rustc_hir/def.rs
1use std::array::IntoIter;
2use std::borrow::Cow;
3use std::fmt::Debug;
4
5use rustc_ast as ast;
6use rustc_ast::NodeId;
7use rustc_data_structures::stable_hasher::ToStableHashKey;
8use rustc_data_structures::unord::UnordMap;
9use rustc_error_messages::{DiagArgValue, IntoDiagArg};
10use rustc_macros::{Decodable, Encodable, HashStable_Generic};
11use rustc_span::Symbol;
12use rustc_span::def_id::{DefId, LocalDefId};
13use rustc_span::hygiene::MacroKind;
14
15use crate::definitions::DefPathData;
16use crate::hir;
17
18/// Encodes if a `DefKind::Ctor` is the constructor of an enum variant or a struct.
19#[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug, HashStable_Generic)]
20pub enum CtorOf {
21 /// This `DefKind::Ctor` is a synthesized constructor of a tuple or unit struct.
22 Struct,
23 /// This `DefKind::Ctor` is a synthesized constructor of a tuple or unit variant.
24 Variant,
25}
26
27/// What kind of constructor something is.
28#[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug, HashStable_Generic)]
29pub enum CtorKind {
30 /// Constructor function automatically created by a tuple struct/variant.
31 Fn,
32 /// Constructor constant automatically created by a unit struct/variant.
33 Const,
34}
35
36/// A set of macro kinds, for macros that can have more than one kind
37#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Encodable, Decodable, Hash, Debug)]
38#[derive(HashStable_Generic)]
39pub struct MacroKinds(u8);
40bitflags::bitflags! {
41 impl MacroKinds: u8 {
42 const BANG = 1 << 0;
43 const ATTR = 1 << 1;
44 const DERIVE = 1 << 2;
45 }
46}
47
48impl From<MacroKind> for MacroKinds {
49 fn from(kind: MacroKind) -> Self {
50 match kind {
51 MacroKind::Bang => Self::BANG,
52 MacroKind::Attr => Self::ATTR,
53 MacroKind::Derive => Self::DERIVE,
54 }
55 }
56}
57
58impl MacroKinds {
59 /// Convert the MacroKinds to a static string.
60 ///
61 /// This hardcodes all the possibilities, in order to return a static string.
62 pub fn descr(self) -> &'static str {
63 match self {
64 // FIXME: change this to "function-like macro" and fix all tests
65 Self::BANG => "macro",
66 Self::ATTR => "attribute macro",
67 Self::DERIVE => "derive macro",
68 _ if self == (Self::ATTR | Self::BANG) => "attribute/function macro",
69 _ if self == (Self::DERIVE | Self::BANG) => "derive/function macro",
70 _ if self == (Self::ATTR | Self::DERIVE) => "attribute/derive macro",
71 _ if self.is_all() => "attribute/derive/function macro",
72 _ if self.is_empty() => "useless macro",
73 _ => unreachable!(),
74 }
75 }
76
77 /// Return an indefinite article (a/an) for use with `descr()`
78 pub fn article(self) -> &'static str {
79 if self.contains(Self::ATTR) { "an" } else { "a" }
80 }
81}
82
83/// An attribute that is not a macro; e.g., `#[inline]` or `#[rustfmt::skip]`.
84#[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug, HashStable_Generic)]
85pub enum NonMacroAttrKind {
86 /// Single-segment attribute defined by the language (`#[inline]`)
87 Builtin(Symbol),
88 /// Multi-segment custom attribute living in a "tool module" (`#[rustfmt::skip]`).
89 Tool,
90 /// Single-segment custom attribute registered by a derive macro (`#[serde(default)]`).
91 DeriveHelper,
92 /// Single-segment custom attribute registered by a derive macro
93 /// but used before that derive macro was expanded (deprecated).
94 DeriveHelperCompat,
95}
96
97/// What kind of definition something is; e.g., `mod` vs `struct`.
98/// `enum DefPathData` may need to be updated if a new variant is added here.
99#[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug, HashStable_Generic)]
100pub enum DefKind {
101 // Type namespace
102 Mod,
103 /// Refers to the struct itself, [`DefKind::Ctor`] refers to its constructor if it exists.
104 Struct,
105 Union,
106 Enum,
107 /// Refers to the variant itself, [`DefKind::Ctor`] refers to its constructor if it exists.
108 Variant,
109 Trait,
110 /// Type alias: `type Foo = Bar;`
111 TyAlias,
112 /// Type from an `extern` block.
113 ForeignTy,
114 /// Trait alias: `trait IntIterator = Iterator<Item = i32>;`
115 TraitAlias,
116 /// Associated type: `trait MyTrait { type Assoc; }`
117 AssocTy,
118 /// Type parameter: the `T` in `struct Vec<T> { ... }`
119 TyParam,
120
121 // Value namespace
122 Fn,
123 Const,
124 /// Constant generic parameter: `struct Foo<const N: usize> { ... }`
125 ConstParam,
126 Static {
127 /// Whether it's a `unsafe static`, `safe static` (inside extern only) or just a `static`.
