rustc_lint/builtin.rs
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
6//!
7//! To add a new lint to rustc, declare it here using [`declare_lint!`].
8//! Then add code to emit the new lint in the appropriate circumstances.
9//!
10//! If you define a new [`EarlyLintPass`], you will also need to add it to the
11//! [`crate::early_lint_methods!`] invocation in `lib.rs`.
12//!
13//! If you define a new [`LateLintPass`], you will also need to add it to the
14//! [`crate::late_lint_methods!`] invocation in `lib.rs`.
15
16use std::fmt::Write;
17
18use ast::token::TokenKind;
19use rustc_abi::BackendRepr;
20use rustc_ast::tokenstream::{TokenStream, TokenTree};
21use rustc_ast::visit::{FnCtxt, FnKind};
22use rustc_ast::{self as ast, *};
23use rustc_ast_pretty::pprust::expr_to_string;
24use rustc_attr_parsing::AttributeParser;
25use rustc_errors::{Applicability, LintDiagnostic};
26use rustc_feature::GateIssue;
27use rustc_hir as hir;
28use rustc_hir::attrs::AttributeKind;
29use rustc_hir::def::{DefKind, Res};
30use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
31use rustc_hir::intravisit::FnKind as HirFnKind;
32use rustc_hir::{Body, FnDecl, PatKind, PredicateOrigin, find_attr};
33use rustc_middle::bug;
34use rustc_middle::lint::LevelAndSource;
35use rustc_middle::ty::layout::LayoutOf;
36use rustc_middle::ty::print::with_no_trimmed_paths;
37use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef};
38use rustc_session::lint::FutureIncompatibilityReason;
39// hardwired lints from rustc_lint_defs
40pub use rustc_session::lint::builtin::*;
41use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass};
42use rustc_span::edition::Edition;
43use rustc_span::source_map::Spanned;
44use rustc_span::{BytePos, DUMMY_SP, Ident, InnerSpan, Span, Symbol, kw, sym};
45use rustc_target::asm::InlineAsmArch;
46use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
47use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy;
48use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
49use rustc_trait_selection::traits::{self};
50
51use crate::errors::BuiltinEllipsisInclusiveRangePatterns;
52use crate::lints::{
53 BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDerefNullptr, BuiltinDoubleNegations,
54 BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint,
55 BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote,
56 BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures,
57 BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
58 BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
59 BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds,
60 BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub,
61 BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
62 BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel,
63};
64use crate::nonstandard_style::{MethodLateContext, method_context};
65use crate::{
66 EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext,
67 fluent_generated as fluent,
68};
69declare_lint! {
70 /// The `while_true` lint detects `while true { }`.
71 ///
72 /// ### Example
73 ///
74 /// ```rust,no_run
75 /// while true {
76 ///
77 /// }
78 /// ```
79 ///
80 /// {{produces}}
81 ///
82 /// ### Explanation
83 ///
84 /// `while true` should be replaced with `loop`. A `loop` expression is
85 /// the preferred way to write an infinite loop because it more directly
86 /// expresses the intent of the loop.
87 WHILE_TRUE,
88 Warn,
89 "suggest using `loop { }` instead of `while true { }`"
90}
91
92declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
93
94impl EarlyLintPass for WhileTrue {
95 #[inline]
96 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
97 if let ast::ExprKind::While(cond, _, label) = &e.kind
98 && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind
99 && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
100 && !cond.span.from_expansion()
101 {
102 let condition_span = e.span.with_hi(cond.span.hi());
103 let replace = format!(
104 "{}loop",
105 label.map_or_else(String::new, |label| format!("{}: ", label.ident,))
106 );
107 cx.emit_span_lint(
108 WHILE_TRUE,
109 condition_span,
110 BuiltinWhileTrue { suggestion: condition_span, replace },
111 );
112 }
113 }
114}
115
116declare_lint! {
117 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
118 /// instead of `Struct { x }` in a pattern.
