ostd/mm/
io.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
// SPDX-License-Identifier: MPL-2.0

//! Abstractions for reading and writing virtual memory (VM) objects.
//!
//! # Safety
//!
//! The core virtual memory (VM) access APIs provided by this module are [`VmReader`] and
//! [`VmWriter`], which allow for writing to or reading from a region of memory _safely_.
//! `VmReader` and `VmWriter` objects can be constructed from memory regions of either typed memory
//! (e.g., `&[u8]`) or untyped memory (e.g, [`UFrame`]). Behind the scene, `VmReader` and `VmWriter`
//! must be constructed via their [`from_user_space`] and [`from_kernel_space`] methods, whose
//! safety depends on whether the given memory regions are _valid_ or not.
//!
//! [`UFrame`]: crate::mm::UFrame
//! [`from_user_space`]: `VmReader::from_user_space`
//! [`from_kernel_space`]: `VmReader::from_kernel_space`
//!
//! Here is a list of conditions for memory regions to be considered valid:
//!
//! - The memory region as a whole must be either typed or untyped memory, not both typed and
//!   untyped.
//!
//! - If the memory region is typed, we require that:
//!   - the [validity requirements] from the official Rust documentation must be met, and
//!   - the type of the memory region (which must exist since the memory is typed) must be
//!     plain-old-data, so that the writer can fill it with arbitrary data safely.
//!
//! [validity requirements]: core::ptr#safety
//!
//! - If the memory region is untyped, we require that:
//!   - the underlying pages must remain alive while the validity requirements are in effect, and
//!   - the kernel must access the memory region using only the APIs provided in this module, but
//!     external accesses from hardware devices or user programs do not count.
//!
//! We have the last requirement for untyped memory to be valid because the safety interaction with
//! other ways to access the memory region (e.g., atomic/volatile memory loads/stores) is not
//! currently specified. Tis may be relaxed in the future, if appropriate and necessary.
//!
//! Note that data races on untyped memory are explicitly allowed (since pages can be mapped to
//! user space, making it impossible to avoid data races). However, they may produce erroneous
//! results, such as unexpected bytes being copied, but do not cause soundness problems.

use alloc::vec;
use core::marker::PhantomData;

use align_ext::AlignExt;
use inherit_methods_macro::inherit_methods;
use safety::safety;

use crate::{
    arch::mm::{__memcpy_fallible, __memset_fallible},
    mm::{
        kspace::{KERNEL_BASE_VADDR, KERNEL_END_VADDR},
        MAX_USERSPACE_VADDR,
    },
    prelude::*,
    Error, Pod,
};

/// A trait that enables reading/writing data from/to a VM object,
/// e.g., [`USegment`], [`Vec<UFrame>`] and [`UFrame`].
///
/// # Concurrency
///
/// The methods may be executed by multiple concurrent reader and writer
/// threads. In this case, if the results of concurrent reads or writes
/// desire predictability or atomicity, the users should add extra mechanism
/// for such properties.
///
/// [`USegment`]: crate::mm::USegment
/// [`UFrame`]: crate::mm::UFrame
pub trait VmIo: Send + Sync {
    /// Reads requested data at a specified offset into a given `VmWriter`.
    ///
    /// # No short reads
    ///
    /// On success, the `writer` must be written with the requested data
    /// completely. If, for any reason, the requested data is only partially
    /// available, then the method shall return an error.
    fn read(&self, offset: usize, writer: &mut VmWriter) -> Result<()>;

    /// Reads a specified number of bytes at a specified offset into a given buffer.
    ///
    /// # No short reads
    ///
    /// Similar to [`read`].
    ///
    /// [`read`]: VmIo::read
    fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()> {
        let mut writer = VmWriter::from(buf).to_fallible();
        self.read(offset, &mut writer)
    }

    /// Reads a value of a specified type at a specified offset.
    fn read_val<T: Pod>(&self, offset: usize) -> Result<T> {
        let mut val = T::new_uninit();
        self.read_bytes(offset, val.as_bytes_mut())?;
        Ok(val)
    }

    /// Reads a slice of a specified type at a specified offset.
    ///
    /// # No short reads
    ///
    /// Similar to [`read`].
    ///
    /// [`read`]: VmIo::read
    fn read_slice<T: Pod>(&self, offset: usize, slice: &mut [T]) -> Result<()> {
        let len_in_bytes = core::mem::size_of_val(slice);
        let ptr = slice as *mut [T] as *mut u8;
        // SAFETY: the slice can be transmuted to a writable byte slice since the elements
        // are all Plain-Old-Data (Pod) types.
        let buf = unsafe { core::slice::from_raw_parts_mut(ptr, len_in_bytes) };
        self.read_bytes(offset, buf)
    }