128 safety: hir::Safety,
129 /// Whether it's a `static mut` or just a `static`.
130 mutability: ast::Mutability,
131 /// Whether it's an anonymous static generated for nested allocations.
132 nested: bool,
133 },
134 /// Refers to the struct or enum variant's constructor.
135 ///
136 /// The reason `Ctor` exists in addition to [`DefKind::Struct`] and
137 /// [`DefKind::Variant`] is because structs and enum variants exist
138 /// in the *type* namespace, whereas struct and enum variant *constructors*
139 /// exist in the *value* namespace.
140 ///
141 /// You may wonder why enum variants exist in the type namespace as opposed
142 /// to the value namespace. Check out [RFC 2593] for intuition on why that is.
143 ///
144 /// [RFC 2593]: https://github.com/rust-lang/rfcs/pull/2593
145 Ctor(CtorOf, CtorKind),
146 /// Associated function: `impl MyStruct { fn associated() {} }`
147 /// or `trait Foo { fn associated() {} }`
148 AssocFn,
149 /// Associated constant: `trait MyTrait { const ASSOC: usize; }`
150 AssocConst,
151
152 // Macro namespace
153 Macro(MacroKinds),
154
155 // Not namespaced (or they are, but we don't treat them so)
156 ExternCrate,
157 Use,
158 /// An `extern` block.
159 ForeignMod,
160 /// Anonymous constant, e.g. the `1 + 2` in `[u8; 1 + 2]`.
161 ///
162 /// Not all anon-consts are actually still relevant in the HIR. We lower
163 /// trivial const-arguments directly to `hir::ConstArgKind::Path`, at which
164 /// point the definition for the anon-const ends up unused and incomplete.
165 ///
166 /// We do not provide any a `Span` for the definition and pretty much all other
167 /// queries also ICE when using this `DefId`. Given that the `DefId` of such
168 /// constants should only be reachable by iterating all definitions of a
169 /// given crate, you should not have to worry about this.
170 AnonConst,
171 /// An inline constant, e.g. `const { 1 + 2 }`
172 InlineConst,
173 /// Opaque type, aka `impl Trait`.
174 OpaqueTy,
175 /// A field in a struct, enum or union. e.g.
176 /// - `bar` in `struct Foo { bar: u8 }`
177 /// - `Foo::Bar::0` in `enum Foo { Bar(u8) }`
178 Field,
179 /// Lifetime parameter: the `'a` in `struct Foo<'a> { ... }`
180 LifetimeParam,
181 /// A use of `global_asm!`.
182 GlobalAsm,
183 Impl {
184 of_trait: bool,
185 },
186 /// A closure, coroutine, or coroutine-closure.
187 ///
188 /// These are all represented with the same `ExprKind::Closure` in the AST and HIR,
189 /// which makes it difficult to distinguish these during def collection. Therefore,
190 /// we treat them all the same, and code which needs to distinguish them can match
191 /// or `hir::ClosureKind` or `type_of`.
192 Closure,
193 /// The definition of a synthetic coroutine body created by the lowering of a
194 /// coroutine-closure, such as an async closure.
195 SyntheticCoroutineBody,
196}
197
198impl DefKind {
199 /// Get an English description for the item's kind.
200 ///
201 /// If you have access to `TyCtxt`, use `TyCtxt::def_descr` or
202 /// `TyCtxt::def_kind_descr` instead, because they give better
203 /// information for coroutines and associated functions.
204 pub fn descr(self, def_id: DefId) -> &'static str {
205 match self {
206 DefKind::Fn => "function",
207 DefKind::Mod if def_id.is_crate_root() && !def_id.is_local() => "crate",
208 DefKind::Mod => "module",
209 DefKind::Static { .. } => "static",
210 DefKind::Enum => "enum",
211 DefKind::Variant => "variant",
212 DefKind::Ctor(CtorOf::Variant, CtorKind::Fn) => "tuple variant",
213 DefKind::Ctor(CtorOf::Variant, CtorKind::Const) => "unit variant",
214 DefKind::Struct => "struct",
215 DefKind::Ctor(CtorOf::Struct, CtorKind::Fn) => "tuple struct",
216 DefKind::Ctor(CtorOf::Struct, CtorKind::Const) => "unit struct",
217 DefKind::OpaqueTy => "opaque type",
218 DefKind::TyAlias => "type alias",
219 DefKind::TraitAlias => "trait alias",
220 DefKind::AssocTy => "associated type",
221 DefKind::Union => "union",
222 DefKind::Trait => "trait",
223 DefKind::ForeignTy => "foreign type",
224 DefKind::AssocFn => "associated function",
225 DefKind::Const => "constant",
226 DefKind::AssocConst => "associated constant",
227 DefKind::TyParam => "type parameter",
228 DefKind::ConstParam => "const parameter",
229 DefKind::Macro(kinds) => kinds.descr(),
230 DefKind::LifetimeParam => "lifetime parameter",
231 DefKind::Use => "import",
232 DefKind::ForeignMod => "foreign module",
233 DefKind::AnonConst => "constant expression",
234 DefKind::InlineConst => "inline constant",
235 DefKind::Field => "field",
236 DefKind::Impl { .. } => "implementation",
237 DefKind::Closure => "closure",
238 DefKind::ExternCrate => "extern crate",
239 DefKind::GlobalAsm => "global assembly block",
240 DefKind::SyntheticCoroutineBody => "synthetic mir body",
241 }
242 }
243
244 /// Gets an English article for the definition.