119 ///
120 /// ### Example
121 ///
122 /// ```rust
123 /// struct Point {
124 /// x: i32,
125 /// y: i32,
126 /// }
127 ///
128 ///
129 /// fn main() {
130 /// let p = Point {
131 /// x: 5,
132 /// y: 5,
133 /// };
134 ///
135 /// match p {
136 /// Point { x: x, y: y } => (),
137 /// }
138 /// }
139 /// ```
140 ///
141 /// {{produces}}
142 ///
143 /// ### Explanation
144 ///
145 /// The preferred style is to avoid the repetition of specifying both the
146 /// field name and the binding name if both identifiers are the same.
147 NON_SHORTHAND_FIELD_PATTERNS,
148 Warn,
149 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
150}
151
152declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
153
154impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
155 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
156 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
157 let variant = cx
158 .typeck_results()
159 .pat_ty(pat)
160 .ty_adt_def()
161 .expect("struct pattern type is not an ADT")
162 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
163 for fieldpat in field_pats {
164 if fieldpat.is_shorthand {
165 continue;
166 }
167 if fieldpat.span.from_expansion() {
168 // Don't lint if this is a macro expansion: macro authors
169 // shouldn't have to worry about this kind of style issue
170 // (Issue #49588)
171 continue;
172 }
173 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
174 if cx.tcx.find_field_index(ident, variant)
175 == Some(cx.typeck_results().field_index(fieldpat.hir_id))
176 {
177 cx.emit_span_lint(
178 NON_SHORTHAND_FIELD_PATTERNS,
179 fieldpat.span,
180 BuiltinNonShorthandFieldPatterns {
181 ident,
182 suggestion: fieldpat.span,
183 prefix: binding_annot.prefix_str(),
184 },
185 );
186 }
187 }
188 }
189 }
190 }
191}
192
193declare_lint! {
194 /// The `unsafe_code` lint catches usage of `unsafe` code and other
195 /// potentially unsound constructs like `no_mangle`, `export_name`,
196 /// and `link_section`.
197 ///
198 /// ### Example
199 ///
200 /// ```rust,compile_fail
201 /// #![deny(unsafe_code)]
202 /// fn main() {
203 /// unsafe {
204 ///
205 /// }
206 /// }
207 ///
208 /// #[no_mangle]
209 /// fn func_0() { }
210 ///
211 /// #[export_name = "exported_symbol_name"]
212 /// pub fn name_in_rust() { }
213 ///
214 /// #[no_mangle]
215 /// #[link_section = ".example_section"]
216 /// pub static VAR1: u32 = 1;
217 /// ```
218 ///
219 /// {{produces}}
220 ///
221 /// ### Explanation
222 ///
223 /// This lint is intended to restrict the usage of `unsafe` blocks and other
224 /// constructs (including, but not limited to `no_mangle`, `link_section`
225 /// and `export_name` attributes) wrong usage of which causes undefined
226 /// behavior.
227 UNSAFE_CODE,
228 Allow,
229 "usage of `unsafe` code and other potentially unsound constructs",
230 @eval_always = true
231}
232
233declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
234
235impl UnsafeCode {
236 fn report_unsafe(
237 &self,
238 cx: &EarlyContext<'_>,
239 span: Span,
240 decorate: impl for<'a> LintDiagnostic<'a, ()>,
241 ) {
242 // This comes from a macro that has `#[allow_internal_unsafe]`.
243 if span.allows_unsafe() {
244 return;
245 }
246
247 cx.emit_span_lint(UNSAFE_CODE, span, decorate);
248 }
249}
250
251impl EarlyLintPass for UnsafeCode {
252 #[inline]
253 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
254 if let ast::ExprKind::Block(ref blk, _) = e.kind {
255 // Don't warn about generated blocks; that'll just pollute the output.
256 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
257 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
258 }
259 }
260 }
261
262 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
263 match it.kind {
264 ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => {
265 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
266 }
267
268 ast::ItemKind::Impl(ast::Impl {
269 of_trait: Some(box ast::TraitImplHeader { safety: ast::Safety::Unsafe(_), .. }),
270 ..