    /// Writes all data from a given `VmReader` at a specified offset.
    ///
    /// # No short writes
    ///
    /// On success, the data from the `reader` must be read to the VM object entirely.
    /// If, for any reason, the input data can only be written partially,
    /// then the method shall return an error.
    fn write(&self, offset: usize, reader: &mut VmReader) -> Result<()>;

    /// Writes a specified number of bytes from a given buffer at a specified offset.
    ///
    /// # No short writes
    ///
    /// Similar to [`write`].
    ///
    /// [`write`]: VmIo::write
    fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()> {
        let mut reader = VmReader::from(buf).to_fallible();
        self.write(offset, &mut reader)
    }

    /// Writes a value of a specified type at a specified offset.
    fn write_val<T: Pod>(&self, offset: usize, new_val: &T) -> Result<()> {
        self.write_bytes(offset, new_val.as_bytes())?;
        Ok(())
    }

    /// Writes a slice of a specified type at a specified offset.
    ///
    /// # No short write
    ///
    /// Similar to [`write`].
    ///
    /// [`write`]: VmIo::write
    fn write_slice<T: Pod>(&self, offset: usize, slice: &[T]) -> Result<()> {
        let len_in_bytes = core::mem::size_of_val(slice);
        let ptr = slice as *const [T] as *const u8;
        // SAFETY: the slice can be transmuted to a readable byte slice since the elements
        // are all Plain-Old-Data (Pod) types.
        let buf = unsafe { core::slice::from_raw_parts(ptr, len_in_bytes) };
        self.write_bytes(offset, buf)
    }

    /// Writes a sequence of values given by an iterator (`iter`) from the specified offset (`offset`).
    ///
    /// The write process stops until the VM object does not have enough remaining space
    /// or the iterator returns `None`. If any value is written, the function returns `Ok(nr_written)`,
    /// where `nr_written` is the number of the written values.
    ///
    /// The offset of every value written by this method is aligned to the `align`-byte boundary.
    /// Naturally, when `align` equals to `0` or `1`, then the argument takes no effect:
    /// the values will be written in the most compact way.
    ///
    /// # Example
    ///
    /// Initializes an VM object with the same value can be done easily with `write_values`.
    ///
    /// ```
    /// use core::iter::self;
    ///
    /// let _nr_values = vm_obj.write_vals(0, iter::repeat(0_u32), 0).unwrap();
    /// ```
    ///
    /// # Panics
    ///
    /// This method panics if `align` is greater than two,
    /// but not a power of two, in release mode.
    fn write_vals<'a, T: Pod + 'a, I: Iterator<Item = &'a T>>(
        &self,
        offset: usize,
        iter: I,
        align: usize,
    ) -> Result<usize> {
        let mut nr_written = 0;

        let (mut offset, item_size) = if (align >> 1) == 0 {
            // align is 0 or 1
            (offset, core::mem::size_of::<T>())
        } else {
            // align is more than 2
            (
                offset.align_up(align),
                core::mem::size_of::<T>().align_up(align),
            )
        };

        for item in iter {
            match self.write_val(offset, item) {
                Ok(_) => {
                    offset += item_size;
                    nr_written += 1;
                }
                Err(e) => {
                    if nr_written > 0 {
                        return Ok(nr_written);
                    }
                    return Err(e);
                }
            }
        }

        Ok(nr_written)
    }
}

/// A trait that enables reading/writing data from/to a VM object using one non-tearing memory
/// load/store.
///
/// See also [`VmIo`], which enables reading/writing data from/to a VM object without the guarantee
/// of using one non-tearing memory load/store.
pub trait VmIoOnce {
    /// Reads a value of the `PodOnce` type at the specified offset using one non-tearing memory
    /// load.
    ///
    /// Except that the offset is specified explicitly, the semantics of this method is the same as
    /// [`VmReader::read_once`].
    fn read_once<T: PodOnce>(&self, offset: usize) -> Result<T>;

