ostd/util/
range_alloc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// SPDX-License-Identifier: MPL-2.0

use alloc::collections::btree_map::BTreeMap;
use core::ops::Range;

use crate::{
    prelude::*,
    sync::{PreemptDisabled, SpinLock, SpinLockGuard},
    Error,
};

pub struct RangeAllocator {
    fullrange: Range<usize>,
    freelist: SpinLock<Option<BTreeMap<usize, FreeRange>>>,
}

impl RangeAllocator {
    pub const fn new(fullrange: Range<usize>) -> Self {
        Self {
            fullrange,
            freelist: SpinLock::new(None),
        }
    }

    pub const fn fullrange(&self) -> &Range<usize> {
        &self.fullrange
    }

    /// Allocates a specific kernel virtual area.
    pub fn alloc_specific(&self, allocate_range: &Range<usize>) -> Result<()> {
        debug_assert!(allocate_range.start < allocate_range.end);

        let mut lock_guard = self.get_freelist_guard();
        let freelist = lock_guard.as_mut().unwrap();
        let mut target_node = None;
        let mut left_length = 0;
        let mut right_length = 0;

        for (key, value) in freelist.iter() {
            if value.block.end >= allocate_range.end && value.block.start <= allocate_range.start {
                target_node = Some(*key);
                left_length = allocate_range.start - value.block.start;
                right_length = value.block.end - allocate_range.end;
                break;
            }
        }

        if let Some(key) = target_node {
            if left_length == 0 {
                freelist.remove(&key);
            } else if let Some(freenode) = freelist.get_mut(&key) {
                freenode.block.end = allocate_range.start;
            }

            if right_length != 0 {
                freelist.insert(
                    allocate_range.end,
                    FreeRange::new(allocate_range.end..(allocate_range.end + right_length)),
                );
            }
        }

        if target_node.is_some() {
            Ok(())
        } else {
            Err(Error::KVirtAreaAllocError)
        }
    }

    /// Allocates a range specific by the `size`.
    ///
    /// This is currently implemented with a simple FIRST-FIT algorithm.
    pub fn alloc(&self, size: usize) -> Result<Range<usize>> {
        let mut lock_guard = self.get_freelist_guard();
        let freelist = lock_guard.as_mut().unwrap();
        let mut allocate_range = None;
        let mut to_remove = None;

        for (key, value) in freelist.iter() {
            if value.block.end - value.block.start >= size {
                allocate_range = Some((value.block.end - size)..value.block.end);
                to_remove = Some(*key);
                break;
            }
        }

        if let Some(key) = to_remove {
            if let Some(freenode) = freelist.get_mut(&key) {
                if freenode.block.end - size == freenode.block.start {
                    freelist.remove(&key);
                } else {
                    freenode.block.end -= size;
                }
            }
        }

        if let Some(range) = allocate_range {
            Ok(range)
        } else {
            Err(Error::KVirtAreaAllocError)
        }
    }

    /// Frees a `range`.
    pub fn free(&self, range: Range<usize>) {
        let mut lock_guard = self.freelist.lock();
        let freelist = lock_guard.as_mut().unwrap_or_else(|| {
            panic!("Free a 'KVirtArea' when 'VirtAddrAllocator' has not been initialized.")
        });
        // 1. get the previous free block, check if we can merge this block with the free one
        //     - if contiguous, merge this area with the free block.
        //     - if not contiguous, create a new free block, insert it into the list.
        let mut free_range = range.clone();

        if let Some((prev_va, prev_node)) = freelist
            .upper_bound_mut(core::ops::Bound::Excluded(&free_range.start))
            .peek_prev()
        {
            if prev_node.block.end == free_range.start {
                let prev_va = *prev_va;
                free_range.start = prev_node.block.start;
                freelist.remove(&prev_va);
            }
        }
        freelist.insert(free_range.start, FreeRange::new(free_range.clone()));

        // 2. check if we can merge the current block with the next block, if we can, do so.
        if let Some((next_va, next_node)) = freelist
            .lower_bound_mut(core::ops::Bound::Excluded(&free_range.start))
            .peek_next()
        {
            if free_range.end == next_node.block.start {
                let next_va = *next_va;
                free_range.end = next_node.block.end;
                freelist.remove(&next_va);
                freelist.get_mut(&free_range.start).unwrap().block.end = free_range.end;
            }
        }
    }

    fn get_freelist_guard(
        &self,
    ) -> SpinLockGuard<Option<BTreeMap<usize, FreeRange>>, PreemptDisabled> {
        let mut lock_guard = self.freelist.lock();
        if lock_guard.is_none() {
            let mut freelist: BTreeMap<usize, FreeRange> = BTreeMap::new();
            freelist.insert(self.fullrange.start, FreeRange::new(self.fullrange.clone()));
            *lock_guard = Some(freelist);
        }
        lock_guard
    }
}

struct FreeRange {
    block: Range<usize>,
}

impl FreeRange {
    const fn new(range: Range<usize>) -> Self {
        Self { block: range }
    }
}