRef(did)),
58            ExprKind::Scope { region_scope, lint_level, value } => {
59                let region_scope = (region_scope, source_info);
60                this.in_scope(region_scope, lint_level, |this| this.as_rvalue(block, scope, value))
61            }
62            ExprKind::Repeat { value, count } => {
63                if Some(0) == count.try_to_target_usize(this.tcx) {
64                    this.build_zero_repeat(block, value, scope, source_info)
65                } else {
66                    let value_operand = unpack!(
67                        block = this.as_operand(
68                            block,
69                            scope,
70                            value,
71                            LocalInfo::Boring,
72                            NeedsTemporary::No
73                        )
74                    );
75                    block.and(Rvalue::Repeat(value_operand, count))
76                }
77            }
78            ExprKind::Binary { op, lhs, rhs } => {
79                let lhs = unpack!(
80                    block = this.as_operand(
81                        block,
82                        scope,
83                        lhs,
84                        LocalInfo::Boring,
85                        NeedsTemporary::Maybe
86                    )
87                );
88                let rhs = unpack!(
89                    block =
90                        this.as_operand(block, scope, rhs, LocalInfo::Boring, NeedsTemporary::No)
91                );
92                this.build_binary_op(block, op, expr_span, expr.ty, lhs, rhs)
93            }
94            ExprKind::Unary { op, arg } => {
95                let arg = unpack!(
96                    block =
97                        this.as_operand(block, scope, arg, LocalInfo::Boring, NeedsTemporary::No)
98                );
99                // Check for -MIN on signed integers
100                if this.check_overflow && op == UnOp::Neg && expr.ty.is_signed() {
101                    let bool_ty = this.tcx.types.bool;
102
103                    let minval = this.minval_literal(expr_span, expr.ty);
104                    let is_min = this.temp(bool_ty, expr_span);
105
106                    this.cfg.push_assign(
107                        block,
108                        source_info,
109                        is_min,
110                        Rvalue::BinaryOp(BinOp::Eq, Box::new((arg.to_copy(), minval))),
111                    );
112
113                    block = this.assert(
114                        block,
115                        Operand::Move(is_min),
116                        false,
117                        AssertKind::OverflowNeg(arg.to_copy()),
118                        expr_span,
119                    );
120                }
121                block.and(Rvalue::UnaryOp(op, arg))
122            }
123            ExprKind::Box { value } => {
124                let value_ty = this.thir[value].ty;
125                let tcx = this.tcx;
126                let source_info = this.source_info(expr_span);
127
128                let size = this.temp(tcx.types.usize, expr_span);
129                this.cfg.push_assign(
130                    block,
131                    source_info,
132                    size,
133                    Rvalue::NullaryOp(NullOp::SizeOf, value_ty),
134                );
135
136                let align = this.temp(tcx.types.usize, expr_span);
137                this.cfg.push_assign(
138                    block,
139                    source_info,
140                    align,
141                    Rvalue::NullaryOp(NullOp::AlignOf, value_ty),
142                );
143
144                // malloc some memory of suitable size and align:
145                let exchange_malloc = Operand::function_handle(
146                    tcx,
147                    tcx.require_lang_item(LangItem::ExchangeMalloc, expr_span),
148                    [],
149                    expr_span,
150                );
151                let storage = this.temp(Ty::new_mut_ptr(tcx, tcx.types.u8), expr_span);
152                let success = this.cfg.start_new_block();
153                this.cfg.terminate(
154                    block,
155                    source_info,
156                    TerminatorKind::Call {
157                        func: exchange_malloc,
158                        args: [
159                            Spanned { node: Operand::Move(size), span: DUMMY_SP },
160                            Spanned { node: Operand::Move(align), span: DUMMY_SP },
161                        ]
162                        .into(),
163                        destination: storage,
164                        target: Some(success),
165                        unwind: UnwindAction::Continue,
166                        call_source: CallSource::Misc,
167                        fn_span: expr_span,
168                    },
169                );
170                this.diverge_from(block);
171                block = success;
172
173                let result = this.local_decls.push(LocalDecl::new(expr.ty, expr_span));
174                this.cfg
175                    .push(block, Statement::new(source_info, StatementKind::StorageLive(result)));
176                if let Some(scope) = scope.temp_lifetime {
177                    // schedule a shallow free of that memory, lest we unwind:
178                    this.schedule_drop_storage_and_value(expr_span, scope, result);
179                }
180
181                // Transmute `*mut u8` to the box (thus far, uninitialized):
182                let box_ = Rvalue::ShallowInitBox(Operand::Move(storage), value_ty);
183                this.cfg.push_assign(block, source_info, Place::from(result), box_);
184
185                // initialize the box contents:
186                block = this
187                    .expr_into_dest(this.tcx.mk_place_deref(Place::from(result)), block, value)
188                    .into_block();
189                block.and(Rvalue::Use(Operand::Move(Place::from(result))))
190            }
191            ExprKind::Cast { source } => {
192                let source_expr = &this.thir[source];
193
194                // Casting an enum to an integer is equivalent to computing the discriminant and casting the
195                // discriminant. Previously every backend had to repeat the logic for this operation. Now we
196                // create all the steps directly in MIR with operations all backends need to support anyway.