271 }) => {
272 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
273 }
274
275 ast::ItemKind::Fn(..) => {
276 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
277 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
278 }
279
280 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
281 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
282 }
283
284 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
285 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
286 }
287 }
288
289 ast::ItemKind::Static(..) => {
290 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
291 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
292 }
293
294 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
295 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
296 }
297
298 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
299 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
300 }
301 }
302
303 ast::ItemKind::GlobalAsm(..) => {
304 self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm);
305 }
306
307 ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => {
308 if let Safety::Unsafe(_) = safety {
309 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock);
310 }
311 }
312
313 ast::ItemKind::MacroDef(..) => {
314 if let Some(attr) = AttributeParser::parse_limited(
315 cx.builder.sess(),
316 &it.attrs,
317 sym::allow_internal_unsafe,
318 it.span,
319 DUMMY_NODE_ID,
320 Some(cx.builder.features()),
321 ) {
322 self.report_unsafe(cx, attr.span(), BuiltinUnsafe::AllowInternalUnsafe);
323 }
324 }
325
326 _ => {}
327 }
328 }
329
330 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
331 if let ast::AssocItemKind::Fn(..) = it.kind {
332 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
333 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
334 }
335 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
336 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
337 }
338 }
339 }
340
341 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
342 if let FnKind::Fn(
343 ctxt,
344 _,
345 ast::Fn {
346 sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. },
347 body,
348 ..
349 },
350 ) = fk
351 {
352 let decorator = match ctxt {
353 FnCtxt::Foreign => return,
354 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
355 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
356 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
357 };
358 self.report_unsafe(cx, span, decorator);
359 }
360 }
361}
362
363declare_lint! {
364 /// The `missing_docs` lint detects missing documentation for public items.
365 ///
366 /// ### Example
367 ///
368 /// ```rust,compile_fail
369 /// #![deny(missing_docs)]
370 /// pub fn foo() {}
371 /// ```
372 ///
373 /// {{produces}}
374 ///
375 /// ### Explanation
376 ///
377 /// This lint is intended to ensure that a library is well-documented.
378 /// Items without documentation can be difficult for users to understand
379 /// how to use properly.
380 ///
381 /// This lint is "allow" by default because it can be noisy, and not all
382 /// projects may want to enforce everything to be documented.
383 pub MISSING_DOCS,
384 Allow,
385 "detects missing documentation for public members",
386 report_in_external_macro
387}
388
389#[derive(Default)]
390pub struct MissingDoc;
391
392impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
393
394fn has_doc(attr: &hir::Attribute) -> bool {
395 if attr.is_doc_comment() {
396 return true;
397 }
398
399 if !attr.has_name(sym::doc) {
400 return false;
401 }
402
403 if attr.value_str().is_some() {
404 return true;
405 }
406
407 if let Some(list) = attr.meta_item_list() {
408 for meta in list {
409 if meta.has_name(sym::hidden) {
410 return true;
411 }
412 }
413 }
414
415 false
416}
417
418impl MissingDoc {
419 fn check_missing_docs_attrs(
420 &self,
421 cx: &LateContext<'_>,
422 def_id: LocalDefId,
423 article: &'static str,
424 desc: &'static str,
425 ) {
426 // Only check publicly-visible items, using the result from the privacy pass.
427 // It's an option so the crate root can also use this function (it doesn't
428 // have a `NodeId`).
429 if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) {
430 return;
431 }
432
433 let attrs = cx.tcx.hir_attrs(cx.tcx.local_def_id_to_hir_id(def_id));
434 let has_doc = attrs.iter().any(has_doc);
435 if !has_doc {
436 cx.emit_span_lint(
437 MISSING_DOCS,
438 cx.tcx.def_span(def_id),
439 BuiltinMissingDoc { article, desc },
440 );
441 }
442 }
443}
444
445impl<'tcx> LateLintPass<'tcx> for MissingDoc {
446 fn check_crate(&mut self, cx: &LateContext<'_>) {
447 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
448 }
449
450 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
451 // Previously the Impl and Use types have been excluded from missing docs,
452 // so we will continue to exclude them for compatibility.
