kernel/
list.rs

1// SPDX-License-Identifier: GPL-2.0
2
3// Copyright (C) 2024 Google LLC.
4
5//! A linked list implementation.
6
7use crate::sync::ArcBorrow;
8use crate::types::Opaque;
9use core::iter::{DoubleEndedIterator, FusedIterator};
10use core::marker::PhantomData;
11use core::ptr;
12use pin_init::PinInit;
13use safety_macro::safety;
14
15mod impl_list_item_mod;
16pub use self::impl_list_item_mod::{
17    impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
18};
19
20mod arc;
21pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
22
23mod arc_field;
24pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
25
26/// A linked list.
27///
28/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
29/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
30/// prev/next pointers are not used for several linked lists.
31///
32/// # Invariants
33///
34/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
35///   field of the first element in the list.
36/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
37/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
38///   exclusive access to the `ListLinks` field.
39///
40/// # Examples
41///
42/// ```
43/// use kernel::list::*;
44///
45/// #[pin_data]
46/// struct BasicItem {
47///     value: i32,
48///     #[pin]
49///     links: ListLinks,
50/// }
51///
52/// impl BasicItem {
53///     fn new(value: i32) -> Result<ListArc<Self>> {
54///         ListArc::pin_init(try_pin_init!(Self {
55///             value,
56///             links <- ListLinks::new(),
57///         }), GFP_KERNEL)
58///     }
59/// }
60///
61/// impl_has_list_links! {
62///     impl HasListLinks<0> for BasicItem { self.links }
63/// }
64/// impl_list_arc_safe! {
65///     impl ListArcSafe<0> for BasicItem { untracked; }
66/// }
67/// impl_list_item! {
68///     impl ListItem<0> for BasicItem { using ListLinks; }
69/// }
70///
71/// // Create a new empty list.
72/// let mut list = List::new();
73/// {
74///     assert!(list.is_empty());
75/// }
76///
77/// // Insert 3 elements using `push_back()`.
78/// list.push_back(BasicItem::new(15)?);
79/// list.push_back(BasicItem::new(10)?);
80/// list.push_back(BasicItem::new(30)?);
81///
82/// // Iterate over the list to verify the nodes were inserted correctly.
83/// // [15, 10, 30]
84/// {
85///     let mut iter = list.iter();
86///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
87///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 10);
88///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 30);
89///     assert!(iter.next().is_none());
90///
91///     // Verify the length of the list.
92///     assert_eq!(list.iter().count(), 3);
93/// }
94///
95/// // Pop the items from the list using `pop_back()` and verify the content.
96/// {
97///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 30);
98///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 10);
99///     assert_eq!(list.pop_back().ok_or(EINVAL)?.value, 15);
100/// }
101///
102/// // Insert 3 elements using `push_front()`.
103/// list.push_front(BasicItem::new(15)?);
104/// list.push_front(BasicItem::new(10)?);
105/// list.push_front(BasicItem::new(30)?);
106///
107/// // Iterate over the list to verify the nodes were inserted correctly.
108/// // [30, 10, 15]
109/// {
110///     let mut iter = list.iter();
111///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 30);
112///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 10);
113///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
114///     assert!(iter.next().is_none());
115///
116///     // Verify the length of the list.
117///     assert_eq!(list.iter().count(), 3);
118/// }
119///
120/// // Pop the items from the list using `pop_front()` and verify the content.
121/// {
122///     assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 30);
123///     assert_eq!(list.pop_front().ok_or(EINVAL)?.value, 10);
124/// }
125///
126/// // Push `list2` to `list` through `push_all_back()`.
127/// // list: [15]
128/// // list2: [25, 35]
129/// {
130///     let mut list2 = List::new();
131///     list2.push_back(BasicItem::new(25)?);
132///     list2.push_back(BasicItem::new(35)?);
133///
134///     list.push_all_back(&mut list2);
135///
136///     // list: [15, 25, 35]
137///     // list2: []
138///     let mut iter = list.iter();
139///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 15);
140///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 25);
141///     assert_eq!(iter.next().ok_or(EINVAL)?.value, 35);
142///     assert!(iter.next().is_none());
143///     assert!(list2.is_empty());
144/// }
145/// # Result::<(), Error>::Ok(())
146/// ```
147pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
148    first: *mut ListLinksFields,
149    _ty: PhantomData<ListArc<T, ID>>,
150}
151
152// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
153// type of access to the `ListArc<T, ID>` elements.
