rustc_mir_build/builder/matches/
test.rs

1// Testing candidates
2//
3// After candidates have been simplified, the only match pairs that
4// remain are those that require some sort of test. The functions here
5// identify what tests are needed, perform the tests, and then filter
6// the candidates based on the result.
7
8use std::cmp::Ordering;
9use std::sync::Arc;
10
11use rustc_data_structures::fx::FxIndexMap;
12use rustc_hir::{LangItem, RangeEnd};
13use rustc_middle::mir::*;
14use rustc_middle::ty::util::IntTypeExt;
15use rustc_middle::ty::{self, GenericArg, Ty, TyCtxt};
16use rustc_middle::{bug, span_bug};
17use rustc_span::def_id::DefId;
18use rustc_span::source_map::Spanned;
19use rustc_span::{DUMMY_SP, Span, Symbol, sym};
20use tracing::{debug, instrument};
21
22use crate::builder::Builder;
23use crate::builder::matches::{Candidate, MatchPairTree, Test, TestBranch, TestCase, TestKind};
24
25impl<'a, 'tcx> Builder<'a, 'tcx> {
26    /// Identifies what test is needed to decide if `match_pair` is applicable.
27    ///
28    /// It is a bug to call this with a not-fully-simplified pattern.
29    pub(super) fn pick_test_for_match_pair(
30        &mut self,
31        match_pair: &MatchPairTree<'tcx>,
32    ) -> Test<'tcx> {
33        let kind = match match_pair.test_case {
34            TestCase::Variant { adt_def, variant_index: _ } => TestKind::Switch { adt_def },
35
36            TestCase::Constant { .. } if match_pair.pattern_ty.is_bool() => TestKind::If,
37            TestCase::Constant { .. } if is_switch_ty(match_pair.pattern_ty) => TestKind::SwitchInt,
38            TestCase::Constant { value } => TestKind::Eq { value, ty: match_pair.pattern_ty },
39
40            TestCase::Range(ref range) => {
41                assert_eq!(range.ty, match_pair.pattern_ty);
42                TestKind::Range(Arc::clone(range))
43            }
44
45            TestCase::Slice { len, variable_length } => {
46                let op = if variable_length { BinOp::Ge } else { BinOp::Eq };
47                TestKind::Len { len: len as u64, op }
48            }
49
50            TestCase::Deref { temp, mutability } => TestKind::Deref { temp, mutability },
51
52            TestCase::Never => TestKind::Never,
53
54            // Or-patterns are not tested directly; instead they are expanded into subcandidates,
55            // which are then distinguished by testing whatever non-or patterns they contain.
56            TestCase::Or { .. } => bug!("or-patterns should have already been handled"),
57        };
58
59        Test { span: match_pair.pattern_span, kind }
60    }
61
62    #[instrument(skip(self, target_blocks, place), level = "debug")]
63    pub(super) fn perform_test(
64        &mut self,
65        match_start_span: Span,
66        scrutinee_span: Span,
67        block: BasicBlock,
68        otherwise_block: BasicBlock,
69        place: Place<'tcx>,
70        test: &Test<'tcx>,
71        target_blocks: FxIndexMap<TestBranch<'tcx>, BasicBlock>,
72    ) {
73        let place_ty = place.ty(&self.local_decls, self.tcx);
74        debug!(?place, ?place_ty);
75        let target_block = |branch| target_blocks.get(&branch).copied().unwrap_or(otherwise_block);
76
77        let source_info = self.source_info(test.span);
78        match test.kind {
79            TestKind::Switch { adt_def } => {
80                let otherwise_block = target_block(TestBranch::Failure);
81                let switch_targets = SwitchTargets::new(
82                    adt_def.discriminants(self.tcx).filter_map(|(idx, discr)| {
83                        if let Some(&block) = target_blocks.get(&TestBranch::Variant(idx)) {
84                            Some((discr.val, block))
85                        } else {
86                            None
87                        }
88                    }),
89                    otherwise_block,
90                );
91                debug!("num_enum_variants: {}", adt_def.variants().len());
92                let discr_ty = adt_def.repr().discr_type().to_ty(self.tcx);
93                let discr = self.temp(discr_ty, test.span);
94                self.cfg.push_assign(
95                    block,
96                    self.source_info(scrutinee_span),
97                    discr,
98                    Rvalue::Discriminant(place),
99                );
100                self.cfg.terminate(
101                    block,
102                    self.source_info(match_start_span),
103                    TerminatorKind::SwitchInt {
104                        discr: Operand::Move(discr),
105                        targets: switch_targets,
106                    },
107                );
108            }
109