197                let (source, ty) = if let ty::Adt(adt_def, ..) = source_expr.ty.kind()
198                    && adt_def.is_enum()
199                {
200                    let discr_ty = adt_def.repr().discr_type().to_ty(this.tcx);
201                    let temp = unpack!(block = this.as_temp(block, scope, source, Mutability::Not));
202                    let discr = this.temp(discr_ty, source_expr.span);
203                    this.cfg.push_assign(
204                        block,
205                        source_info,
206                        discr,
207                        Rvalue::Discriminant(temp.into()),
208                    );
209                    (Operand::Move(discr), discr_ty)
210                } else {
211                    let ty = source_expr.ty;
212                    let source = unpack!(
213                        block = this.as_operand(
214                            block,
215                            scope,
216                            source,
217                            LocalInfo::Boring,
218                            NeedsTemporary::No
219                        )
220                    );
221                    (source, ty)
222                };
223                let from_ty = CastTy::from_ty(ty);
224                let cast_ty = CastTy::from_ty(expr.ty);
225                debug!("ExprKind::Cast from_ty={from_ty:?}, cast_ty={:?}/{cast_ty:?}", expr.ty);
226                let cast_kind = mir_cast_kind(ty, expr.ty);
227                block.and(Rvalue::Cast(cast_kind, source, expr.ty))
228            }
229            ExprKind::PointerCoercion { cast, source, is_from_as_cast } => {
230                let source = unpack!(
231                    block = this.as_operand(
232                        block,
233                        scope,
234                        source,
235                        LocalInfo::Boring,
236                        NeedsTemporary::No
237                    )
238                );
239                let origin =
240                    if is_from_as_cast { CoercionSource::AsCast } else { CoercionSource::Implicit };
241                block.and(Rvalue::Cast(CastKind::PointerCoercion(cast, origin), source, expr.ty))
242            }
243            ExprKind::Array { ref fields } => {
244                // (*) We would (maybe) be closer to codegen if we
245                // handled this and other aggregate cases via
246                // `into()`, not `as_rvalue` -- in that case, instead
247                // of generating
248                //
249                //     let tmp1 = ...1;
250                //     let tmp2 = ...2;
251                //     dest = Rvalue::Aggregate(Foo, [tmp1, tmp2])
252                //
253                // we could just generate
254                //
255                //     dest.f = ...1;
256                //     dest.g = ...2;
257                //
258                // The problem is that then we would need to:
259                //
260                // (a) have a more complex mechanism for handling
261                //     partial cleanup;
262                // (b) distinguish the case where the type `Foo` has a
263                //     destructor, in which case creating an instance
264                //     as a whole "arms" the destructor, and you can't
265                //     write individual fields; and,
266                // (c) handle the case where the type Foo has no
267                //     fields. We don't want `let x: ();` to compile
268                //     to the same MIR as `let x = ();`.