154unsafe impl<T, const ID: u64> Send for List<T, ID>
155where
156    ListArc<T, ID>: Send,
157    T: ?Sized + ListItem<ID>,
158{
159}
160// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
161// type of access to the `ListArc<T, ID>` elements.
162unsafe impl<T, const ID: u64> Sync for List<T, ID>
163where
164    ListArc<T, ID>: Sync,
165    T: ?Sized + ListItem<ID>,
166{
167}
168
169/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
170///
171/// # Safety
172///
173/// Implementers must ensure that they provide the guarantees documented on methods provided by
174/// this trait.
175///
176/// [`ListArc<Self>`]: ListArc
177pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
178    /// Views the [`ListLinks`] for this value.
179    ///
180    /// # Guarantees
181    ///
182    /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
183    /// since the most recent such call, then this returns the same pointer as the one returned by
184    /// the most recent call to `prepare_to_insert`.
185    ///
186    /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
187    ///
188    /// # Safety
189    ///
190    /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
191    //#[safety::Memo(UserProperty, memo = "The provided pointer must point at a valid value.")] //valid_ptr(me)
192    unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
193
194    /// View the full value given its [`ListLinks`] field.
195    ///
196    /// Can only be used when the value is in a list.
197    ///
198    /// # Guarantees
199    ///
200    /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
201    /// * The returned pointer is valid until the next call to `post_remove`.
202    ///
203    /// # Safety
204    ///
205    /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
206    ///   from a call to `view_links` that happened after the most recent call to
207    ///   `prepare_to_insert`.
208    /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
209    ///   been called.
210    //#[safety::Memo(UserProperty, memo = "The provided value 'me' must originate from the most recent call to 'prepare_to_insert'.")] //originate_from_recent(me, prepare_to_insert)
211    //#[safety::Memo(UserProperty, memo = "The provided value 'me' must originate from a call to view_links that happened after the most recent call to 'prepare_to_insert'.")] //originate_from(me, view_links, prepare_to_insert)
212    unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
213
214    /// This is called when an item is inserted into a [`List`].
215    ///
216    /// # Guarantees
217    ///
218    /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
219    /// called.
220    ///
221    /// # Safety
222    ///
223    /// * The provided pointer must point at a valid value in an [`Arc`].
224    /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
225    /// * The caller must own the [`ListArc`] for this value.
226    /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
227    ///   called after this call to `prepare_to_insert`.
228    ///
229    /// [`Arc`]: crate::sync::Arc
230    //#[safety::Memo(UserProperty, memo = "The provided pointer 'me' must point at a valid value in an Arc.")] //wrapper(me, Arc)
231    unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
232
233    /// This undoes a previous call to `prepare_to_insert`.
234    ///
235    /// # Guarantees
236    ///
237    /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
238    ///
239    /// # Safety
240    ///
241    /// The provided pointer must be the pointer returned by the most recent call to
242    /// `prepare_to_insert`.
243    //#[safety::Memo(originate_from_recent(me, prepare_to_insert), memo = "The provided value 'me' must originate from the most recent call to 'prepare_to_insert'.")] //originate_from_recent(me, prepare_to_insert)
244    unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
245}
246
247#[repr(C)]
248#[derive(Copy, Clone)]
249struct ListLinksFields {
250    next: *mut ListLinksFields,
251    prev: *mut ListLinksFields,
252}
253
254/// The prev/next pointers for an item in a linked list.
255///
256/// # Invariants
257///
258/// The fields are null if and only if this item is not in a list.
259#[repr(transparent)]
260pub struct ListLinks<const ID: u64 = 0> {
261    // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
262    // list.
263    inner: Opaque<ListLinksFields>,
264}
265
266// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
267// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
268// move this an instance of this type to a different thread if the pointees are `!Send`.
269unsafe impl<const ID: u64> Send for ListLinks<ID> {}
270// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
271// okay to have immutable access to a ListLinks from several threads at once.
272unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
273
274impl<const ID: u64> ListLinks<ID> {
275    /// Creates a new initializer for this type.
276    pub fn new() -> impl PinInit<Self> {
277        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
278        // not be constructed in an `Arc` that already has a `ListArc`.
279        ListLinks {
280            inner: Opaque::new(ListLinksFields {
281                prev: ptr::null_mut(),
282                next: ptr::null_mut(),
283            }),
284        }
285    }
286
287    /// # Safety
288    ///
289    /// `me` must be dereferenceable.
290    #[safety { Typed(me, "ListLinks<ID>") }]
291    #[inline]
292    unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
293        // SAFETY: The caller promises that the pointer is valid.