110            TestKind::SwitchInt => {
111                // The switch may be inexhaustive so we have a catch-all block
112                let otherwise_block = target_block(TestBranch::Failure);
113                let switch_targets = SwitchTargets::new(
114                    target_blocks.iter().filter_map(|(&branch, &block)| {
115                        if let TestBranch::Constant(_, bits) = branch {
116                            Some((bits, block))
117                        } else {
118                            None
119                        }
120                    }),
121                    otherwise_block,
122                );
123                let terminator = TerminatorKind::SwitchInt {
124                    discr: Operand::Copy(place),
125                    targets: switch_targets,
126                };
127                self.cfg.terminate(block, self.source_info(match_start_span), terminator);
128            }
129
130            TestKind::If => {
131                let success_block = target_block(TestBranch::Success);
132                let fail_block = target_block(TestBranch::Failure);
133                let terminator =
134                    TerminatorKind::if_(Operand::Copy(place), success_block, fail_block);
135                self.cfg.terminate(block, self.source_info(match_start_span), terminator);
136            }
137
138            TestKind::Eq { value, mut ty } => {
139                let tcx = self.tcx;
140                let success_block = target_block(TestBranch::Success);
141                let fail_block = target_block(TestBranch::Failure);
142
143                let mut expect_ty = value.ty();
144                let mut expect = self.literal_operand(test.span, value);
145
146                let mut place = place;
147                let mut block = block;
148                match ty.kind() {
149                    ty::Str => {
150                        // String literal patterns may have type `str` if `deref_patterns` is
151                        // enabled, in order to allow `deref!("..."): String`. In this case, `value`
152                        // is of type `&str`, so we compare it to `&place`.
153                        if !tcx.features().deref_patterns() {
154                            span_bug!(
155                                test.span,
156                                "matching on `str` went through without enabling deref_patterns"
157                            );
158                        }
159                        let re_erased = tcx.lifetimes.re_erased;
160                        let ref_str_ty = Ty::new_imm_ref(tcx, re_erased, tcx.types.str_);
161                        let ref_place = self.temp(ref_str_ty, test.span);
162                        // `let ref_place: &str = &place;`
163                        self.cfg.push_assign(
164                            block,
165                            self.source_info(test.span),
166                            ref_place,
167                            Rvalue::Ref(re_erased, BorrowKind::Shared, place),
168                        );
169                        place = ref_place;
170                        ty = ref_str_ty;
171                    }
172                    ty::Adt(def, _) if tcx.is_lang_item(def.did(), LangItem::String) => {
173                        if !tcx.features().string_deref_patterns() {
174                            span_bug!(
175                                test.span,
176                                "matching on `String` went through without enabling string_deref_patterns"
177                            );
178                        }
179                        let re_erased = tcx.lifetimes.re_erased;
180                        let ref_str_ty = Ty::new_imm_ref(tcx, re_erased, tcx.types.str_);
181                        let ref_str = self.temp(ref_str_ty, test.span);
182                        let eq_block = self.cfg.start_new_block();
183                        // `let ref_str: &str = <String as Deref>::deref(&place);`
184                        self.call_deref(
185                            block,
186                            eq_block,
187                            place,
188                            Mutability::Not,
189                            ty,
190                            ref_str,
191                            test.span,
192                        );
193                        // Since we generated a `ref_str = <String as Deref>::deref(&place) -> eq_block` terminator,
194                        // we need to add all further statements to `eq_block`.
195                        // Similarly, the normal test code should be generated for the `&str`, instead of the `String`.