269
270                // first process the set of fields
271                let el_ty = expr.ty.sequence_element_type(this.tcx);
272                let fields: IndexVec<FieldIdx, _> = fields
273                    .into_iter()
274                    .copied()
275                    .map(|f| {
276                        unpack!(
277                            block = this.as_operand(
278                                block,
279                                scope,
280                                f,
281                                LocalInfo::Boring,
282                                NeedsTemporary::Maybe
283                            )
284                        )
285                    })
286                    .collect();
287
288                block.and(Rvalue::Aggregate(Box::new(AggregateKind::Array(el_ty)), fields))
289            }
290            ExprKind::Tuple { ref fields } => {
291                // see (*) above
292                // first process the set of fields
293                let fields: IndexVec<FieldIdx, _> = fields
294                    .into_iter()
295                    .copied()
296                    .map(|f| {
297                        unpack!(
298                            block = this.as_operand(
299                                block,
300                                scope,
301                                f,
302                                LocalInfo::Boring,
303                                NeedsTemporary::Maybe
304                            )
305                        )
306                    })
307                    .collect();
308
309                block.and(Rvalue::Aggregate(Box::new(AggregateKind::Tuple), fields))
310            }
311            ExprKind::Closure(box ClosureExpr {
312                closure_id,
313                args,
314                ref upvars,
315                ref fake_reads,
316                movability: _,
317            }) => {
318                // Convert the closure fake reads, if any, from `ExprRef` to mir `Place`
319                // and push the fake reads.
320                // This must come before creating the operands. This is required in case
321                // there is a fake read and a borrow of the same path, since otherwise the
322                // fake read might interfere with the borrow. Consider an example like this
323                // one:
324                // ```
325                // let mut x = 0;
326                // let c = || {
327                //     &mut x; // mutable borrow of `x`
328                //     match x { _ => () } // fake read of `x`
329                // };
330                // ```
331                //
332                for (thir_place, cause, hir_id) in fake_reads.into_iter() {
333                    let place_builder = unpack!(block = this.as_place_builder(block, *thir_place));
334
335                    if let Some(mir_place) = place_builder.try_to_place(this) {
336                        this.cfg.push_fake_read(
337                            block,
338                            this.source_info(this.tcx.hir_span(*hir_id)),
339                            *cause,
340                            mir_place,
341                        );
342                    }
343                }
344
345                // see (*) above
346                let operands: IndexVec<FieldIdx, _> = upvars
347                    .into_iter()
348                    .copied()
349                    .map(|upvar| {
350                        let upvar_expr = &this.thir[upvar];
351                        match Category::of(&upvar_expr.kind) {
352                            // Use as_place to avoid creating a temporary when
353                            // moving a variable into a closure, so that
354                            // borrowck knows which variables to mark as being
355                            // used as mut. This is OK here because the upvar
356                            // expressions have no side effects and act on
357                            // disjoint places.
358                            // This occurs when capturing by copy/move, while
359                            // by reference captures use as_operand
360                            Some(Category::Place) => {
361                                let place = unpack!(block = this.as_place(block, upvar));
362                                this.consume_by_copy_or_move(place)
363                            }
364                            _ => {
365                                // Turn mutable borrow captures into unique
366                                // borrow captures when capturing an immutable
367                                // variable. This is sound because the mutation
368                                // that caused the capture will cause an error.