245 ///
246 /// If you have access to `TyCtxt`, use `TyCtxt::def_descr_article` or
247 /// `TyCtxt::def_kind_descr_article` instead, because they give better
248 /// information for coroutines and associated functions.
249 pub fn article(&self) -> &'static str {
250 match *self {
251 DefKind::AssocTy
252 | DefKind::AssocConst
253 | DefKind::AssocFn
254 | DefKind::Enum
255 | DefKind::OpaqueTy
256 | DefKind::Impl { .. }
257 | DefKind::Use
258 | DefKind::InlineConst
259 | DefKind::ExternCrate => "an",
260 DefKind::Macro(kinds) => kinds.article(),
261 _ => "a",
262 }
263 }
264
265 pub fn ns(&self) -> Option<Namespace> {
266 match self {
267 DefKind::Mod
268 | DefKind::Struct
269 | DefKind::Union
270 | DefKind::Enum
271 | DefKind::Variant
272 | DefKind::Trait
273 | DefKind::TyAlias
274 | DefKind::ForeignTy
275 | DefKind::TraitAlias
276 | DefKind::AssocTy
277 | DefKind::TyParam => Some(Namespace::TypeNS),
278
279 DefKind::Fn
280 | DefKind::Const
281 | DefKind::ConstParam
282 | DefKind::Static { .. }
283 | DefKind::Ctor(..)
284 | DefKind::AssocFn
285 | DefKind::AssocConst => Some(Namespace::ValueNS),
286
287 DefKind::Macro(..) => Some(Namespace::MacroNS),
288
289 // Not namespaced.
290 DefKind::AnonConst
291 | DefKind::InlineConst
292 | DefKind::Field
293 | DefKind::LifetimeParam
294 | DefKind::ExternCrate
295 | DefKind::Closure
296 | DefKind::Use
297 | DefKind::ForeignMod
298 | DefKind::GlobalAsm
299 | DefKind::Impl { .. }
300 | DefKind::OpaqueTy
301 | DefKind::SyntheticCoroutineBody => None,
302 }
303 }
304
305 // Some `DefKind`s require a name, some don't. Panics if one is needed but
306 // not provided. (`AssocTy` is an exception, see below.)
307 pub fn def_path_data(self, name: Option<Symbol>) -> DefPathData {
308 match self {
309 DefKind::Mod
310 | DefKind::Struct
311 | DefKind::Union
312 | DefKind::Enum
313 | DefKind::Variant
314 | DefKind::Trait
315 | DefKind::TyAlias
316 | DefKind::ForeignTy
317 | DefKind::TraitAlias
318 | DefKind::TyParam
319 | DefKind::ExternCrate => DefPathData::TypeNs(name.unwrap()),
320
321 // An associated type name will be missing for an RPITIT (DefPathData::AnonAssocTy),
322 // but those provide their own DefPathData.
323 DefKind::AssocTy => DefPathData::TypeNs(name.unwrap()),
324
325 DefKind::Fn
326 | DefKind::Const
327 | DefKind::ConstParam
328 | DefKind::Static { .. }
329 | DefKind::AssocFn
330 | DefKind::AssocConst
331 | DefKind::Field => DefPathData::ValueNs(name.unwrap()),
332 DefKind::Macro(..) => DefPathData::MacroNs(name.unwrap()),
333 DefKind::LifetimeParam => DefPathData::LifetimeNs(name.unwrap()),
334 DefKind::Ctor(..) => DefPathData::Ctor,
335 DefKind::Use => DefPathData::Use,
336 DefKind::ForeignMod => DefPathData::ForeignMod,
337 DefKind::AnonConst => DefPathData::AnonConst,
338 DefKind::InlineConst => DefPathData::AnonConst,
339 DefKind::OpaqueTy => DefPathData::OpaqueTy,
340 DefKind::GlobalAsm => DefPathData::GlobalAsm,
341 DefKind::Impl { .. } => DefPathData::Impl,
342 DefKind::Closure => DefPathData::Closure,
343 DefKind::SyntheticCoroutineBody => DefPathData::SyntheticCoroutineBody,
344 }
345 }
346
347 pub fn is_assoc(self) -> bool {
348 matches!(self, DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy)
349 }
350
351 /// This is a "module" in name resolution sense.