    /// Writes a value of the `PodOnce` type at the specified offset using one non-tearing memory
    /// store.
    ///
    /// Except that the offset is specified explicitly, the semantics of this method is the same as
    /// [`VmWriter::write_once`].
    fn write_once<T: PodOnce>(&self, offset: usize, new_val: &T) -> Result<()>;
}

macro_rules! impl_vm_io_pointer {
    ($typ:ty,$from:tt) => {
        #[inherit_methods(from = $from)]
        impl<T: VmIo> VmIo for $typ {
            fn read(&self, offset: usize, writer: &mut VmWriter) -> Result<()>;
            fn read_bytes(&self, offset: usize, buf: &mut [u8]) -> Result<()>;
            fn read_val<F: Pod>(&self, offset: usize) -> Result<F>;
            fn read_slice<F: Pod>(&self, offset: usize, slice: &mut [F]) -> Result<()>;
            fn write(&self, offset: usize, reader: &mut VmReader) -> Result<()>;
            fn write_bytes(&self, offset: usize, buf: &[u8]) -> Result<()>;
            fn write_val<F: Pod>(&self, offset: usize, new_val: &F) -> Result<()>;
            fn write_slice<F: Pod>(&self, offset: usize, slice: &[F]) -> Result<()>;
        }
    };
}

impl_vm_io_pointer!(&T, "(**self)");
impl_vm_io_pointer!(&mut T, "(**self)");
impl_vm_io_pointer!(Box<T>, "(**self)");
impl_vm_io_pointer!(Arc<T>, "(**self)");

macro_rules! impl_vm_io_once_pointer {
    ($typ:ty,$from:tt) => {
        #[inherit_methods(from = $from)]
        impl<T: VmIoOnce> VmIoOnce for $typ {
            fn read_once<F: PodOnce>(&self, offset: usize) -> Result<F>;
            fn write_once<F: PodOnce>(&self, offset: usize, new_val: &F) -> Result<()>;
        }
    };
}

impl_vm_io_once_pointer!(&T, "(**self)");
impl_vm_io_once_pointer!(&mut T, "(**self)");
impl_vm_io_once_pointer!(Box<T>, "(**self)");
impl_vm_io_once_pointer!(Arc<T>, "(**self)");

/// A marker type used for [`VmReader`] and [`VmWriter`],
/// representing whether reads or writes on the underlying memory region are fallible.
pub enum Fallible {}

/// A marker type used for [`VmReader`] and [`VmWriter`],
/// representing whether reads or writes on the underlying memory region are infallible.
pub enum Infallible {}

#[safety {
    ValidUse("`src`", "reads of `len` bytes"),
    ValidUse("`dst`", "writes of `len` bytes")
}]
unsafe fn memcpy(dst: *mut u8, src: *const u8, len: usize) {
    // This method is implemented by calling `volatile_copy_memory`. Note that even with the
    // "volatile" keyword, data races are still considered undefined behavior (UB) in both the Rust
    // documentation and the C/C++ standards. In general, UB makes the behavior of the entire
    // program unpredictable, usually due to compiler optimizations that assume the absence of UB.
    // However, in this particular case, considering that the Linux kernel uses the "volatile"
    // keyword to implement `READ_ONCE` and `WRITE_ONCE`, the compiler is extremely unlikely to
    // break our code unless it also breaks the Linux kernel.
    //
    // For more details and future possibilities, see
    // <https://github.com/asterinas/asterinas/pull/1001#discussion_r1667317406>.

    // SAFETY: The safety is guaranteed by the safety preconditions and the explanation above.
    unsafe { core::intrinsics::volatile_copy_memory(dst, src, len) };
}

/// Copies `len` bytes from `src` to `dst`.
/// This function will early stop copying if encountering an unresolvable page fault.
///
/// Returns the number of successfully copied bytes.
///
/// In the following cases, this method may cause unexpected bytes to be copied, but will not cause
/// safety problems as long as the safety requirements are met:
/// - The source and destination overlap.
/// - The current context is not associated with valid user space (e.g., in the kernel thread).
#[safety {
    Memo("`src` must either be [valid] for reads of `len` bytes or be in user space for `len` bytes"),
    Memo("`dst` must either be [valid] for writes of `len` bytes or be in user space for `len` bytes")
}]
unsafe fn memcpy_fallible(dst: *mut u8, src: *const u8, len: usize) -> usize {
    // SAFETY: The safety is upheld by the caller.
    let failed_bytes = unsafe { __memcpy_fallible(dst, src, len) };
    len - failed_bytes
}

/// Fills `len` bytes of memory at `dst` with the specified `value`.
/// This function will early stop filling if encountering an unresolvable page fault.
///
/// Returns the number of successfully set bytes.
#[safety {
    Memo("`dst` must either be [valid] for writes of `len` bytes or be in user space for `len` bytes")
}]
unsafe fn memset_fallible(dst: *mut u8, value: u8, len: usize) -> usize {
    // SAFETY: The safety is upheld by the caller.
    let failed_bytes = unsafe { __memset_fallible(dst, value, len) };
    len - failed_bytes
}