369                                match upvar_expr.kind {
370                                    ExprKind::Borrow {
371                                        borrow_kind:
372                                            BorrowKind::Mut { kind: MutBorrowKind::Default },
373                                        arg,
374                                    } => unpack!(
375                                        block = this.limit_capture_mutability(
376                                            upvar_expr.span,
377                                            upvar_expr.ty,
378                                            scope.temp_lifetime,
379                                            block,
380                                            arg,
381                                        )
382                                    ),
383                                    _ => {
384                                        unpack!(
385                                            block = this.as_operand(
386                                                block,
387                                                scope,
388                                                upvar,
389                                                LocalInfo::Boring,
390                                                NeedsTemporary::Maybe
391                                            )
392                                        )
393                                    }
394                                }
395                            }
396                        }
397                    })
398                    .collect();
399
400                let result = match args {
401                    UpvarArgs::Coroutine(args) => {
402                        Box::new(AggregateKind::Coroutine(closure_id.to_def_id(), args))
403                    }
404                    UpvarArgs::Closure(args) => {
405                        Box::new(AggregateKind::Closure(closure_id.to_def_id(), args))
406                    }
407                    UpvarArgs::CoroutineClosure(args) => {
408                        Box::new(AggregateKind::CoroutineClosure(closure_id.to_def_id(), args))
409                    }
410                };
411                block.and(Rvalue::Aggregate(result, operands))
412            }
413            ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
414                block = this.stmt_expr(block, expr_id, None).into_block();
415                block.and(Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
416                    span: expr_span,
417                    user_ty: None,
418                    const_: Const::zero_sized(this.tcx.types.unit),
419                }))))
420            }
421
422            ExprKind::OffsetOf { container, fields } => {
423                block.and(Rvalue::NullaryOp(NullOp::OffsetOf(fields), container))
424            }
425
426            ExprKind::Literal { .. }
427            | ExprKind::NamedConst { .. }
428            | ExprKind::NonHirLiteral { .. }
429            | ExprKind::ZstLiteral { .. }
430            | ExprKind::ConstParam { .. }
431            | ExprKind::ConstBlock { .. }
432            | ExprKind::StaticRef { .. } => {
433                let constant = this.as_constant(expr);
434                block.and(Rvalue::Use(Operand::Constant(Box::new(constant))))
435            }
436
437            ExprKind::WrapUnsafeBinder { source } => {
438                let source = unpack!(
439                    block = this.as_operand(
440                        block,
441                        scope,
442                        source,
443                        LocalInfo::Boring,
444                        NeedsTemporary::Maybe
445                    )
446                );
447                block.and(Rvalue::WrapUnsafeBinder(source, expr.ty))
448            }
449
450            ExprKind::Yield { .. }
451            | ExprKind::Block { .. }
452            | ExprKind::Match { .. }
453            | ExprKind::If { .. }
454            | ExprKind::NeverToAny { .. }
455            | ExprKind::Use { .. }
456            | ExprKind::Borrow { .. }
457            | ExprKind::RawBorrow { .. }
458            | ExprKind::Adt { .. }
459            | ExprKind::Loop { .. }
460            | ExprKind::LoopMatch { .. }
461            | ExprKind::LogicalOp { .. }
462            | ExprKind::Call { .. }
463            | ExprKind::Field { .. }
464            | ExprKind::Let { .. }
465            | ExprKind::Deref { .. }
466            | ExprKind::Index { .. }
467            | ExprKind::VarRef { .. }
468            | ExprKind::UpvarRef { .. }
469            | ExprKind::Break { .. }
470            | ExprKind::Continue { .. }
471            | ExprKind::ConstContinue { .. }
472            | ExprKind::Return { .. }
473            | ExprKind::Become { .. }
474            | ExprKind::InlineAsm { .. }
475            | ExprKind::PlaceTypeAscription { .. }
476            | ExprKind::ValueTypeAscription { .. }
477            | ExprKind::PlaceUnwrapUnsafeBinder { .. }
478            | ExprKind::ValueUnwrapUnsafeBinder { .. } => {
479                // these do not have corresponding `Rvalue` variants,
480                // so make an operand and then return that
481                debug_assert!(!matches!(
482                    Category::of(&expr.kind),