453 //
454 // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
455 if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(..) =
456 it.kind
457 {
458 return;
459 }
460
461 let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
462 self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
463 }
464
465 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
466 let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
467
468 self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
469 }
470
471 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
472 let context = method_context(cx, impl_item.owner_id.def_id);
473
474 match context {
475 // If the method is an impl for a trait, don't doc.
476 MethodLateContext::TraitImpl => return,
477 MethodLateContext::TraitAutoImpl => {}
478 // If the method is an impl for an item with docs_hidden, don't doc.
479 MethodLateContext::PlainImpl => {
480 let parent = cx.tcx.hir_get_parent_item(impl_item.hir_id());
481 let impl_ty = cx.tcx.type_of(parent).instantiate_identity();
482 let outerdef = match impl_ty.kind() {
483 ty::Adt(def, _) => Some(def.did()),
484 ty::Foreign(def_id) => Some(*def_id),
485 _ => None,
486 };
487 let is_hidden = match outerdef {
488 Some(id) => cx.tcx.is_doc_hidden(id),
489 None => false,
490 };
491 if is_hidden {
492 return;
493 }
494 }
495 }
496
497 let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
498 self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
499 }
500
501 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
502 let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
503 self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
504 }
505
506 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
507 if !sf.is_positional() {
508 self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
509 }
510 }
511
512 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
513 self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
514 }
515}
516
517declare_lint! {
518 /// The `missing_copy_implementations` lint detects potentially-forgotten
519 /// implementations of [`Copy`] for public types.
520 ///
521 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
522 ///
523 /// ### Example
524 ///
525 /// ```rust,compile_fail
526 /// #![deny(missing_copy_implementations)]
527 /// pub struct Foo {
528 /// pub field: i32
529 /// }
530 /// # fn main() {}
531 /// ```
532 ///
533 /// {{produces}}
534 ///
535 /// ### Explanation
536 ///
537 /// Historically (before 1.0), types were automatically marked as `Copy`
538 /// if possible. This was changed so that it required an explicit opt-in
539 /// by implementing the `Copy` trait. As part of this change, a lint was
540 /// added to alert if a copyable type was not marked `Copy`.
541 ///
542 /// This lint is "allow" by default because this code isn't bad; it is
543 /// common to write newtypes like this specifically so that a `Copy` type
544 /// is no longer `Copy`. `Copy` types can result in unintended copies of
545 /// large data which can impact performance.
546 pub MISSING_COPY_IMPLEMENTATIONS,
547 Allow,
548 "detects potentially-forgotten implementations of `Copy`"
549}
550
551declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
552
553impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
554 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
555 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
556 return;
557 }
558 let (def, ty) = match item.kind {
559 hir::ItemKind::Struct(_, generics, _) => {
560 if !generics.params.is_empty() {
561 return;
562 }
563 let def = cx.tcx.adt_def(item.owner_id);
564 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
565 }
566 hir::ItemKind::Union(_, generics, _) => {
567 if !generics.params.is_empty() {
568 return;
569 }
570 let def = cx.tcx.adt_def(item.owner_id);
571 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
572 }
573 hir::ItemKind::Enum(_, generics, _) => {
574 if !generics.params.is_empty() {
575 return;
576 }
577 let def = cx.tcx.adt_def(item.owner_id);
578 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
579 }
580 _ => return,
581 };
582 if def.has_dtor(cx.tcx) {
583 return;
584 }
585
586 // If the type contains a raw pointer, it may represent something like a handle,
587 // and recommending Copy might be a bad idea.
588 for field in def.all_fields() {
589 let did = field.did;
590 if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() {
591 return;
592 }
593 }
594 if cx.type_is_copy_modulo_regions(ty) {
595 return;
596 }
597 if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) {
598 return;
599 }
600 if def.is_variant_list_non_exhaustive()
601 || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive())
602 {
603 return;
604 }
605
606 // We shouldn't recommend implementing `Copy` on stateful things,
607 // such as iterators.