196                        block = eq_block;
197                        place = ref_str;
198                        ty = ref_str_ty;
199                    }
200                    &ty::Pat(base, _) => {
201                        assert_eq!(ty, value.ty());
202                        assert!(base.is_trivially_pure_clone_copy());
203
204                        let transmuted_place = self.temp(base, test.span);
205                        self.cfg.push_assign(
206                            block,
207                            self.source_info(scrutinee_span),
208                            transmuted_place,
209                            Rvalue::Cast(CastKind::Transmute, Operand::Copy(place), base),
210                        );
211
212                        let transmuted_expect = self.temp(base, test.span);
213                        self.cfg.push_assign(
214                            block,
215                            self.source_info(test.span),
216                            transmuted_expect,
217                            Rvalue::Cast(CastKind::Transmute, expect, base),
218                        );
219
220                        place = transmuted_place;
221                        expect = Operand::Copy(transmuted_expect);
222                        ty = base;
223                        expect_ty = base;
224                    }
225                    _ => {}
226                }
227
228                assert_eq!(expect_ty, ty);
229                if !ty.is_scalar() {
230                    // Use `PartialEq::eq` instead of `BinOp::Eq`
231                    // (the binop can only handle primitives)
232                    // Make sure that we do *not* call any user-defined code here.
233                    // The only type that can end up here is string literals, which have their
234                    // comparison defined in `core`.
235                    // (Interestingly this means that exhaustiveness analysis relies, for soundness,
236                    // on the `PartialEq` impl for `str` to b correct!)
237                    match *ty.kind() {
238                        ty::Ref(_, deref_ty, _) if deref_ty == self.tcx.types.str_ => {}
239                        _ => {
240                            span_bug!(source_info.span, "invalid type for non-scalar compare: {ty}")
241                        }
242                    };
243                    self.string_compare(
244                        block,
245                        success_block,
246                        fail_block,
247                        source_info,
248                        expect,
249                        Operand::Copy(place),
250                    );
251                } else {
252                    self.compare(
253                        block,
254                        success_block,
255                        fail_block,
256                        source_info,
257                        BinOp::Eq,
258                        expect,
259                        Operand::Copy(place),
260                    );
261                }
262            }
263
264            TestKind::Range(ref range) => {
265                let success = target_block(TestBranch::Success);
266                let fail = target_block(TestBranch::Failure);
267                // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
268                let val = Operand::Copy(place);
269
270                let intermediate_block = if !range.lo.is_finite() {
271                    block
272                } else if !range.hi.is_finite() {
273                    success
274                } else {
275                    self.cfg.start_new_block()
276                };
277
278                if let Some(lo) = range.lo.as_finite() {
279                    let lo = self.literal_operand(test.span, lo);
280                    self.compare(
281                        block,
282                        intermediate_block,
283                        fail,
284                        source_info,
285                        BinOp::Le,
286                        lo,
287                        val.clone(),
288                    );
289                };
290
291                if let Some(hi) = range.hi.as_finite() {
292                    let hi = self.literal_operand(test.span, hi);
293                    let op = match range.end {
294                        RangeEnd::Included => BinOp::Le,
295                        RangeEnd::Excluded => BinOp::Lt,
296                    };
297                    self.compare(intermediate_block, success, fail, source_info, op, val, hi);
298                }
299            }
300
301            TestKind::Len { len, op } => {
302                let usize_ty = self.tcx.types.usize;
303                let actual = self.temp(usize_ty, test.span);
304
305                // actual = len(place)
306                self.cfg.push_assign(block, source_info, actual, Rvalue::Len(place));
307
308                // expected = <N>
309                let expected = self.push_usize(block, source_info, len);
310
311                let success_block = target_block(TestBranch::Success);
312                let fail_block = target_block(TestBranch::Failure);
313                // result = actual == expected OR result = actual < expected
314                // branch based on result
315                self.compare(
316                    block,
317                    success_block,
318                    fail_block,
319                    source_info,
320                    op,
321                    Operand::Move(actual),
322                    Operand::Move(expected),
323                );
324            }
325
326            TestKind::Deref { temp, mutability } => {
327                let ty = place_ty.ty;
328                let target = target_block(TestBranch::Success);
329                self.call_deref(block, target, place, mutability, ty, temp, test.span);
330            }
331
332            TestKind::Never => {
333                // Check that the place is initialized.