483                    Some(Category::Rvalue(RvalueFunc::AsRvalue) | Category::Constant)
484                ));
485                let operand = unpack!(
486                    block = this.as_operand(
487                        block,
488                        scope,
489                        expr_id,
490                        LocalInfo::Boring,
491                        NeedsTemporary::No,
492                    )
493                );
494                block.and(Rvalue::Use(operand))
495            }
496
497            ExprKind::ByUse { expr, span: _ } => {
498                let operand = unpack!(
499                    block =
500                        this.as_operand(block, scope, expr, LocalInfo::Boring, NeedsTemporary::No)
501                );
502                block.and(Rvalue::Use(operand))
503            }
504        }
505    }
506
507    pub(crate) fn build_binary_op(
508        &mut self,
509        mut block: BasicBlock,
510        op: BinOp,
511        span: Span,
512        ty: Ty<'tcx>,
513        lhs: Operand<'tcx>,
514        rhs: Operand<'tcx>,
515    ) -> BlockAnd<Rvalue<'tcx>> {
516        let source_info = self.source_info(span);
517        let bool_ty = self.tcx.types.bool;
518        let rvalue = match op {
519            BinOp::Add | BinOp::Sub | BinOp::Mul if self.check_overflow && ty.is_integral() => {
520                let result_tup = Ty::new_tup(self.tcx, &[ty, bool_ty]);
521                let result_value = self.temp(result_tup, span);
522
523                let op_with_overflow = op.wrapping_to_overflowing().unwrap();
524
525                self.cfg.push_assign(
526                    block,
527                    source_info,
528                    result_value,
529                    Rvalue::BinaryOp(op_with_overflow, Box::new((lhs.to_copy(), rhs.to_copy()))),
530                );
531                let val_fld = FieldIdx::ZERO;
532                let of_fld = FieldIdx::new(1);
533
534                let tcx = self.tcx;
535                let val = tcx.mk_place_field(result_value, val_fld, ty);
536                let of = tcx.mk_place_field(result_value, of_fld, bool_ty);
537
538                let err = AssertKind::Overflow(op, lhs, rhs);
539                block = self.assert(block, Operand::Move(of), false, err, span);
540
541                Rvalue::Use(Operand::Move(val))
542            }
543            BinOp::Shl | BinOp::Shr if self.check_overflow && ty.is_integral() => {
544                // For an unsigned RHS, the shift is in-range for `rhs < bits`.
545                // For a signed RHS, `IntToInt` cast to the equivalent unsigned
546                // type and do that same comparison.
547                // A negative value will be *at least* 128 after the cast (that's i8::MIN),
548                // and 128 is an overflowing shift amount for all our currently existing types,
549                // so this cast can never make us miss an overflow.
550                let (lhs_size, _) = ty.int_size_and_signed(self.tcx);
551                assert!(lhs_size.bits() <= 128);
552                let rhs_ty = rhs.ty(&self.local_decls, self.tcx);
553                let (rhs_size, _) = rhs_ty.int_size_and_signed(self.tcx);
554
555                let (unsigned_rhs, unsigned_ty) = match rhs_ty.kind() {
556                    ty::Uint(_) => (rhs.to_copy(), rhs_ty),
557                    ty::Int(int_width) => {
558                        let uint_ty = Ty::new_uint(self.tcx, int_width.to_unsigned());
559                        let rhs_temp = self.temp(uint_ty, span);
560                        self.cfg.push_assign(
561                            block,
562                            source_info,
563                            rhs_temp,
564                            Rvalue::Cast(CastKind::IntToInt, rhs.to_copy(), uint_ty),
565                        );
566                        (Operand::Move(rhs_temp), uint_ty)
567                    }
568                    _ => unreachable!("only integers are shiftable"),
569                };
570
571                // This can't overflow because the largest shiftable types are 128-bit,
572                // which fits in `u8`, the smallest possible `unsigned_ty`.
573                let lhs_bits = Operand::const_from_scalar(
574                    self.tcx,
575                    unsigned_ty,
576                    Scalar::from_uint(lhs_size.bits(), rhs_size),
577                    span,
578                );
579
580                let inbounds = self.temp(bool_ty, span);
581                self.cfg.push_assign(
582                    block,
583                    source_info,
584                    inbounds,
585                    Rvalue::BinaryOp(BinOp::Lt, Box::new((unsigned_rhs, lhs_bits))),
586                );
587
588                let overflow_err = AssertKind::Overflow(op, lhs.to_copy(), rhs.to_copy());
589                block = self.assert(block, Operand::Move(inbounds), true, overflow_err, span);
590                Rvalue::BinaryOp(op, Box::new((lhs, rhs)))
591            }
592            BinOp::Div | BinOp::Rem if ty.is_integral() => {
593                // Checking division and remainder is more complex, since we 1. always check
594                // and 2. there are two possible failure cases, divide-by-zero and overflow.