608 if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
609 && cx
610 .tcx
611 .infer_ctxt()
612 .build(cx.typing_mode())
613 .type_implements_trait(iter_trait, [ty], cx.param_env)
614 .must_apply_modulo_regions()
615 {
616 return;
617 }
618
619 // Default value of clippy::trivially_copy_pass_by_ref
620 const MAX_SIZE: u64 = 256;
621
622 if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
623 if size > MAX_SIZE {
624 return;
625 }
626 }
627
628 if type_allowed_to_implement_copy(
629 cx.tcx,
630 cx.param_env,
631 ty,
632 traits::ObligationCause::misc(item.span, item.owner_id.def_id),
633 hir::Safety::Safe,
634 )
635 .is_ok()
636 {
637 cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
638 }
639 }
640}
641
642/// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints.
643fn type_implements_negative_copy_modulo_regions<'tcx>(
644 tcx: TyCtxt<'tcx>,
645 ty: Ty<'tcx>,
646 typing_env: ty::TypingEnv<'tcx>,
647) -> bool {
648 let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
649 let trait_ref =
650 ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, DUMMY_SP), [ty]);
651 let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative };
652 let obligation = traits::Obligation {
653 cause: traits::ObligationCause::dummy(),
654 param_env,
655 recursion_depth: 0,
656 predicate: pred.upcast(tcx),
657 };
658 infcx.predicate_must_hold_modulo_regions(&obligation)
659}
660
661declare_lint! {
662 /// The `missing_debug_implementations` lint detects missing
663 /// implementations of [`fmt::Debug`] for public types.
664 ///
665 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
666 ///
667 /// ### Example
668 ///
669 /// ```rust,compile_fail
670 /// #![deny(missing_debug_implementations)]
671 /// pub struct Foo;
672 /// # fn main() {}
673 /// ```
674 ///
675 /// {{produces}}
676 ///
677 /// ### Explanation
678 ///
679 /// Having a `Debug` implementation on all types can assist with
680 /// debugging, as it provides a convenient way to format and display a
681 /// value. Using the `#[derive(Debug)]` attribute will automatically
682 /// generate a typical implementation, or a custom implementation can be
683 /// added by manually implementing the `Debug` trait.
684 ///
685 /// This lint is "allow" by default because adding `Debug` to all types can
686 /// have a negative impact on compile time and code size. It also requires
687 /// boilerplate to be added to every type, which can be an impediment.
688 MISSING_DEBUG_IMPLEMENTATIONS,
689 Allow,
690 "detects missing implementations of Debug"
691}
692
693#[derive(Default)]
694pub(crate) struct MissingDebugImplementations;
695
696impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
697
698impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
699 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
700 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
701 return;
702 }
703
704 match item.kind {
705 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
706 _ => return,
707 }
708
709 // Avoid listing trait impls if the trait is allowed.
710 let LevelAndSource { level, .. } =
711 cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id());
712 if level == Level::Allow {
713 return;
714 }
715
716 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return };
717
718 let has_impl = cx
719 .tcx
720 .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity())
721 .next()
722 .is_some();
723 if !has_impl {
724 cx.emit_span_lint(
725 MISSING_DEBUG_IMPLEMENTATIONS,
726 item.span,
727 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
728 );
729 }
730 }
731}
732
733declare_lint! {
734 /// The `anonymous_parameters` lint detects anonymous parameters in trait
735 /// definitions.
736 ///
737 /// ### Example
738 ///
739 /// ```rust,edition2015,compile_fail
740 /// #![deny(anonymous_parameters)]
741 /// // edition 2015
742 /// pub trait Foo {
743 /// fn foo(usize);
744 /// }
745 /// fn main() {}
746 /// ```
747 ///
748 /// {{produces}}
749 ///
750 /// ### Explanation
751 ///
752 /// This syntax is mostly a historical accident, and can be worked around
753 /// quite easily by adding an `_` pattern or a descriptive identifier:
754 ///
755 /// ```rust
756 /// trait Foo {
757 /// fn foo(_: usize);
758 /// }
759 /// ```
760 ///
761 /// This syntax is now a hard error in the 2018 edition. In the 2015
762 /// edition, this lint is "warn" by default. This lint
763 /// enables the [`cargo fix`] tool with the `--edition` flag to
764 /// automatically transition old code from the 2015 edition to 2018. The
765 /// tool will run this lint and automatically apply the
766 /// suggested fix from the compiler (which is to add `_` to each
767 /// parameter). This provides a completely automated way to update old
768 /// code for a new edition. See [issue #41686] for more details.