334                // FIXME(never_patterns): Also assert validity of the data at `place`.
335                self.cfg.push_fake_read(
336                    block,
337                    source_info,
338                    FakeReadCause::ForMatchedPlace(None),
339                    place,
340                );
341                // A never pattern is only allowed on an uninhabited type, so validity of the data
342                // implies unreachability.
343                self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
344            }
345        }
346    }
347
348    /// Perform `let temp = <ty as Deref>::deref(&place)`.
349    /// or `let temp = <ty as DerefMut>::deref_mut(&mut place)`.
350    pub(super) fn call_deref(
351        &mut self,
352        block: BasicBlock,
353        target_block: BasicBlock,
354        place: Place<'tcx>,
355        mutability: Mutability,
356        ty: Ty<'tcx>,
357        temp: Place<'tcx>,
358        span: Span,
359    ) {
360        let (trait_item, method) = match mutability {
361            Mutability::Not => (LangItem::Deref, sym::deref),
362            Mutability::Mut => (LangItem::DerefMut, sym::deref_mut),
363        };
364        let borrow_kind = super::util::ref_pat_borrow_kind(mutability);
365        let source_info = self.source_info(span);
366        let re_erased = self.tcx.lifetimes.re_erased;
367        let trait_item = self.tcx.require_lang_item(trait_item, None);
368        let method = trait_method(self.tcx, trait_item, method, [ty]);
369        let ref_src = self.temp(Ty::new_ref(self.tcx, re_erased, ty, mutability), span);
370        // `let ref_src = &src_place;`
371        // or `let ref_src = &mut src_place;`
372        self.cfg.push_assign(
373            block,
374            source_info,
375            ref_src,
376            Rvalue::Ref(re_erased, borrow_kind, place),
377        );
378        // `let temp = <Ty as Deref>::deref(ref_src);`
379        // or `let temp = <Ty as DerefMut>::deref_mut(ref_src);`
380        self.cfg.terminate(
381            block,
382            source_info,
383            TerminatorKind::Call {
384                func: Operand::Constant(Box::new(ConstOperand {
385                    span,
386                    user_ty: None,
387                    const_: method,
388                })),
389                args: [Spanned { node: Operand::Move(ref_src), span }].into(),
390                destination: temp,
391                target: Some(target_block),
392                unwind: UnwindAction::Continue,
393                call_source: CallSource::Misc,
394                fn_span: source_info.span,
395            },
396        );
397    }
398
399    /// Compare using the provided built-in comparison operator
400    fn compare(
401        &mut self,
402        block: BasicBlock,
403        success_block: BasicBlock,
404        fail_block: BasicBlock,
405        source_info: SourceInfo,
406        op: BinOp,
407        left: Operand<'tcx>,
408        right: Operand<'tcx>,
409    ) {
410        let bool_ty = self.tcx.types.bool;
411        let result = self.temp(bool_ty, source_info.span);
412
413        // result = op(left, right)
414        self.cfg.push_assign(
415            block,
416            source_info,
417            result,
418            Rvalue::BinaryOp(op, Box::new((left, right))),
419        );
420
421        // branch based on result
422        self.cfg.terminate(
423            block,
424            source_info,
425            TerminatorKind::if_(Operand::Move(result), success_block, fail_block),
426        );
427    }
428
429    /// Compare two values of type `&str` using `<str as std::cmp::PartialEq>::eq`.
430    fn string_compare(
431        &mut self,
432        block: BasicBlock,
433        success_block: BasicBlock,
434        fail_block: BasicBlock,
435        source_info: SourceInfo,
436        expect: Operand<'tcx>,
437        val: Operand<'tcx>,
438    ) {
439        let str_ty = self.tcx.types.str_;
440        let eq_def_id = self.tcx.require_lang_item(LangItem::PartialEq, Some(source_info.span));
441        let method = trait_method(self.tcx, eq_def_id, sym::eq, [str_ty, str_ty]);
442
443        let bool_ty = self.tcx.types.bool;
444        let eq_result = self.temp(bool_ty, source_info.span);
445        let eq_block = self.cfg.start_new_block();
446        self.cfg.terminate(
447            block,
448            source_info,
449            TerminatorKind::Call {
450                func: Operand::Constant(Box::new(ConstOperand {
451                    span: source_info.span,
452
453                    // FIXME(#54571): This constant comes from user input (a
454                    // constant in a pattern). Are there forms where users can add
455                    // type annotations here?  For example, an associated constant?