/// Fallible memory read from a `VmWriter`.
pub trait FallibleVmRead<F> {
    /// Reads all data into the writer until one of the three conditions is met:
    /// 1. The reader has no remaining data.
    /// 2. The writer has no available space.
    /// 3. The reader/writer encounters some error.
    ///
    /// On success, the number of bytes read is returned;
    /// On error, both the error and the number of bytes read so far are returned.
    fn read_fallible(
        &mut self,
        writer: &mut VmWriter<'_, F>,
    ) -> core::result::Result<usize, (Error, usize)>;
}

/// Fallible memory write from a `VmReader`.
pub trait FallibleVmWrite<F> {
    /// Writes all data from the reader until one of the three conditions is met:
    /// 1. The reader has no remaining data.
    /// 2. The writer has no available space.
    /// 3. The reader/writer encounters some error.
    ///
    /// On success, the number of bytes written is returned;
    /// On error, both the error and the number of bytes written so far are returned.
    fn write_fallible(
        &mut self,
        reader: &mut VmReader<'_, F>,
    ) -> core::result::Result<usize, (Error, usize)>;
}

/// `VmReader` is a reader for reading data from a contiguous range of memory.
///
/// The memory range read by `VmReader` can be in either kernel space or user space.
/// When the operating range is in kernel space, the memory within that range
/// is guaranteed to be valid, and the corresponding memory reads are infallible.
/// When the operating range is in user space, it is ensured that the page table of
/// the process creating the `VmReader` is active for the duration of `'a`,
/// and the corresponding memory reads are considered fallible.
///
/// When perform reading with a `VmWriter`, if one of them represents typed memory,
/// it can ensure that the reading range in this reader and writing range in the
/// writer are not overlapped.
///
/// NOTE: The overlap mentioned above is at both the virtual address level
/// and physical address level. There is not guarantee for the operation results
/// of `VmReader` and `VmWriter` in overlapping untyped addresses, and it is
/// the user's responsibility to handle this situation.
pub struct VmReader<'a, Fallibility = Fallible> {
    cursor: *const u8,
    end: *const u8,
    phantom: PhantomData<(&'a [u8], Fallibility)>,
}

// `Clone` can be implemented for `VmReader`
// because it either points to untyped memory or represents immutable references.
// Note that we cannot implement `Clone` for `VmWriter`
// because it can represent mutable references, which must remain exclusive.
impl<Fallibility> Clone for VmReader<'_, Fallibility> {
    fn clone(&self) -> Self {
        Self {
            cursor: self.cursor,
            end: self.end,
            phantom: PhantomData,
        }
    }
}

macro_rules! impl_read_fallible {
    ($reader_fallibility:ty, $writer_fallibility:ty) => {
        impl<'a> FallibleVmRead<$writer_fallibility> for VmReader<'a, $reader_fallibility> {
            fn read_fallible(
                &mut self,
                writer: &mut VmWriter<'_, $writer_fallibility>,
            ) -> core::result::Result<usize, (Error, usize)> {
                let copy_len = self.remain().min(writer.avail());
                if copy_len == 0 {
                    return Ok(0);
                }

                // SAFETY: The source and destination are subsets of memory ranges specified by
                // the reader and writer, so they are either valid for reading and writing or in
                // user space.
                let copied_len = unsafe { memcpy_fallible(writer.cursor, self.cursor, copy_len) };
                self.cursor = self.cursor.wrapping_add(copied_len);
                writer.cursor = writer.cursor.wrapping_add(copied_len);

                if copied_len < copy_len {
                    Err((Error::PageFault, copied_len))
                } else {
                    Ok(copied_len)
                }
            }
        }
    };
}

macro_rules! impl_write_fallible {
    ($writer_fallibility:ty, $reader_fallibility:ty) => {
        impl<'a> FallibleVmWrite<$reader_fallibility> for VmWriter<'a, $writer_fallibility> {
            fn write_fallible(
                &mut self,
                reader: &mut VmReader<'_, $reader_fallibility>,
            ) -> core::result::Result<usize, (Error, usize)> {
                reader.read_fallible(self)
            }
        }
    };
}

impl_read_fallible!(Fallible, Infallible);
impl_read_fallible!(Fallible, Fallible);
impl_read_fallible!(Infallible, Fallible);
impl_write_fallible!(Fallible, Infallible);
impl_write_fallible!(Fallible, Fallible);
impl_write_fallible!(Infallible, Fallible);

impl<'a> VmReader<'a, Infallible> {
    /// Constructs a `VmReader` from a pointer and a length, which represents
    /// a memory range in kernel space.
    #[safety {
        ValidUse("`ptr`", "reads of `len` bytes")
    }]
    pub unsafe fn from_kernel_space(ptr: *const u8, len: usize) -> Self {
        // Rust is allowed to give the reference to a zero-sized object a very small address,
        // falling out of the kernel virtual address space range.
        // So when `len` is zero, we should not and need not to check `ptr`.
        debug_assert!(len == 0 || KERNEL_BASE_VADDR <= ptr.addr());
        debug_assert!(len == 0 || ptr.addr().checked_add(len).unwrap() <= KERNEL_END_VADDR);