294        unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
295    }
296
297    /// # Safety
298    ///
299    /// `me` must be dereferenceable.
300    #[safety { Typed(me, "ListLinksFields") }]
301    #[inline]
302    unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
303        me.cast()
304    }
305}
306
307/// Similar to [`ListLinks`], but also contains a pointer to the full value.
308///
309/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
310#[repr(C)]
311pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
312    /// The `ListLinks` field inside this value.
313    ///
314    /// This is public so that it can be used with `impl_has_list_links!`.
315    pub inner: ListLinks<ID>,
316    // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
317    // `ptr::null()` doesn't work for `T: ?Sized`.
318    self_ptr: Opaque<*const T>,
319}
320
321// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
322unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
323// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
324// it's okay to have immutable access to a ListLinks from several threads at once.
325//
326// Note that `inner` being a public field does not prevent this type from being opaque, since
327// `inner` is a opaque type.
328unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
329
330impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
331    /// The offset from the [`ListLinks`] to the self pointer field.
332    pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
333
334    /// Creates a new initializer for this type.
335    pub fn new() -> impl PinInit<Self> {
336        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
337        // not be constructed in an `Arc` that already has a `ListArc`.
338        Self {
339            inner: ListLinks {
340                inner: Opaque::new(ListLinksFields {
341                    prev: ptr::null_mut(),
342                    next: ptr::null_mut(),
343                }),
344            },
345            self_ptr: Opaque::uninit(),
346        }
347    }
348}
349
350impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
351    /// Creates a new empty list.
352    pub const fn new() -> Self {
353        Self {
354            first: ptr::null_mut(),
355            _ty: PhantomData,
356        }
357    }
358
359    /// Returns whether this list is empty.
360    pub fn is_empty(&self) -> bool {
361        self.first.is_null()
362    }
363
364    /// Inserts `item` before `next` in the cycle.
365    ///
366    /// Returns a pointer to the newly inserted element. Never changes `self.first` unless the list
367    /// is empty.
368    ///
369    /// # Safety
370    ///
371    /// * `next` must be an element in this list or null.
372    /// * if `next` is null, then the list must be empty.
373    // seems no need to abstract, it is a specific usage
374    unsafe fn insert_inner(
375        &mut self,
376        item: ListArc<T, ID>,
377        next: *mut ListLinksFields,
378    ) -> *mut ListLinksFields {
379        let raw_item = ListArc::into_raw(item);
380        // SAFETY:
381        // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
382        // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
383        //   the most recent call to `prepare_to_insert`, if any.
384        // * We own the `ListArc`.
385        // * Removing items from this list is always done using `remove_internal_inner`, which
386        //   calls `post_remove` before giving up ownership.
387        let list_links = unsafe { T::prepare_to_insert(raw_item) };
388        // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
389        let item = unsafe { ListLinks::fields(list_links) };
390
391        // Check if the list is empty.
392        if next.is_null() {
393            // SAFETY: The caller just gave us ownership of these fields.
394            // INVARIANT: A linked list with one item should be cyclic.
395            unsafe {
396                (*item).next = item;
397                (*item).prev = item;
398            }
399            self.first = item;
400        } else {
401            // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
402            // it's not null, so it must be valid.
403            let prev = unsafe { (*next).prev };
404            // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
405            // ownership of the fields on `item`.
406            // INVARIANT: This correctly inserts `item` between `prev` and `next`.
407            unsafe {
408                (*item).next = next;
409                (*item).prev = prev;
410                (*prev).next = item;
411                (*next).prev = item;
412            }
413        }
414
415        item
416    }
417
418    /// Add the provided item to the back of the list.
419    pub fn push_back(&mut self, item: ListArc<T, ID>) {
420        // SAFETY:
421        // * `self.first` is null or in the list.
422        // * `self.first` is only null if the list is empty.
423        unsafe { self.insert_inner(item, self.first) };
424    }
425
426    /// Add the provided item to the front of the list.
427    pub fn push_front(&mut self, item: ListArc<T, ID>) {
428        // SAFETY:
429        // * `self.first` is null or in the list.
430        // * `self.first` is only null if the list is empty.
431        let new_elem = unsafe { self.insert_inner(item, self.first) };
432
433        // INVARIANT: `new_elem` is in the list because we just inserted it.
434        self.first = new_elem;
435    }
436
437    /// Removes the last item from this list.
438    pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
439        if self.is_empty() {
440            return None;
441        }
442
443        // SAFETY: We just checked that the list is not empty.
444        let last = unsafe { (*self.first).prev };
445        // SAFETY: The last item of this list is in this list.