595
596                let zero_err = if op == BinOp::Div {
597                    AssertKind::DivisionByZero(lhs.to_copy())
598                } else {
599                    AssertKind::RemainderByZero(lhs.to_copy())
600                };
601                let overflow_err = AssertKind::Overflow(op, lhs.to_copy(), rhs.to_copy());
602
603                // Check for / 0
604                let is_zero = self.temp(bool_ty, span);
605                let zero = self.zero_literal(span, ty);
606                self.cfg.push_assign(
607                    block,
608                    source_info,
609                    is_zero,
610                    Rvalue::BinaryOp(BinOp::Eq, Box::new((rhs.to_copy(), zero))),
611                );
612
613                block = self.assert(block, Operand::Move(is_zero), false, zero_err, span);
614
615                // We only need to check for the overflow in one case:
616                // MIN / -1, and only for signed values.
617                if ty.is_signed() {
618                    let neg_1 = self.neg_1_literal(span, ty);
619                    let min = self.minval_literal(span, ty);
620
621                    let is_neg_1 = self.temp(bool_ty, span);
622                    let is_min = self.temp(bool_ty, span);
623                    let of = self.temp(bool_ty, span);
624
625                    // this does (rhs == -1) & (lhs == MIN). It could short-circuit instead
626
627                    self.cfg.push_assign(
628                        block,
629                        source_info,
630                        is_neg_1,
631                        Rvalue::BinaryOp(BinOp::Eq, Box::new((rhs.to_copy(), neg_1))),
632                    );
633                    self.cfg.push_assign(
634                        block,
635                        source_info,
636                        is_min,
637                        Rvalue::BinaryOp(BinOp::Eq, Box::new((lhs.to_copy(), min))),
638                    );
639
640                    let is_neg_1 = Operand::Move(is_neg_1);
641                    let is_min = Operand::Move(is_min);
642                    self.cfg.push_assign(
643                        block,
644                        source_info,
645                        of,
646                        Rvalue::BinaryOp(BinOp::BitAnd, Box::new((is_neg_1, is_min))),
647                    );
648
649                    block = self.assert(block, Operand::Move(of), false, overflow_err, span);
650                }
651
652                Rvalue::BinaryOp(op, Box::new((lhs, rhs)))
653            }
654            _ => Rvalue::BinaryOp(op, Box::new((lhs, rhs))),
655        };
656        block.and(rvalue)
657    }
658
659    fn build_zero_repeat(
660        &mut self,
661        mut block: BasicBlock,
662        value: ExprId,
663        scope: TempLifetime,
664        outer_source_info: SourceInfo,
665    ) -> BlockAnd<Rvalue<'tcx>> {
666        let this = self;
667        let value_expr = &this.thir[value];
668        let elem_ty = value_expr.ty;
669        if let Some(Category::Constant) = Category::of(&value_expr.kind) {
670            // Repeating a const does nothing
671        } else {
672            // For a non-const, we may need to generate an appropriate `Drop`
673            let value_operand = unpack!(
674                block = this.as_operand(block, scope, value, LocalInfo::Boring, NeedsTemporary::No)
675            );
676            if let Operand::Move(to_drop) = value_operand {
677                let success = this.cfg.start_new_block();
678                this.cfg.terminate(
679                    block,
680                    outer_source_info,
681                    TerminatorKind::Drop {
682                        place: to_drop,
683                        target: success,
684                        unwind: UnwindAction::Continue,
685                        replace: false,
686                        drop: None,
687                        async_fut: None,
688                    },
689                );
690                this.diverge_from(block);
691                block = success;
692            }
693            this.record_operands_moved(&[Spanned { node: value_operand, span: DUMMY_SP }]);
694        }
695        block.and(Rvalue::Aggregate(Box::new(AggregateKind::Array(elem_ty)), IndexVec::new()))
696    }
697
698    fn limit_capture_mutability(
699        &mut self,
700        upvar_span: Span,
701        upvar_ty: Ty<'tcx>,
702        temp_lifetime: Option<region::Scope>,
703        mut block: BasicBlock,
704        arg: ExprId,
705    ) -> BlockAnd<Operand<'tcx>> {
706        let this = self;
707
708        let source_info = this.source_info(upvar_span);
709        let temp = this.local_decls.push(LocalDecl::new(upvar_ty, upvar_span));
710
711        this.cfg.push(block, Statement::new(source_info, StatementKind::StorageLive(temp)));
712
713        let arg_place_builder = unpack!(block = this.as_place_builder(block, arg));
714
715        let mutability = match arg_place_builder.base() {
716            // We are capturing a path that starts off a local variable in the parent.