352 #[inline]
353 pub fn is_module_like(self) -> bool {
354 matches!(self, DefKind::Mod | DefKind::Enum | DefKind::Trait)
355 }
356
357 #[inline]
358 pub fn is_adt(self) -> bool {
359 matches!(self, DefKind::Struct | DefKind::Union | DefKind::Enum)
360 }
361
362 #[inline]
363 pub fn is_fn_like(self) -> bool {
364 matches!(
365 self,
366 DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::SyntheticCoroutineBody
367 )
368 }
369
370 /// Whether the corresponding item has generic parameters, ie. the `generics_of` query works.
371 pub fn has_generics(self) -> bool {
372 match self {
373 DefKind::AnonConst
374 | DefKind::AssocConst
375 | DefKind::AssocFn
376 | DefKind::AssocTy
377 | DefKind::Closure
378 | DefKind::Const
379 | DefKind::Ctor(..)
380 | DefKind::Enum
381 | DefKind::Field
382 | DefKind::Fn
383 | DefKind::ForeignTy
384 | DefKind::Impl { .. }
385 | DefKind::InlineConst
386 | DefKind::OpaqueTy
387 | DefKind::Static { .. }
388 | DefKind::Struct
389 | DefKind::SyntheticCoroutineBody
390 | DefKind::Trait
391 | DefKind::TraitAlias
392 | DefKind::TyAlias
393 | DefKind::Union
394 | DefKind::Variant => true,
395 DefKind::ConstParam
396 | DefKind::ExternCrate
397 | DefKind::ForeignMod
398 | DefKind::GlobalAsm
399 | DefKind::LifetimeParam
400 | DefKind::Macro(_)
401 | DefKind::Mod
402 | DefKind::TyParam
403 | DefKind::Use => false,
404 }
405 }
406
407 /// Whether `query get_codegen_attrs` should be used with this definition.
408 pub fn has_codegen_attrs(self) -> bool {
409 match self {
410 DefKind::Fn
411 | DefKind::AssocFn
412 | DefKind::Ctor(..)
413 | DefKind::Closure
414 | DefKind::Static { .. }
415 | DefKind::SyntheticCoroutineBody => true,
416 DefKind::Mod
417 | DefKind::Struct
418 | DefKind::Union
419 | DefKind::Enum
420 | DefKind::Variant
421 | DefKind::Trait
422 | DefKind::TyAlias
423 | DefKind::ForeignTy
424 | DefKind::TraitAlias
425 | DefKind::AssocTy
426 | DefKind::Const
427 | DefKind::AssocConst
428 | DefKind::Macro(..)
429 | DefKind::Use
430 | DefKind::ForeignMod
431 | DefKind::OpaqueTy
432 | DefKind::Impl { .. }
433 | DefKind::Field
434 | DefKind::TyParam
435 | DefKind::ConstParam
436 | DefKind::LifetimeParam
437 | DefKind::AnonConst
438 | DefKind::InlineConst
439 | DefKind::GlobalAsm
440 | DefKind::ExternCrate => false,
441 }
442 }
443}
444
445/// The resolution of a path or export.
446///
447/// For every path or identifier in Rust, the compiler must determine
448/// what the path refers to. This process is called name resolution,
449/// and `Res` is the primary result of name resolution.
450///
451/// For example, everything prefixed with `/* Res */` in this example has
452/// an associated `Res`:
453///
454/// ```ignore (illustrative)
455/// fn str_to_string(s: & /* Res */ str) -> /* Res */ String {
456/// /* Res */ String::from(/* Res */ s)
457/// }
458///
459/// /* Res */ str_to_string("hello");
460/// ```
461///
462/// The associated `Res`s will be:
463///
464/// - `str` will resolve to [`Res::PrimTy`];
465/// - `String` will resolve to [`Res::Def`], and the `Res` will include the [`DefId`]
466/// for `String` as defined in the standard library;
467/// - `String::from` will also resolve to [`Res::Def`], with the [`DefId`]
468/// pointing to `String::from`;
469/// - `s` will resolve to [`Res::Local`];
470/// - the call to `str_to_string` will resolve to [`Res::Def`], with the [`DefId`]
471/// pointing to the definition of `str_to_string` in the current crate.
472//
473#[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug, HashStable_Generic)]
474pub enum Res<Id = hir::HirId> {
475 /// Definition having a unique ID (`DefId`), corresponds to something defined in user code.