456                    // Need to experiment.
457                    user_ty: None,
458
459                    const_: method,
460                })),
461                args: [
462                    Spanned { node: val, span: DUMMY_SP },
463                    Spanned { node: expect, span: DUMMY_SP },
464                ]
465                .into(),
466                destination: eq_result,
467                target: Some(eq_block),
468                unwind: UnwindAction::Continue,
469                call_source: CallSource::MatchCmp,
470                fn_span: source_info.span,
471            },
472        );
473        self.diverge_from(block);
474
475        // check the result
476        self.cfg.terminate(
477            eq_block,
478            source_info,
479            TerminatorKind::if_(Operand::Move(eq_result), success_block, fail_block),
480        );
481    }
482
483    /// Given that we are performing `test` against `test_place`, this job
484    /// sorts out what the status of `candidate` will be after the test. See
485    /// `test_candidates` for the usage of this function. The candidate may
486    /// be modified to update its `match_pairs`.
487    ///
488    /// So, for example, if this candidate is `x @ Some(P0)` and the `Test` is
489    /// a variant test, then we would modify the candidate to be `(x as
490    /// Option).0 @ P0` and return the index corresponding to the variant
491    /// `Some`.
492    ///
493    /// However, in some cases, the test may just not be relevant to candidate.
494    /// For example, suppose we are testing whether `foo.x == 22`, but in one
495    /// match arm we have `Foo { x: _, ... }`... in that case, the test for
496    /// the value of `x` has no particular relevance to this candidate. In
497    /// such cases, this function just returns None without doing anything.
498    /// This is used by the overall `match_candidates` algorithm to structure
499    /// the match as a whole. See `match_candidates` for more details.
500    ///
501    /// FIXME(#29623). In some cases, we have some tricky choices to make. for
502    /// example, if we are testing that `x == 22`, but the candidate is `x @
503    /// 13..55`, what should we do? In the event that the test is true, we know
504    /// that the candidate applies, but in the event of false, we don't know
505    /// that it *doesn't* apply. For now, we return false, indicate that the
506    /// test does not apply to this candidate, but it might be we can get
507    /// tighter match code if we do something a bit different.
508    pub(super) fn sort_candidate(
509        &mut self,
510        test_place: Place<'tcx>,
511        test: &Test<'tcx>,
512        candidate: &mut Candidate<'tcx>,
513        sorted_candidates: &FxIndexMap<TestBranch<'tcx>, Vec<&mut Candidate<'tcx>>>,
514    ) -> Option<TestBranch<'tcx>> {
515        // Find the match_pair for this place (if any). At present,
516        // afaik, there can be at most one. (In the future, if we
517        // adopted a more general `@` operator, there might be more
518        // than one, but it'd be very unusual to have two sides that
519        // both require tests; you'd expect one side to be simplified
520        // away.)
521        let (match_pair_index, match_pair) = candidate
522            .match_pairs
523            .iter()
524            .enumerate()
525            .find(|&(_, mp)| mp.place == Some(test_place))?;
526
527        // If true, the match pair is completely entailed by its corresponding test
528        // branch, so it can be removed. If false, the match pair is _compatible_
529        // with its test branch, but still needs a more specific test.
530        let fully_matched;
531        let ret = match (&test.kind, &match_pair.test_case) {
532            // If we are performing a variant switch, then this
533            // informs variant patterns, but nothing else.
534            (
535                &TestKind::Switch { adt_def: tested_adt_def },
536                &TestCase::Variant { adt_def, variant_index },
537            ) => {
538                assert_eq!(adt_def, tested_adt_def);
539                fully_matched = true;
540                Some(TestBranch::Variant(variant_index))
541            }
542
543            // If we are performing a switch over integers, then this informs integer
544            // equality, but nothing else.