717            // The mutability of the current capture is same as the mutability
718            // of the local declaration in the parent.
719            PlaceBase::Local(local) => this.local_decls[local].mutability,
720            // Parent is a closure and we are capturing a path that is captured
721            // by the parent itself. The mutability of the current capture
722            // is same as that of the capture in the parent closure.
723            PlaceBase::Upvar { .. } => {
724                let enclosing_upvars_resolved = arg_place_builder.to_place(this);
725
726                match enclosing_upvars_resolved.as_ref() {
727                    PlaceRef {
728                        local,
729                        projection: &[ProjectionElem::Field(upvar_index, _), ..],
730                    }
731                    | PlaceRef {
732                        local,
733                        projection:
734                            &[ProjectionElem::Deref, ProjectionElem::Field(upvar_index, _), ..],
735                    } => {
736                        // Not in a closure
737                        debug_assert!(
738                            local == ty::CAPTURE_STRUCT_LOCAL,
739                            "Expected local to be Local(1), found {local:?}"
740                        );
741                        // Not in a closure
742                        debug_assert!(
743                            this.upvars.len() > upvar_index.index(),
744                            "Unexpected capture place, upvars={:#?}, upvar_index={:?}",
745                            this.upvars,
746                            upvar_index
747                        );
748                        this.upvars[upvar_index.index()].mutability
749                    }
750                    _ => bug!("Unexpected capture place"),
751                }
752            }
753        };
754
755        let borrow_kind = match mutability {
756            Mutability::Not => BorrowKind::Mut { kind: MutBorrowKind::ClosureCapture },
757            Mutability::Mut => BorrowKind::Mut { kind: MutBorrowKind::Default },
758        };
759
760        let arg_place = arg_place_builder.to_place(this);
761
762        this.cfg.push_assign(
763            block,
764            source_info,
765            Place::from(temp),
766            Rvalue::Ref(this.tcx.lifetimes.re_erased, borrow_kind, arg_place),
767        );
768
769        // See the comment in `expr_as_temp` and on the `rvalue_scopes` field for why
770        // this can be `None`.
771        if let Some(temp_lifetime) = temp_lifetime {
772            this.schedule_drop_storage_and_value(upvar_span, temp_lifetime, temp);
773        }
774
775        block.and(Operand::Move(Place::from(temp)))
776    }
777
778    // Helper to get a `-1` value of the appropriate type
779    fn neg_1_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
780        let typing_env = ty::TypingEnv::fully_monomorphized();
781        let size = self.tcx.layout_of(typing_env.as_query_input(ty)).unwrap().size;
782        let literal = Const::from_bits(self.tcx, size.unsigned_int_max(), typing_env, ty);
783
784        self.literal_operand(span, literal)
785    }
786
787    // Helper to get the minimum value of the appropriate type
788    fn minval_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
789        assert!(ty.is_signed());
790        let typing_env = ty::TypingEnv::fully_monomorphized();
791        let bits = self.tcx.layout_of(typing_env.as_query_input(ty)).unwrap().size.bits();
792        let n = 1 << (bits - 1);
793        let literal = Const::from_bits(self.tcx, n, typing_env, ty);
794
795        self.literal_operand(span, literal)
796    }
797}