446        Some(unsafe { self.remove_internal(last) })
447    }
448
449    /// Removes the first item from this list.
450    pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
451        if self.is_empty() {
452            return None;
453        }
454
455        // SAFETY: The first item of this list is in this list.
456        Some(unsafe { self.remove_internal(self.first) })
457    }
458
459    /// Removes the provided item from this list and returns it.
460    ///
461    /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
462    /// this means that the item is not in any list.)
463    ///
464    /// # Safety
465    ///
466    /// `item` must not be in a different linked list (with the same id).
467    pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
468        // SAFETY: TODO.
469        let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
470        // SAFETY: The user provided a reference, and reference are never dangling.
471        //
472        // As for why this is not a data race, there are two cases:
473        //
474        //  * If `item` is not in any list, then these fields are read-only and null.
475        //  * If `item` is in this list, then we have exclusive access to these fields since we
476        //    have a mutable reference to the list.
477        //
478        // In either case, there's no race.
479        let ListLinksFields { next, prev } = unsafe { *item };
480
481        debug_assert_eq!(next.is_null(), prev.is_null());
482        if !next.is_null() {
483            // This is really a no-op, but this ensures that `item` is a raw pointer that was
484            // obtained without going through a pointer->reference->pointer conversion roundtrip.
485            // This ensures that the list is valid under the more restrictive strict provenance
486            // ruleset.
487            //
488            // SAFETY: We just checked that `next` is not null, and it's not dangling by the
489            // list invariants.
490            unsafe {
491                debug_assert_eq!(item, (*next).prev);
492                item = (*next).prev;
493            }
494
495            // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
496            // is in this list. The pointers are in the right order.
497            Some(unsafe { self.remove_internal_inner(item, next, prev) })
498        } else {
499            None
500        }
501    }
502
503    /// Removes the provided item from the list.
504    ///
505    /// # Safety
506    ///
507    /// `item` must point at an item in this list.
508    unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
509        // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
510        // since we have a mutable reference to the list containing `item`.
511        let ListLinksFields { next, prev } = unsafe { *item };
512        // SAFETY: The pointers are ok and in the right order.
513        unsafe { self.remove_internal_inner(item, next, prev) }
514    }
515
516    /// Removes the provided item from the list.
517    ///
518    /// # Safety
519    ///
520    /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
521    /// next` and `(*item).prev == prev`.
522    // seems no need to abstract, it is a specific usage
523    unsafe fn remove_internal_inner(
524        &mut self,
525        item: *mut ListLinksFields,
526        next: *mut ListLinksFields,
527        prev: *mut ListLinksFields,
528    ) -> ListArc<T, ID> {
529        // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
530        // pointers are always valid for items in a list.
531        //
532        // INVARIANT: There are three cases:
533        //  * If the list has at least three items, then after removing the item, `prev` and `next`
534        //    will be next to each other.
535        //  * If the list has two items, then the remaining item will point at itself.
536        //  * If the list has one item, then `next == prev == item`, so these writes have no
537        //    effect. The list remains unchanged and `item` is still in the list for now.
538        unsafe {
539            (*next).prev = prev;
540            (*prev).next = next;
541        }
542        // SAFETY: We have exclusive access to items in the list.
543        // INVARIANT: `item` is being removed, so the pointers should be null.
544        unsafe {
545            (*item).prev = ptr::null_mut();
546            (*item).next = ptr::null_mut();
547        }
548        // INVARIANT: There are three cases:
549        //  * If `item` was not the first item, then `self.first` should remain unchanged.
550        //  * If `item` was the first item and there is another item, then we just updated
551        //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
552        //    did not modify `prev->next`.
553        //  * If `item` was the only item in the list, then `prev == item`, and we just set
554        //    `item->next` to null, so this correctly sets `first` to null now that the list is
555        //    empty.
556        if self.first == item {
557            // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
558            // list, so it must be valid. There is no race since `prev` is still in the list and we
559            // still have exclusive access to the list.
560            self.first = unsafe { (*prev).next };
561        }
562
563        // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
564        // of `List`.
565        let list_links = unsafe { ListLinks::from_fields(item) };
566        // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
567        let raw_item = unsafe { T::post_remove(list_links) };
568        // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
569        unsafe { ListArc::from_raw(raw_item) }
570    }
571
572    /// Moves all items from `other` into `self`.
573    ///
574    /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
575    /// the last item of `self`.
576    pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
577        // First, we insert the elements into `self`. At the end, we make `other` empty.
