ostd/boot/memory_region.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
// SPDX-License-Identifier: MPL-2.0
//! Information of memory regions in the boot phase.
use core::ops::Deref;
use align_ext::AlignExt;
use crate::mm::{kspace::kernel_loaded_offset, Paddr, Vaddr, PAGE_SIZE};
/// The type of initial memory regions that are needed for the kernel.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub enum MemoryRegionType {
/// Maybe points to an unplugged DIMM module. It's bad anyway.
BadMemory = 0,
/// Some holes not specified by the bootloader/firmware. It may be used for
/// I/O memory but we don't know for sure.
Unknown = 1,
/// In ACPI spec, this area needs to be preserved when sleeping.
NonVolatileSleep = 2,
/// Reserved by BIOS or bootloader, do not use.
Reserved = 3,
/// The place where kernel sections are loaded.
Kernel = 4,
/// The place where kernel modules (e.g. initrd) are loaded, could be reused.
Module = 5,
/// The memory region provided as the framebuffer.
Framebuffer = 6,
/// Once used in the boot phase. Kernel can reclaim it after initialization.
Reclaimable = 7,
/// Directly usable by the frame allocator.
Usable = 8,
}
/// The information of initial memory regions that are needed by the kernel.
/// The sections are **not** guaranteed to not overlap. The region must be page aligned.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct MemoryRegion {
base: usize,
len: usize,
typ: MemoryRegionType,
}
impl MemoryRegion {
/// Constructs a valid memory region.
pub const fn new(base: Paddr, len: usize, typ: MemoryRegionType) -> Self {
MemoryRegion { base, len, typ }
}
/// Constructs a bad memory region.
pub const fn bad() -> Self {
MemoryRegion {
base: 0,
len: 0,
typ: MemoryRegionType::BadMemory,
}
}
/// Constructs a memory region where kernel sections are loaded.
///
/// Most boot protocols do not mark the place where the kernel loads as unusable. In this case,
/// we need to explicitly construct and append this memory region.
pub fn kernel() -> Self {
// These are physical addresses provided by the linker script.
extern "C" {
fn __kernel_start();
fn __kernel_end();
}
MemoryRegion {
base: __kernel_start as usize - kernel_loaded_offset(),
len: __kernel_end as usize - __kernel_start as usize,
typ: MemoryRegionType::Kernel,
}
}
/// Constructs a framebuffer memory region.
pub fn framebuffer(fb: &crate::boot::BootloaderFramebufferArg) -> Self {
Self {
base: fb.address,
len: (fb.width * fb.height * fb.bpp).div_ceil(8), // round up when divide with 8 (bits/Byte)
typ: MemoryRegionType::Framebuffer,
}
}
/// Constructs a module memory region from a byte slice that lives in the linear mapping.
///
/// # Panics
///
/// This method will panic if the byte slice does not live in the linear mapping.
pub fn module(bytes: &[u8]) -> Self {
let vaddr = bytes.as_ptr() as Vaddr;
assert!(crate::mm::kspace::LINEAR_MAPPING_VADDR_RANGE.contains(&vaddr));
Self {
base: vaddr - crate::mm::kspace::LINEAR_MAPPING_BASE_VADDR,
len: bytes.len(),
typ: MemoryRegionType::Reclaimable,
}
}
/// The physical address of the base of the region.
pub fn base(&self) -> Paddr {
self.base
}
/// The length in bytes of the region.
pub fn len(&self) -> usize {
self.len
}
/// The physical address of the end of the region.
pub fn end(&self) -> Paddr {
self.base + self.len
}
/// Checks whether the region is empty
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// The type of the region.
pub fn typ(&self) -> MemoryRegionType {
self.typ
}
fn as_aligned(&self) -> Self {
let (base, end) = match self.typ() {
MemoryRegionType::Usable => (
self.base().align_up(PAGE_SIZE),
self.end().align_down(PAGE_SIZE),
),
_ => (
self.base().align_down(PAGE_SIZE),
self.end().align_up(PAGE_SIZE),
),
};
MemoryRegion {
base,
len: end - base,
typ: self.typ,
}
}
}
/// The maximum number of regions that can be handled.
///
/// The choice of 512 is probably fine since old Linux boot protocol only
/// allows 128 regions.
//
// TODO: confirm the number or make it configurable.
pub const MAX_REGIONS: usize = 512;
/// A heapless set of memory regions.
///
/// The set cannot contain more than `LEN` regions.
pub struct MemoryRegionArray<const LEN: usize = MAX_REGIONS> {
regions: [MemoryRegion; LEN],
count: usize,
}
impl<const LEN: usize> Default for MemoryRegionArray<LEN> {
fn default() -> Self {
Self::new()
}
}
impl<const LEN: usize> Deref for MemoryRegionArray<LEN> {
type Target = [MemoryRegion];
fn deref(&self) -> &Self::Target {
&self.regions[..self.count]
}
}
impl<const LEN: usize> MemoryRegionArray<LEN> {
/// Constructs an empty set.
pub const fn new() -> Self {
Self {
regions: [MemoryRegion::bad(); LEN],
count: 0,
}
}
/// Appends a region to the set.