769 ///
770 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
771 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
772 pub ANONYMOUS_PARAMETERS,
773 Warn,
774 "detects anonymous parameters",
775 @future_incompatible = FutureIncompatibleInfo {
776 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
777 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
778 };
779}
780
781declare_lint_pass!(
782 /// Checks for use of anonymous parameters (RFC 1685).
783 AnonymousParameters => [ANONYMOUS_PARAMETERS]
784);
785
786impl EarlyLintPass for AnonymousParameters {
787 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
788 if cx.sess().edition() != Edition::Edition2015 {
789 // This is a hard error in future editions; avoid linting and erroring
790 return;
791 }
792 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
793 for arg in sig.decl.inputs.iter() {
794 if let ast::PatKind::Missing = arg.pat.kind {
795 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
796
797 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
798 (snip.as_str(), Applicability::MachineApplicable)
799 } else {
800 ("<type>", Applicability::HasPlaceholders)
801 };
802 cx.emit_span_lint(
803 ANONYMOUS_PARAMETERS,
804 arg.pat.span,
805 BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
806 );
807 }
808 }
809 }
810 }
811}
812
813fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
814 use rustc_ast::token::CommentKind;
815
816 let mut attrs = attrs.iter().peekable();
817
818 // Accumulate a single span for sugared doc comments.
819 let mut sugared_span: Option<Span> = None;
820
821 while let Some(attr) = attrs.next() {
822 let is_doc_comment = attr.is_doc_comment();
823 if is_doc_comment {
824 sugared_span =
825 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
826 }
827
828 if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
829 continue;
830 }
831
832 let span = sugared_span.take().unwrap_or(attr.span);
833
834 if is_doc_comment || attr.has_name(sym::doc) {
835 let sub = match attr.kind {
836 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
837 BuiltinUnusedDocCommentSub::PlainHelp
838 }
839 AttrKind::DocComment(CommentKind::Block, _) => {
840 BuiltinUnusedDocCommentSub::BlockHelp
841 }
842 };
843 cx.emit_span_lint(
844 UNUSED_DOC_COMMENTS,
845 span,
846 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
847 );
848 }
849 }
850}
851
852impl EarlyLintPass for UnusedDocComment {
853 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
854 let kind = match stmt.kind {
855 ast::StmtKind::Let(..) => "statements",
856 // Disabled pending discussion in #78306
857 ast::StmtKind::Item(..) => return,
858 // expressions will be reported by `check_expr`.
859 ast::StmtKind::Empty
860 | ast::StmtKind::Semi(_)
861 | ast::StmtKind::Expr(_)
862 | ast::StmtKind::MacCall(_) => return,
863 };
864
865 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
866 }
867
868 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
869 if let Some(body) = &arm.body {
870 let arm_span = arm.pat.span.with_hi(body.span.hi());
871 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
872 }
873 }
874
875 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
876 if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind {
877 for field in fields {
878 warn_if_doc(cx, field.span, "pattern fields", &field.attrs);
879 }
880 }
881 }
882
883 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
884 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
885
886 if let ExprKind::Struct(s) = &expr.kind {
887 for field in &s.fields {
888 warn_if_doc(cx, field.span, "expression fields", &field.attrs);
889 }
890 }
891 }
892
893 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
894 warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs);
895 }
896
897 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
898 warn_if_doc(cx, block.span, "blocks", block.attrs());
899 }
900
901 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
902 if let ast::ItemKind::ForeignMod(_) = item.kind {
903 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
904 }
905 }
906}
907
908declare_lint! {
909 /// The `no_mangle_const_items` lint detects any `const` items with the
910 /// [`no_mangle` attribute].
911 ///
912 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
913 ///
914 /// ### Example
915 ///
916 /// ```rust,compile_fail,edition2021
917 /// #[no_mangle]
918 /// const FOO: i32 = 5;
919 /// ```
920 ///
921 /// {{produces}}
922 ///
923 /// ### Explanation
924 ///
925 /// Constants do not have their symbols exported, and therefore, this
926 /// probably means you meant to use a [`static`], not a [`const`].