578        if self.is_empty() {
579            // INVARIANT: All of the elements in `other` become elements of `self`.
580            self.first = other.first;
581        } else if !other.is_empty() {
582            let other_first = other.first;
583            // SAFETY: The other list is not empty, so this pointer is valid.
584            let other_last = unsafe { (*other_first).prev };
585            let self_first = self.first;
586            // SAFETY: The self list is not empty, so this pointer is valid.
587            let self_last = unsafe { (*self_first).prev };
588
589            // SAFETY: We have exclusive access to both lists, so we can update the pointers.
590            // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
591            // update `self.first` because the first element of `self` does not change.
592            unsafe {
593                (*self_first).prev = other_last;
594                (*other_last).next = self_first;
595                (*self_last).next = other_first;
596                (*other_first).prev = self_last;
597            }
598        }
599
600        // INVARIANT: The other list is now empty, so update its pointer.
601        other.first = ptr::null_mut();
602    }
603
604    /// Returns a cursor that points before the first element of the list.
605    pub fn cursor_front(&mut self) -> Cursor<'_, T, ID> {
606        // INVARIANT: `self.first` is in this list.
607        Cursor {
608            next: self.first,
609            list: self,
610        }
611    }
612
613    /// Returns a cursor that points after the last element in the list.
614    pub fn cursor_back(&mut self) -> Cursor<'_, T, ID> {
615        // INVARIANT: `next` is allowed to be null.
616        Cursor {
617            next: core::ptr::null_mut(),
618            list: self,
619        }
620    }
621
622    /// Creates an iterator over the list.
623    pub fn iter(&self) -> Iter<'_, T, ID> {
624        // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
625        // at the first element of the same list.
626        Iter {
627            current: self.first,
628            stop: self.first,
629            _ty: PhantomData,
630        }
631    }
632}
633
634impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
635    fn default() -> Self {
636        List::new()
637    }
638}
639
640impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
641    fn drop(&mut self) {
642        while let Some(item) = self.pop_front() {
643            drop(item);
644        }
645    }
646}
647
648/// An iterator over a [`List`].
649///
650/// # Invariants
651///
652/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
653/// * The `current` pointer is null or points at a value in that [`List`].
654/// * The `stop` pointer is equal to the `first` field of that [`List`].
655#[derive(Clone)]
656pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
657    current: *mut ListLinksFields,
658    stop: *mut ListLinksFields,
659    _ty: PhantomData<&'a ListArc<T, ID>>,
660}
661
662impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
663    type Item = ArcBorrow<'a, T>;
664
665    fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
666        if self.current.is_null() {
667            return None;
668        }
669
670        let current = self.current;
671
672        // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
673        // dangling. There's no race because the iterator holds an immutable borrow to the list.
674        let next = unsafe { (*current).next };
675        // INVARIANT: If `current` was the last element of the list, then this updates it to null.
676        // Otherwise, we update it to the next element.
677        self.current = if next != self.stop {
678            next
679        } else {
680            ptr::null_mut()
681        };
682
683        // SAFETY: The `current` pointer points at a value in the list.
684        let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
685        // SAFETY:
686        // * All values in a list are stored in an `Arc`.
687        // * The value cannot be removed from the list for the duration of the lifetime annotated
688        //   on the returned `ArcBorrow`, because removing it from the list would require mutable
689        //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
690        //   lifetime, and the list is immutably borrowed for that lifetime.
691        // * Values in a list never have a `UniqueArc` reference.
692        Some(unsafe { ArcBorrow::from_raw(item) })
693    }
694}
695
696/// A cursor into a [`List`].
697///
698/// A cursor always rests between two elements in the list. This means that a cursor has a previous
699/// and next element, but no current element. It also means that it's possible to have a cursor
700/// into an empty list.
701///
702/// # Examples
703///
704/// ```
705/// use kernel::prelude::*;
706/// use kernel::list::{List, ListArc, ListLinks};
707///
708/// #[pin_data]
709/// struct ListItem {
710///     value: u32,
711///     #[pin]
712///     links: ListLinks,
713/// }
714///
715/// impl ListItem {
716///     fn new(value: u32) -> Result<ListArc<Self>> {
717///         ListArc::pin_init(try_pin_init!(Self {
718///             value,
719///             links <- ListLinks::new(),
720///         }), GFP_KERNEL)
721///     }
722/// }
723///
724/// kernel::list::impl_has_list_links! {
725///     impl HasListLinks<0> for ListItem { self.links }
726/// }
727/// kernel::list::impl_list_arc_safe! {
728///     impl ListArcSafe<0> for ListItem { untracked; }
729/// }
730/// kernel::list::impl_list_item! {
731///     impl ListItem<0> for ListItem { using ListLinks; }
732/// }
733///
734/// // Use a cursor to remove the first element with the given value.
