miri/shims/x86/sse.rs
1use rustc_abi::CanonAbi;
2use rustc_apfloat::ieee::Single;
3use rustc_middle::ty::Ty;
4use rustc_span::Symbol;
5use rustc_target::callconv::FnAbi;
6
7use super::{
8 FloatBinOp, FloatUnaryOp, bin_op_simd_float_all, bin_op_simd_float_first, unary_op_ps,
9 unary_op_ss,
10};
11use crate::*;
12
13impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
14pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
15 fn emulate_x86_sse_intrinsic(
16 &mut self,
17 link_name: Symbol,
18 abi: &FnAbi<'tcx, Ty<'tcx>>,
19 args: &[OpTy<'tcx>],
20 dest: &MPlaceTy<'tcx>,
21 ) -> InterpResult<'tcx, EmulateItemResult> {
22 let this = self.eval_context_mut();
23 this.expect_target_feature_for_intrinsic(link_name, "sse")?;
24 // Prefix should have already been checked.
25 let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sse.").unwrap();
26 // All these intrinsics operate on 128-bit (f32x4) SIMD vectors unless stated otherwise.
27 // Many intrinsic names are sufixed with "ps" (packed single) or "ss" (scalar single),
28 // where single means single precision floating point (f32). "ps" means thet the operation
29 // is performed on each element of the vector, while "ss" means that the operation is
30 // performed only on the first element, copying the remaining elements from the input
31 // vector (for binary operations, from the left-hand side).
32 match unprefixed_name {
33 // Used to implement _mm_{min,max}_ss functions.
34 // Performs the operations on the first component of `left` and
35 // `right` and copies the remaining components from `left`.
36 "min.ss" | "max.ss" => {
37 let [left, right] =
38 this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
39
40 let which = match unprefixed_name {
41 "min.ss" => FloatBinOp::Min,
42 "max.ss" => FloatBinOp::Max,
43 _ => unreachable!(),
44 };
45
46 bin_op_simd_float_first::<Single>(this, which, left, right, dest)?;
47 }
48 // Used to implement _mm_min_ps and _mm_max_ps functions.
49 // Note that the semantics are a bit different from Rust simd_min
50 // and simd_max intrinsics regarding handling of NaN and -0.0: Rust
51 // matches the IEEE min/max operations, while x86 has different
52 // semantics.
53 "min.ps" | "max.ps" => {
54 let [left, right] =
55 this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
56
57 let which = match unprefixed_name {
58 "min.ps" => FloatBinOp::Min,
59 "max.ps" => FloatBinOp::Max,
60 _ => unreachable!(),
61 };
62
63 bin_op_simd_float_all::<Single>(this, which, left, right, dest)?;
64 }
65 // Used to implement _mm_{rcp,rsqrt}_ss functions.
66 // Performs the operations on the first component of `op` and
67 // copies the remaining components from `op`.
68 "rcp.ss" | "rsqrt.ss" => {
69 let [op] = this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
70
71 let which = match unprefixed_name {
72 "rcp.ss" => FloatUnaryOp::Rcp,
73 "rsqrt.ss" => FloatUnaryOp::Rsqrt,
74 _ => unreachable!(),
75 };
76
77 unary_op_ss(this, which, op, dest)?;
78 }
79 // Used to implement _mm_{sqrt,rcp,rsqrt}_ps functions.
80 // Performs the operations on all components of `op`.
81 "rcp.ps" | "rsqrt.ps" => {
82 let [op] = this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
83
84 let which = match unprefixed_name {
85 "rcp.ps" => FloatUnaryOp::Rcp,
86 "rsqrt.ps" => FloatUnaryOp::Rsqrt,
87 _ => unreachable!(),
88 };
89
90 unary_op_ps(this, which, op, dest)?;
91 }
92 // Used to implement the _mm_cmp*_ss functions.
93 // Performs a comparison operation on the first component of `left`
94 // and `right`, returning 0 if false or `u32::MAX` if true. The remaining
95 // components are copied from `left`.
96 // _mm_cmp_ss is actually an AVX function where the operation is specified
97 // by a const parameter.
98 // _mm_cmp{eq,lt,le,gt,ge,neq,nlt,nle,ngt,nge,ord,unord}_ss are SSE functions
99 // with hard-coded operations.
100 "cmp.ss" => {
101 let [left, right, imm] =
102 this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
103
104 let which =
105 FloatBinOp::cmp_from_imm(this, this.read_scalar(imm)?.to_i8()?, link_name)?;
106
107 bin_op_simd_float_first::<Single>(this, which, left, right, dest)?;
108 }
109 // Used to implement the _mm_cmp*_ps functions.
110 // Performs a comparison operation on each component of `left`
111 // and `right`. For each component, returns 0 if false or u32::MAX
112 // if true.
113 // _mm_cmp_ps is actually an AVX function where the operation is specified
114 // by a const parameter.