        Self {
            cursor: ptr,
            end: ptr.wrapping_add(len),
            phantom: PhantomData,
        }
    }

    /// Reads all data into the writer until one of the two conditions is met:
    /// 1. The reader has no remaining data.
    /// 2. The writer has no available space.
    ///
    /// Returns the number of bytes read.
    pub fn read(&mut self, writer: &mut VmWriter<'_, Infallible>) -> usize {
        let copy_len = self.remain().min(writer.avail());
        if copy_len == 0 {
            return 0;
        }

        // SAFETY: The source and destination are subsets of memory ranges specified by the reader
        // and writer, so they are valid for reading and writing.
        unsafe { memcpy(writer.cursor, self.cursor, copy_len) };
        self.cursor = self.cursor.wrapping_add(copy_len);
        writer.cursor = writer.cursor.wrapping_add(copy_len);

        copy_len
    }

    /// Reads a value of `Pod` type.
    ///
    /// If the length of the `Pod` type exceeds `self.remain()`,
    /// this method will return `Err`.
    pub fn read_val<T: Pod>(&mut self) -> Result<T> {
        if self.remain() < core::mem::size_of::<T>() {
            return Err(Error::InvalidArgs);
        }

        let mut val = T::new_uninit();
        let mut writer = VmWriter::from(val.as_bytes_mut());

        self.read(&mut writer);
        Ok(val)
    }

    /// Reads a value of the `PodOnce` type using one non-tearing memory load.
    ///
    /// If the length of the `PodOnce` type exceeds `self.remain()`, this method will return `Err`.
    ///
    /// This method will not compile if the `Pod` type is too large for the current architecture
    /// and the operation must be tear into multiple memory loads.
    ///
    /// # Panics
    ///
    /// This method will panic if the current position of the reader does not meet the alignment
    /// requirements of type `T`.
    pub fn read_once<T: PodOnce>(&mut self) -> Result<T> {
        if self.remain() < core::mem::size_of::<T>() {
            return Err(Error::InvalidArgs);
        }

        let cursor = self.cursor.cast::<T>();
        assert!(cursor.is_aligned());

        const { assert!(pod_once_impls::is_non_tearing::<T>()) };

        // SAFETY: We have checked that the number of bytes remaining is at least the size of `T`
        // and that the cursor is properly aligned with respect to the type `T`. All other safety
        // requirements are the same as for `Self::read`.
        let val = unsafe { cursor.read_volatile() };
        self.cursor = self.cursor.wrapping_add(core::mem::size_of::<T>());

        Ok(val)
    }

    /// Converts to a fallible reader.
    pub fn to_fallible(self) -> VmReader<'a, Fallible> {
        // It is safe to construct a fallible reader since an infallible reader covers the
        // capabilities of a fallible reader.
        VmReader {
            cursor: self.cursor,
            end: self.end,
            phantom: PhantomData,
        }
    }
}

impl VmReader<'_, Fallible> {
    /// Constructs a `VmReader` from a pointer and a length, which represents
    /// a memory range in user space.
    ///
    /// # Safety
    ///
    /// The virtual address range `ptr..ptr + len` must be in user space.
    #[safety {
        UserSpace(ptr, ptr + len)
    }]
    pub unsafe fn from_user_space(ptr: *const u8, len: usize) -> Self {
        debug_assert!(ptr.addr().checked_add(len).unwrap() <= MAX_USERSPACE_VADDR);

        Self {
            cursor: ptr,
            end: ptr.wrapping_add(len),
            phantom: PhantomData,
        }
    }

    /// Reads a value of `Pod` type.
    ///
    /// If the length of the `Pod` type exceeds `self.remain()`,
    /// or the value can not be read completely,
    /// this method will return `Err`.
    ///
    /// If the memory read failed, this method will return `Err`
    /// and the current reader's cursor remains pointing to
    /// the original starting position.
    pub fn read_val<T: Pod>(&mut self) -> Result<T> {
        if self.remain() < core::mem::size_of::<T>() {
            return Err(Error::InvalidArgs);
        }

        let mut val = T::new_uninit();
        let mut writer = VmWriter::from(val.as_bytes_mut());
        self.read_fallible(&mut writer)
            .map_err(|(err, copied_len)| {
                // SAFETY: The `copied_len` is the number of bytes read so far.
                // So the `cursor` can be moved back to the original position.
                unsafe {
                    self.cursor = self.cursor.sub(copied_len);
                }
                err
            })?;
        Ok(val)
    }