735/// fn remove_first(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
736///     let mut cursor = list.cursor_front();
737///     while let Some(next) = cursor.peek_next() {
738///         if next.value == value {
739///             return Some(next.remove());
740///         }
741///         cursor.move_next();
742///     }
743///     None
744/// }
745///
746/// // Use a cursor to remove the last element with the given value.
747/// fn remove_last(list: &mut List<ListItem>, value: u32) -> Option<ListArc<ListItem>> {
748///     let mut cursor = list.cursor_back();
749///     while let Some(prev) = cursor.peek_prev() {
750///         if prev.value == value {
751///             return Some(prev.remove());
752///         }
753///         cursor.move_prev();
754///     }
755///     None
756/// }
757///
758/// // Use a cursor to remove all elements with the given value. The removed elements are moved to
759/// // a new list.
760/// fn remove_all(list: &mut List<ListItem>, value: u32) -> List<ListItem> {
761///     let mut out = List::new();
762///     let mut cursor = list.cursor_front();
763///     while let Some(next) = cursor.peek_next() {
764///         if next.value == value {
765///             out.push_back(next.remove());
766///         } else {
767///             cursor.move_next();
768///         }
769///     }
770///     out
771/// }
772///
773/// // Use a cursor to insert a value at a specific index. Returns an error if the index is out of
774/// // bounds.
775/// fn insert_at(list: &mut List<ListItem>, new: ListArc<ListItem>, idx: usize) -> Result {
776///     let mut cursor = list.cursor_front();
777///     for _ in 0..idx {
778///         if !cursor.move_next() {
779///             return Err(EINVAL);
780///         }
781///     }
782///     cursor.insert_next(new);
783///     Ok(())
784/// }
785///
786/// // Merge two sorted lists into a single sorted list.
787/// fn merge_sorted(list: &mut List<ListItem>, merge: List<ListItem>) {
788///     let mut cursor = list.cursor_front();
789///     for to_insert in merge {
790///         while let Some(next) = cursor.peek_next() {
791///             if to_insert.value < next.value {
792///                 break;
793///             }
794///             cursor.move_next();/* */
795///         }
796///         cursor.insert_prev(to_insert);
797///     }
798/// }
799///
800/// let mut list = List::new();
801/// list.push_back(ListItem::new(14)?);
802/// list.push_back(ListItem::new(12)?);
803/// list.push_back(ListItem::new(10)?);
804/// list.push_back(ListItem::new(12)?);
805/// list.push_back(ListItem::new(15)?);
806/// list.push_back(ListItem::new(14)?);
807/// assert_eq!(remove_all(&mut list, 12).iter().count(), 2);
808/// // [14, 10, 15, 14]
809/// assert!(remove_first(&mut list, 14).is_some());
810/// // [10, 15, 14]
811/// insert_at(&mut list, ListItem::new(12)?, 2)?;
812/// // [10, 15, 12, 14]
813/// assert!(remove_last(&mut list, 15).is_some());
814/// // [10, 12, 14]
815///
816/// let mut list2 = List::new();
817/// list2.push_back(ListItem::new(11)?);
818/// list2.push_back(ListItem::new(13)?);
819/// merge_sorted(&mut list, list2);
820///
821/// let mut items = list.into_iter();
822/// assert_eq!(items.next().ok_or(EINVAL)?.value, 10);
823/// assert_eq!(items.next().ok_or(EINVAL)?.value, 11);
824/// assert_eq!(items.next().ok_or(EINVAL)?.value, 12);
825/// assert_eq!(items.next().ok_or(EINVAL)?.value, 13);
826/// assert_eq!(items.next().ok_or(EINVAL)?.value, 14);
827/// assert!(items.next().is_none());
828/// # Result::<(), Error>::Ok(())
829/// ```
830///
831/// # Invariants
832///
833/// The `next` pointer is null or points a value in `list`.
834pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
835    list: &'a mut List<T, ID>,
836    /// Points at the element after this cursor, or null if the cursor is after the last element.
837    next: *mut ListLinksFields,
838}
839
840impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
841    /// Returns a pointer to the element before the cursor.
842    ///
843    /// Returns null if there is no element before the cursor.
844    fn prev_ptr(&self) -> *mut ListLinksFields {
845        let mut next = self.next;
846        let first = self.list.first;
847        if next == first {
848            // We are before the first element.