476 ///
477 /// **Not bound to a specific namespace.**
478 Def(DefKind, DefId),
479
480 // Type namespace
481 /// A primitive type such as `i32` or `str`.
482 ///
483 /// **Belongs to the type namespace.**
484 PrimTy(hir::PrimTy),
485
486 /// The `Self` type, as used within a trait.
487 ///
488 /// **Belongs to the type namespace.**
489 ///
490 /// See the examples on [`Res::SelfTyAlias`] for details.
491 SelfTyParam {
492 /// The trait this `Self` is a generic parameter for.
493 trait_: DefId,
494 },
495
496 /// The `Self` type, as used somewhere other than within a trait.
497 ///
498 /// **Belongs to the type namespace.**
499 ///
500 /// Examples:
501 /// ```
502 /// struct Bar(Box<Self>); // SelfTyAlias
503 ///
504 /// trait Foo {
505 /// fn foo() -> Box<Self>; // SelfTyParam
506 /// }
507 ///
508 /// impl Bar {
509 /// fn blah() {
510 /// let _: Self; // SelfTyAlias
511 /// }
512 /// }
513 ///
514 /// impl Foo for Bar {
515 /// fn foo() -> Box<Self /* SelfTyAlias */> {
516 /// let _: Self; // SelfTyAlias
517 ///
518 /// todo!()
519 /// }
520 /// }
521 /// ```
522 /// *See also [`Res::SelfCtor`].*
523 ///
524 SelfTyAlias {
525 /// The item introducing the `Self` type alias. Can be used in the `type_of` query
526 /// to get the underlying type.
527 alias_to: DefId,
528
529 /// Whether the `Self` type is disallowed from mentioning generics (i.e. when used in an
530 /// anonymous constant).
531 ///
532 /// HACK(min_const_generics): self types also have an optional requirement to **not**
533 /// mention any generic parameters to allow the following with `min_const_generics`:
534 /// ```
535 /// # struct Foo;
536 /// impl Foo { fn test() -> [u8; size_of::<Self>()] { todo!() } }
537 ///
538 /// struct Bar([u8; baz::<Self>()]);
539 /// const fn baz<T>() -> usize { 10 }
540 /// ```
541 /// We do however allow `Self` in repeat expression even if it is generic to not break code
542 /// which already works on stable while causing the `const_evaluatable_unchecked` future
543 /// compat lint:
544 /// ```
545 /// fn foo<T>() {
546 /// let _bar = [1_u8; size_of::<*mut T>()];
547 /// }
548 /// ```
549 // FIXME(generic_const_exprs): Remove this bodge once that feature is stable.
550 forbid_generic: bool,
551
552 /// Is this within an `impl Foo for bar`?
553 is_trait_impl: bool,
554 },
555
556 // Value namespace
557 /// The `Self` constructor, along with the [`DefId`]
558 /// of the impl it is associated with.
559 ///
560 /// **Belongs to the value namespace.**
561 ///
562 /// *See also [`Res::SelfTyParam`] and [`Res::SelfTyAlias`].*
563 SelfCtor(DefId),
564
565 /// A local variable or function parameter.
566 ///
567 /// **Belongs to the value namespace.**
568 Local(Id),
569
570 /// A tool attribute module; e.g., the `rustfmt` in `#[rustfmt::skip]`.
571 ///
572 /// **Belongs to the type namespace.**
573 ToolMod,
574
575 // Macro namespace
576 /// An attribute that is *not* implemented via macro.
577 /// E.g., `#[inline]` and `#[rustfmt::skip]`, which are essentially directives,
578 /// as opposed to `#[test]`, which is a builtin macro.
579 ///
580 /// **Belongs to the macro namespace.**
581 NonMacroAttr(NonMacroAttrKind), // e.g., `#[inline]` or `#[rustfmt::skip]`
582
583 // All namespaces
584 /// Name resolution failed. We use a dummy `Res` variant so later phases
585 /// of the compiler won't crash and can instead report more errors.
586 ///
587 /// **Not bound to a specific namespace.**
588 Err,
589}
590
591impl<Id> IntoDiagArg for Res<Id> {
592 fn into_diag_arg(self, _: &mut Option<std::path::PathBuf>) -> DiagArgValue {
593 DiagArgValue::Str(Cow::Borrowed(self.descr()))
594 }
595}
596
597/// The result of resolving a path before lowering to HIR,
598/// with "module" segments resolved and associated item
599/// segments deferred to type checking.
600/// `base_res` is the resolution of the resolved part of the
601/// path, `unresolved_segments` is the number of unresolved
602/// segments.