    /// Collects all the remaining bytes into a `Vec<u8>`.
    ///
    /// If the memory read failed, this method will return `Err`
    /// and the current reader's cursor remains pointing to
    /// the original starting position.
    pub fn collect(&mut self) -> Result<Vec<u8>> {
        let mut buf = vec![0u8; self.remain()];
        self.read_fallible(&mut buf.as_mut_slice().into())
            .map_err(|(err, copied_len)| {
                // SAFETY: The `copied_len` is the number of bytes read so far.
                // So the `cursor` can be moved back to the original position.
                unsafe {
                    self.cursor = self.cursor.sub(copied_len);
                }
                err
            })?;
        Ok(buf)
    }
}

impl<Fallibility> VmReader<'_, Fallibility> {
    /// Returns the number of bytes for the remaining data.
    pub fn remain(&self) -> usize {
        self.end.addr() - self.cursor.addr()
    }

    /// Returns the cursor pointer, which refers to the address of the next byte to read.
    pub fn cursor(&self) -> *const u8 {
        self.cursor
    }

    /// Returns if it has remaining data to read.
    pub fn has_remain(&self) -> bool {
        self.remain() > 0
    }

    /// Limits the length of remaining data.
    ///
    /// This method ensures the post condition of `self.remain() <= max_remain`.
    pub fn limit(&mut self, max_remain: usize) -> &mut Self {
        if max_remain < self.remain() {
            self.end = self.cursor.wrapping_add(max_remain);
        }

        self
    }

    /// Skips the first `nbytes` bytes of data.
    /// The length of remaining data is decreased accordingly.
    ///
    /// # Panics
    ///
    /// If `nbytes` is greater than `self.remain()`, then the method panics.
    pub fn skip(&mut self, nbytes: usize) -> &mut Self {
        assert!(nbytes <= self.remain());
        self.cursor = self.cursor.wrapping_add(nbytes);

        self
    }
}

impl<'a> From<&'a [u8]> for VmReader<'a, Infallible> {
    fn from(slice: &'a [u8]) -> Self {
        // SAFETY:
        // - The memory range points to typed memory.
        // - The validity requirements for read accesses are met because the pointer is converted
        //   from an immutable reference that outlives the lifetime `'a`.
        // - The type, i.e., the `u8` slice, is plain-old-data.
        unsafe { Self::from_kernel_space(slice.as_ptr(), slice.len()) }
    }
}

/// `VmWriter` is a writer for writing data to a contiguous range of memory.
///
/// The memory range write by `VmWriter` can be in either kernel space or user space.
/// When the operating range is in kernel space, the memory within that range
/// is guaranteed to be valid, and the corresponding memory writes are infallible.
/// When the operating range is in user space, it is ensured that the page table of
/// the process creating the `VmWriter` is active for the duration of `'a`,
/// and the corresponding memory writes are considered fallible.
///
/// When perform writing with a `VmReader`, if one of them represents typed memory,
/// it can ensure that the writing range in this writer and reading range in the
/// reader are not overlapped.
///
/// NOTE: The overlap mentioned above is at both the virtual address level
/// and physical address level. There is not guarantee for the operation results
/// of `VmReader` and `VmWriter` in overlapping untyped addresses, and it is
/// the user's responsibility to handle this situation.
pub struct VmWriter<'a, Fallibility = Fallible> {
    cursor: *mut u8,
    end: *mut u8,
    phantom: PhantomData<(&'a mut [u8], Fallibility)>,
}

impl<'a> VmWriter<'a, Infallible> {
    /// Constructs a `VmWriter` from a pointer and a length, which represents
    /// a memory range in kernel space.
    ///
    /// # Safety
    ///
    /// `ptr` must be [valid] for writes of `len` bytes during the entire lifetime `a`.
    ///
    /// [valid]: crate::mm::io#safety
    
    #[safety {
        ValidUse("`ptr`", "writes of `len` bytes")
    }]
    pub unsafe fn from_kernel_space(ptr: *mut u8, len: usize) -> Self {
        // If casting a zero sized slice to a pointer, the pointer may be null
        // and does not reside in our kernel space range.
        debug_assert!(len == 0 || KERNEL_BASE_VADDR <= ptr.addr());
        debug_assert!(len == 0 || ptr.addr().checked_add(len).unwrap() <= KERNEL_END_VADDR);