849            return core::ptr::null_mut();
850        }
851
852        if next.is_null() {
853            // We are after the last element, so we need a pointer to the last element, which is
854            // the same as `(*first).prev`.
855            next = first;
856        }
857
858        // SAFETY: `next` can't be null, because then `first` must also be null, but in that case
859        // we would have exited at the `next == first` check. Thus, `next` is an element in the
860        // list, so we can access its `prev` pointer.
861        unsafe { (*next).prev }
862    }
863
864    /// Access the element after this cursor.
865    pub fn peek_next(&mut self) -> Option<CursorPeek<'_, 'a, T, true, ID>> {
866        if self.next.is_null() {
867            return None;
868        }
869
870        // INVARIANT:
871        // * We just checked that `self.next` is non-null, so it must be in `self.list`.
872        // * `ptr` is equal to `self.next`.
873        Some(CursorPeek {
874            ptr: self.next,
875            cursor: self,
876        })
877    }
878
879    /// Access the element before this cursor.
880    pub fn peek_prev(&mut self) -> Option<CursorPeek<'_, 'a, T, false, ID>> {
881        let prev = self.prev_ptr();
882
883        if prev.is_null() {
884            return None;
885        }
886
887        // INVARIANT:
888        // * We just checked that `prev` is non-null, so it must be in `self.list`.
889        // * `self.prev_ptr()` never returns `self.next`.
890        Some(CursorPeek {
891            ptr: prev,
892            cursor: self,
893        })
894    }
895
896    /// Move the cursor one element forward.
897    ///
898    /// If the cursor is after the last element, then this call does nothing. This call returns
899    /// `true` if the cursor's position was changed.
900    pub fn move_next(&mut self) -> bool {
901        if self.next.is_null() {
902            return false;
903        }
904
905        // SAFETY: `self.next` is an element in the list and we borrow the list mutably, so we can
906        // access the `next` field.
907        let mut next = unsafe { (*self.next).next };
908
909        if next == self.list.first {
910            next = core::ptr::null_mut();
911        }
912
913        // INVARIANT: `next` is either null or the next element after an element in the list.
914        self.next = next;
915        true
916    }
917
918    /// Move the cursor one element backwards.
919    ///
920    /// If the cursor is before the first element, then this call does nothing. This call returns
921    /// `true` if the cursor's position was changed.
922    pub fn move_prev(&mut self) -> bool {
923        if self.next == self.list.first {
924            return false;
925        }
926
927        // INVARIANT: `prev_ptr()` always returns a pointer that is null or in the list.
928        self.next = self.prev_ptr();
929        true
930    }
931
932    /// Inserts an element where the cursor is pointing and get a pointer to the new element.
933    fn insert_inner(&mut self, item: ListArc<T, ID>) -> *mut ListLinksFields {
934        let ptr = if self.next.is_null() {
935            self.list.first
936        } else {
937            self.next
938        };
939        // SAFETY:
940        // * `ptr` is an element in the list or null.
941        // * if `ptr` is null, then `self.list.first` is null so the list is empty.
942        let item = unsafe { self.list.insert_inner(item, ptr) };
943        if self.next == self.list.first {
944            // INVARIANT: We just inserted `item`, so it's a member of list.
945            self.list.first = item;
946        }
947        item
948    }
949
950    /// Insert an element at this cursor's location.
951    pub fn insert(mut self, item: ListArc<T, ID>) {
952        // This is identical to `insert_prev`, but consumes the cursor. This is helpful because it
953        // reduces confusion when the last operation on the cursor is an insertion; in that case,
954        // you just want to insert the element at the cursor, and it is confusing that the call
955        // involves the word prev or next.
956        self.insert_inner(item);
957    }
958
959    /// Inserts an element after this cursor.
960    ///
961    /// After insertion, the new element will be after the cursor.
962    pub fn insert_next(&mut self, item: ListArc<T, ID>) {
963        self.next = self.insert_inner(item);
964    }
965
966    /// Inserts an element before this cursor.
967    ///
968    /// After insertion, the new element will be before the cursor.
969    pub fn insert_prev(&mut self, item: ListArc<T, ID>) {
970        self.insert_inner(item);
971    }
972
973    /// Remove the next element from the list.
974    pub fn remove_next(&mut self) -> Option<ListArc<T, ID>> {
975        self.peek_next().map(|v| v.remove())
976    }
977
978    /// Remove the previous element from the list.