603///
604/// ```text
605/// module::Type::AssocX::AssocY::MethodOrAssocType
606/// ^~~~~~~~~~~~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
607/// base_res unresolved_segments = 3
608///
609/// <T as Trait>::AssocX::AssocY::MethodOrAssocType
610/// ^~~~~~~~~~~~~~ ^~~~~~~~~~~~~~~~~~~~~~~~~
611/// base_res unresolved_segments = 2
612/// ```
613#[derive(Copy, Clone, Debug)]
614pub struct PartialRes {
615 base_res: Res<NodeId>,
616 unresolved_segments: usize,
617}
618
619impl PartialRes {
620 #[inline]
621 pub fn new(base_res: Res<NodeId>) -> Self {
622 PartialRes { base_res, unresolved_segments: 0 }
623 }
624
625 #[inline]
626 pub fn with_unresolved_segments(base_res: Res<NodeId>, mut unresolved_segments: usize) -> Self {
627 if base_res == Res::Err {
628 unresolved_segments = 0
629 }
630 PartialRes { base_res, unresolved_segments }
631 }
632
633 #[inline]
634 pub fn base_res(&self) -> Res<NodeId> {
635 self.base_res
636 }
637
638 #[inline]
639 pub fn unresolved_segments(&self) -> usize {
640 self.unresolved_segments
641 }
642
643 #[inline]
644 pub fn full_res(&self) -> Option<Res<NodeId>> {
645 (self.unresolved_segments == 0).then_some(self.base_res)
646 }
647
648 #[inline]
649 pub fn expect_full_res(&self) -> Res<NodeId> {
650 self.full_res().expect("unexpected unresolved segments")
651 }
652}
653
654/// Different kinds of symbols can coexist even if they share the same textual name.
655/// Therefore, they each have a separate universe (known as a "namespace").
656#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Encodable, Decodable)]
657#[derive(HashStable_Generic)]
658pub enum Namespace {
659 /// The type namespace includes `struct`s, `enum`s, `union`s, `trait`s, and `mod`s
660 /// (and, by extension, crates).
661 ///
662 /// Note that the type namespace includes other items; this is not an
663 /// exhaustive list.
664 TypeNS,
665 /// The value namespace includes `fn`s, `const`s, `static`s, and local variables (including function arguments).
666 ValueNS,
667 /// The macro namespace includes `macro_rules!` macros, declarative `macro`s,
668 /// procedural macros, attribute macros, `derive` macros, and non-macro attributes
669 /// like `#[inline]` and `#[rustfmt::skip]`.
670 MacroNS,
671}
672
673impl Namespace {
674 /// The English description of the namespace.
675 pub fn descr(self) -> &'static str {
676 match self {
677 Self::TypeNS => "type",
678 Self::ValueNS => "value",
679 Self::MacroNS => "macro",
680 }
681 }
682}
683
684impl IntoDiagArg for Namespace {
685 fn into_diag_arg(self, _: &mut Option<std::path::PathBuf>) -> DiagArgValue {
686 DiagArgValue::Str(Cow::Borrowed(self.descr()))
687 }
688}
689
690impl<CTX: crate::HashStableContext> ToStableHashKey<CTX> for Namespace {
691 type KeyType = Namespace;
692
693 #[inline]
694 fn to_stable_hash_key(&self, _: &CTX) -> Namespace {
695 *self
696 }
697}
698
699/// Just a helper ‒ separate structure for each namespace.
700#[derive(Copy, Clone, Default, Debug, HashStable_Generic)]
701pub struct PerNS<T> {
702 pub value_ns: T,
703 pub type_ns: T,
704 pub macro_ns: T,
705}
706
707impl<T> PerNS<T> {
708 pub fn map<U, F: FnMut(T) -> U>(self, mut f: F) -> PerNS<U> {
709 PerNS { value_ns: f(self.value_ns), type_ns: f(self.type_ns), macro_ns: f(self.macro_ns) }
710 }
711
712 /// Note: Do you really want to use this? Often you know which namespace a
713 /// name will belong in, and you can consider just that namespace directly,
714 /// rather than iterating through all of them.
715 pub fn into_iter(self) -> IntoIter<T, 3> {
716 [self.value_ns, self.type_ns, self.macro_ns].into_iter()
717 }
718
719 /// Note: Do you really want to use this? Often you know which namespace a
720 /// name will belong in, and you can consider just that namespace directly,
721 /// rather than iterating through all of them.
722 pub fn iter(&self) -> IntoIter<&T, 3> {
723 [&self.value_ns, &self.type_ns, &self.macro_ns].into_iter()
724 }
725}
726
727impl<T> ::std::ops::Index<Namespace> for PerNS<T> {
728 type Output = T;
729
730 fn index(&self, ns: Namespace) -> &T {
731 match ns {
732 Namespace::ValueNS => &self.value_ns,
733 Namespace::TypeNS => &self.type_ns,
734 Namespace::MacroNS => &self.macro_ns,
735 }
736 }
737}
738
739impl<T> ::std::ops::IndexMut<Namespace> for PerNS<T> {
740 fn index_mut(&mut self, ns: Namespace) -> &mut T {
741 match ns {
742 Namespace::ValueNS => &mut self.value_ns,
743 Namespace::TypeNS => &mut self.type_ns,
744 Namespace::MacroNS => &mut self.macro_ns,
745 }
746 }
747}
748
749impl<T> PerNS<Option<T>> {
750 /// Returns `true` if all the items in this collection are `None`.