        Self {
            cursor: ptr,
            end: ptr.wrapping_add(len),
            phantom: PhantomData,
        }
    }

    /// Writes all data from the reader until one of the two conditions is met:
    /// 1. The reader has no remaining data.
    /// 2. The writer has no available space.
    ///
    /// Returns the number of bytes written.
    pub fn write(&mut self, reader: &mut VmReader<'_, Infallible>) -> usize {
        reader.read(self)
    }

    /// Writes a value of `Pod` type.
    ///
    /// If the length of the `Pod` type exceeds `self.avail()`,
    /// this method will return `Err`.
    pub fn write_val<T: Pod>(&mut self, new_val: &T) -> Result<()> {
        if self.avail() < core::mem::size_of::<T>() {
            return Err(Error::InvalidArgs);
        }

        let mut reader = VmReader::from(new_val.as_bytes());
        self.write(&mut reader);
        Ok(())
    }

    /// Writes a value of the `PodOnce` type using one non-tearing memory store.
    ///
    /// If the length of the `PodOnce` type exceeds `self.remain()`, this method will return `Err`.
    ///
    /// # Panics
    ///
    /// This method will panic if the current position of the writer does not meet the alignment
    /// requirements of type `T`.
    pub fn write_once<T: PodOnce>(&mut self, new_val: &T) -> Result<()> {
        if self.avail() < core::mem::size_of::<T>() {
            return Err(Error::InvalidArgs);
        }

        let cursor = self.cursor.cast::<T>();
        assert!(cursor.is_aligned());

        const { assert!(pod_once_impls::is_non_tearing::<T>()) };

        // SAFETY: We have checked that the number of bytes remaining is at least the size of `T`
        // and that the cursor is properly aligned with respect to the type `T`. All other safety
        // requirements are the same as for `Self::write`.
        unsafe { cursor.write_volatile(*new_val) };
        self.cursor = self.cursor.wrapping_add(core::mem::size_of::<T>());

        Ok(())
    }

    /// Fills the available space by repeating `value`.
    ///
    /// Returns the number of values written.
    ///
    /// # Panics
    ///
    /// The size of the available space must be a multiple of the size of `value`.
    /// Otherwise, the method would panic.
    pub fn fill<T: Pod>(&mut self, value: T) -> usize {
        let cursor = self.cursor.cast::<T>();
        assert!(cursor.is_aligned());

        let avail = self.avail();
        assert!(avail % core::mem::size_of::<T>() == 0);
        let written_num = avail / core::mem::size_of::<T>();

        for i in 0..written_num {
            let cursor_i = cursor.wrapping_add(i);
            // SAFETY: `written_num` is calculated by the avail size and the size of the type `T`,
            // so the `write` operation will only manipulate the memory managed by this writer.
            // We've checked that the cursor is properly aligned with respect to the type `T`. All
            // other safety requirements are the same as for `Self::write`.
            unsafe { cursor_i.write_volatile(value) };
        }

        // The available space has been filled so this cursor can be moved to the end.
        self.cursor = self.end;
        written_num
    }

    /// Converts to a fallible writer.
    pub fn to_fallible(self) -> VmWriter<'a, Fallible> {
        // It is safe to construct a fallible reader since an infallible reader covers the
        // capabilities of a fallible reader.
        VmWriter {
            cursor: self.cursor,
            end: self.end,
            phantom: PhantomData,
        }
    }
}

impl VmWriter<'_, Fallible> {
    /// Constructs a `VmWriter` from a pointer and a length, which represents
    /// a memory range in user space.
    ///
    /// The current context should be consistently associated with valid user space during the
    /// entire lifetime `'a`. This is for correct semantics and is not a safety requirement.
    ///
    /// # Safety
    ///
    /// `ptr` must be in user space for `len` bytes.
    
    #[safety {
        UserSpace(ptr, ptr + len)
    }]
    pub unsafe fn from_user_space(ptr: *mut u8, len: usize) -> Self {
        debug_assert!(ptr.addr().checked_add(len).unwrap() <= MAX_USERSPACE_VADDR);

        Self {
            cursor: ptr,
            end: ptr.wrapping_add(len),
            phantom: PhantomData,
        }
    }