979    pub fn remove_prev(&mut self) -> Option<ListArc<T, ID>> {
980        self.peek_prev().map(|v| v.remove())
981    }
982}
983
984/// References the element in the list next to the cursor.
985///
986/// # Invariants
987///
988/// * `ptr` is an element in `self.cursor.list`.
989/// * `ISNEXT == (self.ptr == self.cursor.next)`.
990pub struct CursorPeek<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> {
991    cursor: &'a mut Cursor<'b, T, ID>,
992    ptr: *mut ListLinksFields,
993}
994
995impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64>
996    CursorPeek<'a, 'b, T, ISNEXT, ID>
997{
998    /// Remove the element from the list.
999    pub fn remove(self) -> ListArc<T, ID> {
1000        if ISNEXT {
1001            self.cursor.move_next();
1002        }
1003
1004        // INVARIANT: `self.ptr` is not equal to `self.cursor.next` due to the above `move_next`
1005        // call.
1006        // SAFETY: By the type invariants of `Self`, `next` is not null, so `next` is an element of
1007        // `self.cursor.list` by the type invariants of `Cursor`.
1008        unsafe { self.cursor.list.remove_internal(self.ptr) }
1009    }
1010
1011    /// Access this value as an [`ArcBorrow`].
1012    pub fn arc(&self) -> ArcBorrow<'_, T> {
1013        // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
1014        let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
1015        // SAFETY:
1016        // * All values in a list are stored in an `Arc`.
1017        // * The value cannot be removed from the list for the duration of the lifetime annotated
1018        //   on the returned `ArcBorrow`, because removing it from the list would require mutable
1019        //   access to the `CursorPeek`, the `Cursor` or the `List`. However, the `ArcBorrow` holds
1020        //   an immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
1021        //   `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable
1022        //   access requires first releasing the immutable borrow on the `CursorPeek`.
1023        // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
1024        //   reference, and `UniqueArc` references must be unique.
1025        unsafe { ArcBorrow::from_raw(me) }
1026    }
1027}
1028
1029impl<'a, 'b, T: ?Sized + ListItem<ID>, const ISNEXT: bool, const ID: u64> core::ops::Deref
1030    for CursorPeek<'a, 'b, T, ISNEXT, ID>
1031{
1032    // If you change the `ptr` field to have type `ArcBorrow<'a, T>`, it might seem like you could
1033    // get rid of the `CursorPeek::arc` method and change the deref target to `ArcBorrow<'a, T>`.
1034    // However, that doesn't work because 'a is too long. You could obtain an `ArcBorrow<'a, T>`
1035    // and then call `CursorPeek::remove` without giving up the `ArcBorrow<'a, T>`, which would be
1036    // unsound.
1037    type Target = T;
1038
1039    fn deref(&self) -> &T {
1040        // SAFETY: `self.ptr` points at an element in `self.cursor.list`.
1041        let me = unsafe { T::view_value(ListLinks::from_fields(self.ptr)) };
1042
1043        // SAFETY: The value cannot be removed from the list for the duration of the lifetime
1044        // annotated on the returned `&T`, because removing it from the list would require mutable
1045        // access to the `CursorPeek`, the `Cursor` or the `List`. However, the `&T` holds an
1046        // immutable borrow on the `CursorPeek`, which in turn holds a mutable borrow on the
1047        // `Cursor`, which in turn holds a mutable borrow on the `List`, so any such mutable access
1048        // requires first releasing the immutable borrow on the `CursorPeek`.
1049        unsafe { &*me }
1050    }
1051}
1052
1053impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
1054
1055impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
1056    type IntoIter = Iter<'a, T, ID>;
1057    type Item = ArcBorrow<'a, T>;
1058
1059    fn into_iter(self) -> Iter<'a, T, ID> {
1060        self.iter()
1061    }
1062}
1063
1064/// An owning iterator into a [`List`].
1065pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
1066    list: List<T, ID>,
1067}
1068
1069impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
1070    type Item = ListArc<T, ID>;
1071
1072    fn next(&mut self) -> Option<ListArc<T, ID>> {
1073        self.list.pop_front()
1074    }
1075}
1076
1077impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
1078
1079impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
1080    fn next_back(&mut self) -> Option<ListArc<T, ID>> {
1081        self.list.pop_back()
1082    }
1083}
1084
1085impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
1086    type IntoIter = IntoIter<T, ID>;
1087    type Item = ListArc<T, ID>;
1088
1089    fn into_iter(self) -> IntoIter<T, ID> {
1090        IntoIter { list: self }
1091    }
1092}