545            //
546            // FIXME(#29623) we could use PatKind::Range to rule
547            // things out here, in some cases.
548            (TestKind::SwitchInt, &TestCase::Constant { value })
549                if is_switch_ty(match_pair.pattern_ty) =>
550            {
551                // An important invariant of candidate sorting is that a candidate
552                // must not match in multiple branches. For `SwitchInt` tests, adding
553                // a new value might invalidate that property for range patterns that
554                // have already been sorted into the failure arm, so we must take care
555                // not to add such values here.
556                let is_covering_range = |test_case: &TestCase<'tcx>| {
557                    test_case.as_range().is_some_and(|range| {
558                        matches!(
559                            range.contains(value, self.tcx, self.typing_env()),
560                            None | Some(true)
561                        )
562                    })
563                };
564                let is_conflicting_candidate = |candidate: &&mut Candidate<'tcx>| {
565                    candidate
566                        .match_pairs
567                        .iter()
568                        .any(|mp| mp.place == Some(test_place) && is_covering_range(&mp.test_case))
569                };
570                if sorted_candidates
571                    .get(&TestBranch::Failure)
572                    .is_some_and(|candidates| candidates.iter().any(is_conflicting_candidate))
573                {
574                    fully_matched = false;
575                    None
576                } else {
577                    fully_matched = true;
578                    let bits = value.eval_bits(self.tcx, self.typing_env());
579                    Some(TestBranch::Constant(value, bits))
580                }
581            }
582            (TestKind::SwitchInt, TestCase::Range(range)) => {
583                // When performing a `SwitchInt` test, a range pattern can be
584                // sorted into the failure arm if it doesn't contain _any_ of
585                // the values being tested. (This restricts what values can be
586                // added to the test by subsequent candidates.)
587                fully_matched = false;
588                let not_contained =
589                    sorted_candidates.keys().filter_map(|br| br.as_constant()).copied().all(
590                        |val| {
591                            matches!(range.contains(val, self.tcx, self.typing_env()), Some(false))
592                        },
593                    );
594
595                not_contained.then(|| {
596                    // No switch values are contained in the pattern range,
597                    // so the pattern can be matched only if this test fails.
598                    TestBranch::Failure
599                })
600            }
601
602            (TestKind::If, TestCase::Constant { value }) => {
603                fully_matched = true;
604                let value = value.try_eval_bool(self.tcx, self.typing_env()).unwrap_or_else(|| {
605                    span_bug!(test.span, "expected boolean value but got {value:?}")
606                });
607                Some(if value { TestBranch::Success } else { TestBranch::Failure })
608            }
609
610            (
611                &TestKind::Len { len: test_len, op: BinOp::Eq },
612                &TestCase::Slice { len, variable_length },
613            ) => {
614                match (test_len.cmp(&(len as u64)), variable_length) {
615                    (Ordering::Equal, false) => {
616                        // on true, min_len = len = $actual_length,
617                        // on false, len != $actual_length
618                        fully_matched = true;
619                        Some(TestBranch::Success)
620                    }
621                    (Ordering::Less, _) => {
622                        // test_len < pat_len. If $actual_len = test_len,
623                        // then $actual_len < pat_len and we don't have
624                        // enough elements.
625                        fully_matched = false;
626                        Some(TestBranch::Failure)
627                    }
628                    (Ordering::Equal | Ordering::Greater, true) => {
629                        // This can match both if $actual_len = test_len >= pat_len,
630                        // and if $actual_len > test_len. We can't advance.
631                        fully_matched = false;
632                        None
633                    }
634                    (Ordering::Greater, false) => {
635                        // test_len != pat_len, so if $actual_len = test_len, then
636                        // $actual_len != pat_len.