751 pub fn is_empty(&self) -> bool {
752 self.type_ns.is_none() && self.value_ns.is_none() && self.macro_ns.is_none()
753 }
754
755 /// Returns an iterator over the items which are `Some`.
756 ///
757 /// Note: Do you really want to use this? Often you know which namespace a
758 /// name will belong in, and you can consider just that namespace directly,
759 /// rather than iterating through all of them.
760 pub fn present_items(self) -> impl Iterator<Item = T> {
761 [self.type_ns, self.value_ns, self.macro_ns].into_iter().flatten()
762 }
763}
764
765impl CtorKind {
766 pub fn from_ast(vdata: &ast::VariantData) -> Option<(CtorKind, NodeId)> {
767 match *vdata {
768 ast::VariantData::Tuple(_, node_id) => Some((CtorKind::Fn, node_id)),
769 ast::VariantData::Unit(node_id) => Some((CtorKind::Const, node_id)),
770 ast::VariantData::Struct { .. } => None,
771 }
772 }
773}
774
775impl NonMacroAttrKind {
776 pub fn descr(self) -> &'static str {
777 match self {
778 NonMacroAttrKind::Builtin(..) => "built-in attribute",
779 NonMacroAttrKind::Tool => "tool attribute",
780 NonMacroAttrKind::DeriveHelper | NonMacroAttrKind::DeriveHelperCompat => {
781 "derive helper attribute"
782 }
783 }
784 }
785
786 // Currently trivial, but exists in case a new kind is added in the future whose name starts
787 // with a vowel.
788 pub fn article(self) -> &'static str {
789 "a"
790 }
791
792 /// Users of some attributes cannot mark them as used, so they are considered always used.
793 pub fn is_used(self) -> bool {
794 match self {
795 NonMacroAttrKind::Tool
796 | NonMacroAttrKind::DeriveHelper
797 | NonMacroAttrKind::DeriveHelperCompat => true,
798 NonMacroAttrKind::Builtin(..) => false,
799 }
800 }
801}
802
803impl<Id> Res<Id> {
804 /// Return the `DefId` of this `Def` if it has an ID, else panic.
805 pub fn def_id(&self) -> DefId
806 where
807 Id: Debug,
808 {
809 self.opt_def_id().unwrap_or_else(|| panic!("attempted .def_id() on invalid res: {self:?}"))
810 }
811
812 /// Return `Some(..)` with the `DefId` of this `Res` if it has a ID, else `None`.
813 pub fn opt_def_id(&self) -> Option<DefId> {
814 match *self {
815 Res::Def(_, id) => Some(id),
816
817 Res::Local(..)
818 | Res::PrimTy(..)
819 | Res::SelfTyParam { .. }
820 | Res::SelfTyAlias { .. }
821 | Res::SelfCtor(..)
822 | Res::ToolMod
823 | Res::NonMacroAttr(..)
824 | Res::Err => None,
825 }
826 }
827
828 /// Return the `DefId` of this `Res` if it represents a module.
829 pub fn mod_def_id(&self) -> Option<DefId> {
830 match *self {
831 Res::Def(DefKind::Mod, id) => Some(id),
832 _ => None,
833 }
834 }
835
836 /// If this is a "module" in name resolution sense, return its `DefId`.
837 #[inline]
838 pub fn module_like_def_id(&self) -> Option<DefId> {
839 match self {
840 Res::Def(def_kind, def_id) if def_kind.is_module_like() => Some(*def_id),
841 _ => None,
842 }
843 }
844
845 /// A human readable name for the res kind ("function", "module", etc.).
846 pub fn descr(&self) -> &'static str {
847 match *self {
848 Res::Def(kind, def_id) => kind.descr(def_id),
849 Res::SelfCtor(..) => "self constructor",
850 Res::PrimTy(..) => "builtin type",
851 Res::Local(..) => "local variable",
852 Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } => "self type",
853 Res::ToolMod => "tool module",
854 Res::NonMacroAttr(attr_kind) => attr_kind.descr(),
855 Res::Err => "unresolved item",
856 }
857 }
858
859 /// Gets an English article for the `Res`.