927 ///
928 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
929 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
930 NO_MANGLE_CONST_ITEMS,
931 Deny,
932 "const items will not have their symbols exported"
933}
934
935declare_lint! {
936 /// The `no_mangle_generic_items` lint detects generic items that must be
937 /// mangled.
938 ///
939 /// ### Example
940 ///
941 /// ```rust
942 /// #[unsafe(no_mangle)]
943 /// fn foo<T>(t: T) {}
944 ///
945 /// #[unsafe(export_name = "bar")]
946 /// fn bar<T>(t: T) {}
947 /// ```
948 ///
949 /// {{produces}}
950 ///
951 /// ### Explanation
952 ///
953 /// A function with generics must have its symbol mangled to accommodate
954 /// the generic parameter. The [`no_mangle`] and [`export_name`] attributes
955 /// have no effect in this situation, and should be removed.
956 ///
957 /// [`no_mangle`]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
958 /// [`export_name`]: https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
959 NO_MANGLE_GENERIC_ITEMS,
960 Warn,
961 "generic items must be mangled"
962}
963
964declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
965
966impl InvalidNoMangleItems {
967 fn check_no_mangle_on_generic_fn(
968 &self,
969 cx: &LateContext<'_>,
970 attr_span: Span,
971 def_id: LocalDefId,
972 ) {
973 let generics = cx.tcx.generics_of(def_id);
974 if generics.requires_monomorphization(cx.tcx) {
975 cx.emit_span_lint(
976 NO_MANGLE_GENERIC_ITEMS,
977 cx.tcx.def_span(def_id),
978 BuiltinNoMangleGeneric { suggestion: attr_span },
979 );
980 }
981 }
982}
983
984impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
985 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
986 let attrs = cx.tcx.hir_attrs(it.hir_id());
987 match it.kind {
988 hir::ItemKind::Fn { .. } => {
989 if let Some(attr_span) =
990 find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
991 .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
992 {
993 self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
994 }
995 }
996 hir::ItemKind::Const(..) => {
997 if find_attr!(attrs, AttributeKind::NoMangle(..)) {
998 // account for "pub const" (#45562)
999 let start = cx
1000 .tcx
1001 .sess
1002 .source_map()
1003 .span_to_snippet(it.span)
1004 .map(|snippet| snippet.find("const").unwrap_or(0))
1005 .unwrap_or(0) as u32;
1006 // `const` is 5 chars
1007 let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1008
1009 // Const items do not refer to a particular location in memory, and therefore
1010 // don't have anything to attach a symbol to
1011 cx.emit_span_lint(
1012 NO_MANGLE_CONST_ITEMS,
1013 it.span,
1014 BuiltinConstNoMangle { suggestion },
1015 );
1016 }
1017 }
1018 _ => {}
1019 }
1020 }
1021
1022 fn check_impl_item(&mut self, cx: &LateContext<'_>, it: &hir::ImplItem<'_>) {
1023 let attrs = cx.tcx.hir_attrs(it.hir_id());
1024 match it.kind {
1025 hir::ImplItemKind::Fn { .. } => {
1026 if let Some(attr_span) =
1027 find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
1028 .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
1029 {
1030 self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
1031 }
1032 }
1033 _ => {}
1034 }
1035 }
1036}
1037
1038declare_lint! {
1039 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1040 /// T` because it is [undefined behavior].