637                        fully_matched = false;
638                        Some(TestBranch::Failure)
639                    }
640                }
641            }
642            (
643                &TestKind::Len { len: test_len, op: BinOp::Ge },
644                &TestCase::Slice { len, variable_length },
645            ) => {
646                // the test is `$actual_len >= test_len`
647                match (test_len.cmp(&(len as u64)), variable_length) {
648                    (Ordering::Equal, true) => {
649                        // $actual_len >= test_len = pat_len,
650                        // so we can match.
651                        fully_matched = true;
652                        Some(TestBranch::Success)
653                    }
654                    (Ordering::Less, _) | (Ordering::Equal, false) => {
655                        // test_len <= pat_len. If $actual_len < test_len,
656                        // then it is also < pat_len, so the test passing is
657                        // necessary (but insufficient).
658                        fully_matched = false;
659                        Some(TestBranch::Success)
660                    }
661                    (Ordering::Greater, false) => {
662                        // test_len > pat_len. If $actual_len >= test_len > pat_len,
663                        // then we know we won't have a match.
664                        fully_matched = false;
665                        Some(TestBranch::Failure)
666                    }
667                    (Ordering::Greater, true) => {
668                        // test_len < pat_len, and is therefore less
669                        // strict. This can still go both ways.
670                        fully_matched = false;
671                        None
672                    }
673                }
674            }
675
676            (TestKind::Range(test), TestCase::Range(pat)) => {
677                if test == pat {
678                    fully_matched = true;
679                    Some(TestBranch::Success)
680                } else {
681                    fully_matched = false;
682                    // If the testing range does not overlap with pattern range,
683                    // the pattern can be matched only if this test fails.
684                    if !test.overlaps(pat, self.tcx, self.typing_env())? {
685                        Some(TestBranch::Failure)
686                    } else {
687                        None
688                    }
689                }
690            }
691            (TestKind::Range(range), &TestCase::Constant { value }) => {
692                fully_matched = false;
693                if !range.contains(value, self.tcx, self.typing_env())? {
694                    // `value` is not contained in the testing range,
695                    // so `value` can be matched only if this test fails.
696                    Some(TestBranch::Failure)
697                } else {
698                    None
699                }
700            }
701
702            (TestKind::Eq { value: test_val, .. }, TestCase::Constant { value: case_val }) => {
703                if test_val == case_val {
704                    fully_matched = true;
705                    Some(TestBranch::Success)
706                } else {
707                    fully_matched = false;
708                    Some(TestBranch::Failure)
709                }
710            }
711
712            (TestKind::Deref { temp: test_temp, .. }, TestCase::Deref { temp, .. })
713                if test_temp == temp =>
714            {
715                fully_matched = true;
716                Some(TestBranch::Success)
717            }
718
719            (TestKind::Never, _) => {
720                fully_matched = true;
721                Some(TestBranch::Success)
722            }
723
724            (
725                TestKind::Switch { .. }
726                | TestKind::SwitchInt { .. }
727                | TestKind::If
728                | TestKind::Len { .. }
729                | TestKind::Range { .. }
730                | TestKind::Eq { .. }
731                | TestKind::Deref { .. },
732                _,
733            ) => {
734                fully_matched = false;
735                None
736            }
737        };
738
739        if fully_matched {
740            // Replace the match pair by its sub-pairs.
741            let match_pair = candidate.match_pairs.remove(match_pair_index);
742            candidate.match_pairs.extend(match_pair.subpairs);
743            // Move or-patterns to the end.
744            candidate.sort_match_pairs();
745        }
746
747        ret
748    }
749}
750
751fn is_switch_ty(ty: Ty<'_>) -> bool {
752    ty.is_integral() || ty.is_char()
753}
754
755fn trait_method<'tcx>(
756    tcx: TyCtxt<'tcx>,
757    trait_def_id: DefId,
758    method_name: Symbol,
759    args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
760) -> Const<'tcx> {
761    // The unhygienic comparison here is acceptable because this is only
762    // used on known traits.
763    let item = tcx
764        .associated_items(trait_def_id)
765        .filter_by_name_unhygienic(method_name)
766        .find(|item| item.is_fn())
767        .expect("trait method not found");
768
769    let method_ty = Ty::new_fn_def(tcx, item.def_id, args);
770
771    Const::zero_sized(method_ty)
772}