///
/// If the set is full, an error is returned.
pub fn push(&mut self, region: MemoryRegion) -> Result<(), &'static str> {
if self.count < self.regions.len() {
self.regions[self.count] = region;
self.count += 1;
Ok(())
} else {
Err("MemoryRegionArray is full")
}
}
/// Sorts the regions and returns a full set of non-overlapping regions.
///
/// If an address is in multiple regions, the region with the lowest
/// usability will be its type.
///
/// All the addresses between 0 and the end of the last region will be in
/// the resulting set. If an address is not in any region, it will be marked
/// as [`MemoryRegionType::Unknown`].
///
/// If any of the region boundaries are not page-aligned, they will be aligned
/// according to the type of the region.
///
/// # Panics
///
/// This method will panic if the number of output regions is greater than `LEN`.
pub fn into_non_overlapping(mut self) -> Self {
let max_addr = self
.iter()
.map(|r| r.end())
.max()
.unwrap_or(0)
.align_down(PAGE_SIZE);
self.regions.iter_mut().for_each(|r| *r = r.as_aligned());
let mut result = MemoryRegionArray::<LEN>::new();
let mut cur_right = 0;
while cur_right < max_addr {
// Find the most restrictive type.
let typ = self
.iter()
.filter(|region| (region.base()..region.end()).contains(&cur_right))
.map(|region| region.typ())
.min()
.unwrap_or(MemoryRegionType::Unknown);
// Find the right boundary.
let right = self
.iter()
.filter_map(|region| {
if region.base() > cur_right {
Some(region.base())
} else if region.end() > cur_right {
Some(region.end())
} else {
None
}
})
.min()
.unwrap();
result
.push(MemoryRegion::new(cur_right, right - cur_right, typ))
.unwrap();
cur_right = right;
}
// Merge the adjacent regions with the same type.
let mut merged_count = 1;
for i in 1..result.count {
if result[i].typ() == result.regions[merged_count - 1].typ() {
result.regions[merged_count - 1] = MemoryRegion::new(
result.regions[merged_count - 1].base(),
result.regions[merged_count - 1].len() + result[i].len(),
result.regions[merged_count - 1].typ(),
);
} else {
result.regions[merged_count] = result[i];
merged_count += 1;
}
}
result.count = merged_count;
result
}
}
#[cfg(ktest)]
mod test {
use super::*;
use crate::prelude::ktest;
#[ktest]
fn test_sort_full_non_overlapping() {
let mut regions = MemoryRegionArray::<64>::new();
// Regions that can be combined.
regions
.push(MemoryRegion::new(
0,
PAGE_SIZE + 1,
MemoryRegionType::Usable,
))
.unwrap();
regions
.push(MemoryRegion::new(
PAGE_SIZE - 1,
PAGE_SIZE + 2,
MemoryRegionType::Usable,
))
.unwrap();
regions
.push(MemoryRegion::new(
PAGE_SIZE * 2,
PAGE_SIZE * 5,
MemoryRegionType::Usable,
))
.unwrap();
// A punctured region.
regions
.push(MemoryRegion::new(
PAGE_SIZE * 3 + 1,
PAGE_SIZE - 2,
MemoryRegionType::BadMemory,
))
.unwrap();
// A far region that left a hole in the middle.
regions
.push(MemoryRegion::new(
PAGE_SIZE * 9,
PAGE_SIZE * 2,
MemoryRegionType::Usable,
))
.unwrap();
let regions = regions.into_non_overlapping();
assert_eq!(regions.count, 5);
assert_eq!(regions[0].base(), 0);
assert_eq!(regions[0].len(), PAGE_SIZE * 3);
assert_eq!(regions[0].typ(), MemoryRegionType::Usable);
assert_eq!(regions[1].base(), PAGE_SIZE * 3);
assert_eq!(regions[1].len(), PAGE_SIZE);
assert_eq!(regions[1].typ(), MemoryRegionType::BadMemory);
assert_eq!(regions[2].base(), PAGE_SIZE * 4);
assert_eq!(regions[2].len(), PAGE_SIZE * 3);
assert_eq!(regions[2].typ(), MemoryRegionType::Usable);
assert_eq!(regions[3].base(), PAGE_SIZE * 7);
assert_eq!(regions[3].len(), PAGE_SIZE * 2);
assert_eq!(regions[3].typ(), MemoryRegionType::Unknown);
assert_eq!(regions[4].base(), PAGE_SIZE * 9);
assert_eq!(regions[4].len(), PAGE_SIZE * 2);
assert_eq!(regions[4].typ(), MemoryRegionType::Usable);
}
}