115 // _mm_cmp{eq,lt,le,gt,ge,neq,nlt,nle,ngt,nge,ord,unord}_ps are SSE functions
116 // with hard-coded operations.
117 "cmp.ps" => {
118 let [left, right, imm] =
119 this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
120
121 let which =
122 FloatBinOp::cmp_from_imm(this, this.read_scalar(imm)?.to_i8()?, link_name)?;
123
124 bin_op_simd_float_all::<Single>(this, which, left, right, dest)?;
125 }
126 // Used to implement _mm_{,u}comi{eq,lt,le,gt,ge,neq}_ss functions.
127 // Compares the first component of `left` and `right` and returns
128 // a scalar value (0 or 1).
129 "comieq.ss" | "comilt.ss" | "comile.ss" | "comigt.ss" | "comige.ss" | "comineq.ss"
130 | "ucomieq.ss" | "ucomilt.ss" | "ucomile.ss" | "ucomigt.ss" | "ucomige.ss"
131 | "ucomineq.ss" => {
132 let [left, right] =
133 this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
134
135 let (left, left_len) = this.project_to_simd(left)?;
136 let (right, right_len) = this.project_to_simd(right)?;
137
138 assert_eq!(left_len, right_len);
139
140 let left = this.read_scalar(&this.project_index(&left, 0)?)?.to_f32()?;
141 let right = this.read_scalar(&this.project_index(&right, 0)?)?.to_f32()?;
142 // The difference between the com* and ucom* variants is signaling
143 // of exceptions when either argument is a quiet NaN. We do not
144 // support accessing the SSE status register from miri (or from Rust,
145 // for that matter), so we treat both variants equally.
146 let res = match unprefixed_name {
147 "comieq.ss" | "ucomieq.ss" => left == right,
148 "comilt.ss" | "ucomilt.ss" => left < right,
149 "comile.ss" | "ucomile.ss" => left <= right,
150 "comigt.ss" | "ucomigt.ss" => left > right,
151 "comige.ss" | "ucomige.ss" => left >= right,
152 "comineq.ss" | "ucomineq.ss" => left != right,
153 _ => unreachable!(),
154 };
155 this.write_scalar(Scalar::from_i32(i32::from(res)), dest)?;
156 }
157 // Use to implement the _mm_cvtss_si32, _mm_cvttss_si32,
158 // _mm_cvtss_si64 and _mm_cvttss_si64 functions.
159 // Converts the first component of `op` from f32 to i32/i64.
160 "cvtss2si" | "cvttss2si" | "cvtss2si64" | "cvttss2si64" => {
161 let [op] = this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
162 let (op, _) = this.project_to_simd(op)?;
163
164 let op = this.read_immediate(&this.project_index(&op, 0)?)?;
165
166 let rnd = match unprefixed_name {
167 // "current SSE rounding mode", assume nearest
168 // https://www.felixcloutier.com/x86/cvtss2si
169 "cvtss2si" | "cvtss2si64" => rustc_apfloat::Round::NearestTiesToEven,
170 // always truncate
171 // https://www.felixcloutier.com/x86/cvttss2si
172 "cvttss2si" | "cvttss2si64" => rustc_apfloat::Round::TowardZero,
173 _ => unreachable!(),
174 };
175
176 let res = this.float_to_int_checked(&op, dest.layout, rnd)?.unwrap_or_else(|| {
177 // Fallback to minimum according to SSE semantics.
178 ImmTy::from_int(dest.layout.size.signed_int_min(), dest.layout)
179 });
180
181 this.write_immediate(*res, dest)?;
182 }
183 // Used to implement the _mm_cvtsi32_ss and _mm_cvtsi64_ss functions.
184 // Converts `right` from i32/i64 to f32. Returns a SIMD vector with
185 // the result in the first component and the remaining components
186 // are copied from `left`.
187 // https://www.felixcloutier.com/x86/cvtsi2ss
188 "cvtsi2ss" | "cvtsi642ss" => {
189 let [left, right] =
190 this.check_shim_sig_lenient(abi, CanonAbi::C, link_name, args)?;
191
192 let (left, left_len) = this.project_to_simd(left)?;
193 let (dest, dest_len) = this.project_to_simd(dest)?;
194
195 assert_eq!(dest_len, left_len);
196
197 let right = this.read_immediate(right)?;
198 let dest0 = this.project_index(&dest, 0)?;
199 let res0 = this.int_to_int_or_float(&right, dest0.layout)?;
200 this.write_immediate(*res0, &dest0)?;
201
202 for i in 1..dest_len {
203 this.copy_op(&this.project_index(&left, i)?, &this.project_index(&dest, i)?)?;
204 }
205 }
206 _ => return interp_ok(EmulateItemResult::NotSupported),
207 }
208 interp_ok(EmulateItemResult::NeedsReturn)
209 }
210}