860 pub fn article(&self) -> &'static str {
861 match *self {
862 Res::Def(kind, _) => kind.article(),
863 Res::NonMacroAttr(kind) => kind.article(),
864 Res::Err => "an",
865 _ => "a",
866 }
867 }
868
869 pub fn map_id<R>(self, mut map: impl FnMut(Id) -> R) -> Res<R> {
870 match self {
871 Res::Def(kind, id) => Res::Def(kind, id),
872 Res::SelfCtor(id) => Res::SelfCtor(id),
873 Res::PrimTy(id) => Res::PrimTy(id),
874 Res::Local(id) => Res::Local(map(id)),
875 Res::SelfTyParam { trait_ } => Res::SelfTyParam { trait_ },
876 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl } => {
877 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl }
878 }
879 Res::ToolMod => Res::ToolMod,
880 Res::NonMacroAttr(attr_kind) => Res::NonMacroAttr(attr_kind),
881 Res::Err => Res::Err,
882 }
883 }
884
885 pub fn apply_id<R, E>(self, mut map: impl FnMut(Id) -> Result<R, E>) -> Result<Res<R>, E> {
886 Ok(match self {
887 Res::Def(kind, id) => Res::Def(kind, id),
888 Res::SelfCtor(id) => Res::SelfCtor(id),
889 Res::PrimTy(id) => Res::PrimTy(id),
890 Res::Local(id) => Res::Local(map(id)?),
891 Res::SelfTyParam { trait_ } => Res::SelfTyParam { trait_ },
892 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl } => {
893 Res::SelfTyAlias { alias_to, forbid_generic, is_trait_impl }
894 }
895 Res::ToolMod => Res::ToolMod,
896 Res::NonMacroAttr(attr_kind) => Res::NonMacroAttr(attr_kind),
897 Res::Err => Res::Err,
898 })
899 }
900
901 #[track_caller]
902 pub fn expect_non_local<OtherId>(self) -> Res<OtherId> {
903 self.map_id(
904 #[track_caller]
905 |_| panic!("unexpected `Res::Local`"),
906 )
907 }
908
909 pub fn macro_kinds(self) -> Option<MacroKinds> {
910 match self {
911 Res::Def(DefKind::Macro(kinds), _) => Some(kinds),
912 Res::NonMacroAttr(..) => Some(MacroKinds::ATTR),
913 _ => None,
914 }
915 }
916
917 /// Returns `None` if this is `Res::Err`
918 pub fn ns(&self) -> Option<Namespace> {
919 match self {
920 Res::Def(kind, ..) => kind.ns(),
921 Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::ToolMod => {
922 Some(Namespace::TypeNS)
923 }
924 Res::SelfCtor(..) | Res::Local(..) => Some(Namespace::ValueNS),
925 Res::NonMacroAttr(..) => Some(Namespace::MacroNS),
926 Res::Err => None,
927 }
928 }
929
930 /// Always returns `true` if `self` is `Res::Err`
931 pub fn matches_ns(&self, ns: Namespace) -> bool {
932 self.ns().is_none_or(|actual_ns| actual_ns == ns)
933 }
934
935 /// Returns whether such a resolved path can occur in a tuple struct/variant pattern
936 pub fn expected_in_tuple_struct_pat(&self) -> bool {
937 matches!(self, Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..))
938 }
939
940 /// Returns whether such a resolved path can occur in a unit struct/variant pattern
941 pub fn expected_in_unit_struct_pat(&self) -> bool {
942 matches!(self, Res::Def(DefKind::Ctor(_, CtorKind::Const), _) | Res::SelfCtor(..))
943 }
944}
945
946/// Resolution for a lifetime appearing in a type.
947#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
948pub enum LifetimeRes {
949 /// Successfully linked the lifetime to a generic parameter.
950 Param {
951 /// Id of the generic parameter that introduced it.
952 param: LocalDefId,
953 /// Id of the introducing place. That can be:
954 /// - an item's id, for the item's generic parameters;
955 /// - a TraitRef's ref_id, identifying the `for<...>` binder;
956 /// - a FnPtr type's id.
957 ///
958 /// This information is used for impl-trait lifetime captures, to know when to or not to
959 /// capture any given lifetime.
960 binder: NodeId,
961 },
962 /// Created a generic parameter for an anonymous lifetime.
963 Fresh {
964 /// Id of the generic parameter that introduced it.
965 ///
966 /// Creating the associated `LocalDefId` is the responsibility of lowering.
967 param: NodeId,
968 /// Id of the introducing place. See `Param`.
969 binder: NodeId,
970 /// Kind of elided lifetime
971 kind: hir::MissingLifetimeKind,
972 },
973 /// This variant is used for anonymous lifetimes that we did not resolve during
974 /// late resolution. Those lifetimes will be inferred by typechecking.
975 Infer,
976 /// `'static` lifetime.
977 Static,
978 /// Resolution failure.
979 Error,
980 /// HACK: This is used to recover the NodeId of an elided lifetime.
981 ElidedAnchor { start: NodeId, end: NodeId },
982}
983
984pub type DocLinkResMap = UnordMap<(Symbol, Namespace), Option<Res<NodeId>>>;