    /// Writes a value of `Pod` type.
    ///
    /// If the length of the `Pod` type exceeds `self.avail()`,
    /// or the value can not be write completely,
    /// this method will return `Err`.
    ///
    /// If the memory write failed, this method will return `Err`
    /// and the current writer's cursor remains pointing to
    /// the original starting position.
    pub fn write_val<T: Pod>(&mut self, new_val: &T) -> Result<()> {
        if self.avail() < core::mem::size_of::<T>() {
            return Err(Error::InvalidArgs);
        }

        let mut reader = VmReader::from(new_val.as_bytes());
        self.write_fallible(&mut reader)
            .map_err(|(err, copied_len)| {
                // SAFETY: The `copied_len` is the number of bytes written so far.
                // So the `cursor` can be moved back to the original position.
                unsafe {
                    self.cursor = self.cursor.sub(copied_len);
                }
                err
            })?;
        Ok(())
    }

    /// Writes `len` zeros to the target memory.
    ///
    /// This method attempts to fill up to `len` bytes with zeros. If the available
    /// memory from the current cursor position is less than `len`, it will only fill
    /// the available space.
    ///
    /// If the memory write failed due to an unresolvable page fault, this method
    /// will return `Err` with the length set so far.
    pub fn fill_zeros(&mut self, len: usize) -> core::result::Result<usize, (Error, usize)> {
        let len_to_set = self.avail().min(len);
        if len_to_set == 0 {
            return Ok(0);
        }

        // SAFETY: The destination is a subset of the memory range specified by
        // the current writer, so it is either valid for writing or in user space.
        let set_len = unsafe { memset_fallible(self.cursor, 0u8, len_to_set) };
        self.cursor = self.cursor.wrapping_add(set_len);

        if set_len < len_to_set {
            Err((Error::PageFault, set_len))
        } else {
            Ok(len_to_set)
        }
    }
}

impl<Fallibility> VmWriter<'_, Fallibility> {
    /// Returns the number of bytes for the available space.
    pub fn avail(&self) -> usize {
        self.end.addr() - self.cursor.addr()
    }

    /// Returns the cursor pointer, which refers to the address of the next byte to write.
    pub fn cursor(&self) -> *mut u8 {
        self.cursor
    }

    /// Returns if it has available space to write.
    pub fn has_avail(&self) -> bool {
        self.avail() > 0
    }

    /// Limits the length of available space.
    ///
    /// This method ensures the post condition of `self.avail() <= max_avail`.
    pub fn limit(&mut self, max_avail: usize) -> &mut Self {
        if max_avail < self.avail() {
            self.end = self.cursor.wrapping_add(max_avail);
        }

        self
    }

    /// Skips the first `nbytes` bytes of data.
    /// The length of available space is decreased accordingly.
    ///
    /// # Panics
    ///
    /// If `nbytes` is greater than `self.avail()`, then the method panics.
    pub fn skip(&mut self, nbytes: usize) -> &mut Self {
        assert!(nbytes <= self.avail());
        self.cursor = self.cursor.wrapping_add(nbytes);

        self
    }
}

impl<'a> From<&'a mut [u8]> for VmWriter<'a, Infallible> {
    fn from(slice: &'a mut [u8]) -> Self {
        // SAFETY:
        // - The memory range points to typed memory.
        // - The validity requirements for write accesses are met because the pointer is converted
        //   from a mutable reference that outlives the lifetime `'a`.
        // - The type, i.e., the `u8` slice, is plain-old-data.
        unsafe { Self::from_kernel_space(slice.as_mut_ptr(), slice.len()) }
    }
}

/// A marker trait for POD types that can be read or written with one instruction.
///
/// This trait is mostly a hint, since it's safe and can be implemented for _any_ POD type. If it
/// is implemented for a type that cannot be read or written with a single instruction, calling
/// `read_once`/`write_once` will lead to a failed compile-time assertion.
pub trait PodOnce: Pod {}

#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
mod pod_once_impls {
    use super::PodOnce;

    impl PodOnce for u8 {}
    impl PodOnce for u16 {}
    impl PodOnce for u32 {}
    impl PodOnce for u64 {}
    impl PodOnce for usize {}
    impl PodOnce for i8 {}
    impl PodOnce for i16 {}
    impl PodOnce for i32 {}
    impl PodOnce for i64 {}
    impl PodOnce for isize {}

    /// Checks whether the memory operation created by `ptr::read_volatile` and
    /// `ptr::write_volatile` doesn't tear.
    ///
    /// Note that the Rust documentation makes no such guarantee, and even the wording in the LLVM
    /// LangRef is ambiguous. But this is unlikely to break in practice because the Linux kernel
    /// also uses "volatile" semantics to implement `READ_ONCE`/`WRITE_ONCE`.
    pub(super) const fn is_non_tearing<T>() -> bool {
        let size = core::mem::size_of::<T>();

        size == 1 || size == 2 || size == 4 || size == 8
    }
}