1041 ///
1042 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1043 ///
1044 /// ### Example
1045 ///
1046 /// ```rust,compile_fail
1047 /// unsafe {
1048 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1049 /// }
1050 /// ```
1051 ///
1052 /// {{produces}}
1053 ///
1054 /// ### Explanation
1055 ///
1056 /// Certain assumptions are made about aliasing of data, and this transmute
1057 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1058 ///
1059 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1060 MUTABLE_TRANSMUTES,
1061 Deny,
1062 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1063}
1064
1065declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1066
1067impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1068 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1069 if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1070 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1071 {
1072 if from_mutbl < to_mutbl {
1073 cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1074 }
1075 }
1076
1077 fn get_transmute_from_to<'tcx>(
1078 cx: &LateContext<'tcx>,
1079 expr: &hir::Expr<'_>,
1080 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1081 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1082 cx.qpath_res(qpath, expr.hir_id)
1083 } else {
1084 return None;
1085 };
1086 if let Res::Def(DefKind::Fn, did) = def {
1087 if !def_id_is_transmute(cx, did) {
1088 return None;
1089 }
1090 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1091 let from = sig.inputs().skip_binder()[0];
1092 let to = sig.output().skip_binder();
1093 return Some((from, to));
1094 }
1095 None
1096 }
1097
1098 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1099 cx.tcx.is_intrinsic(def_id, sym::transmute)
1100 }
1101 }
1102}
1103
1104declare_lint! {
1105 /// The `unstable_features` lint detects uses of `#![feature]`.
1106 ///
1107 /// ### Example
1108 ///
1109 /// ```rust,compile_fail
1110 /// #![deny(unstable_features)]
1111 /// #![feature(test)]
1112 /// ```
1113 ///
1114 /// {{produces}}
1115 ///
1116 /// ### Explanation
1117 ///
1118 /// In larger nightly-based projects which
1119 ///
1120 /// * consist of a multitude of crates where a subset of crates has to compile on
1121 /// stable either unconditionally or depending on a `cfg` flag to for example
1122 /// allow stable users to depend on them,
1123 /// * don't use nightly for experimental features but for, e.g., unstable options only,
1124 ///
1125 /// this lint may come in handy to enforce policies of these kinds.
1126 UNSTABLE_FEATURES,
1127 Allow,
1128 "enabling unstable features"
1129}
1130
1131declare_lint_pass!(
1132 /// Forbids using the `#[feature(...)]` attribute
1133 UnstableFeatures => [UNSTABLE_FEATURES]
1134);
1135
1136impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1137 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) {
1138 if attr.has_name(sym::feature)
1139 && let Some(items) = attr.meta_item_list()
1140 {
1141 for item in items {
1142 cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1143 }
1144 }
1145 }
1146}
1147
1148declare_lint! {
1149 /// The `ungated_async_fn_track_caller` lint warns when the
1150 /// `#[track_caller]` attribute is used on an async function
1151 /// without enabling the corresponding unstable feature flag.
1152 ///
1153 /// ### Example
1154 ///
1155 /// ```rust
1156 /// #[track_caller]
1157 /// async fn foo() {}
1158 /// ```
1159 ///
1160 /// {{produces}}
1161 ///
1162 /// ### Explanation
1163 ///
1164 /// The attribute must be used in conjunction with the
1165 /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1166 /// annotation will function as a no-op.
1167 ///
1168 /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html
1169 UNGATED_ASYNC_FN_TRACK_CALLER,
1170 Warn,
1171 "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled"
1172}
1173
1174declare_lint_pass!(
1175 /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
1176 /// do anything
1177 UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1178);
1179
1180impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1181 fn check_fn(
1182 &mut self,
1183 cx: &LateContext<'_>,
1184 fn_kind: HirFnKind<'_>,
1185 _: &'tcx FnDecl<'_>,
1186 _: &'tcx Body<'_>,
1187 span: Span,
1188 def_id: LocalDefId,
1189 ) {
1190 if fn_kind.asyncness().is_async()
1191 && !cx.tcx.features().async_fn_track_caller()
1192 // Now, check if the function has the `#[track_caller]` attribute
1193 && let Some(attr_span) = find_attr!(cx.tcx.get_all_attrs(def_id), AttributeKind::TrackCaller(span) => *span)
1194 {
1195 cx.emit_span_lint(
1196 UNGATED_ASYNC_FN_TRACK_CALLER,
1197 attr_span,
1198 BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess },
1199 );
1200 }
1201 }
1202}
1203
1204declare_lint! {
1205 /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that
1206 /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through
1207 /// things like return types (which the [`unnameable_types`] lint can detect if desired).
1208 ///
1209 /// ### Example
1210 ///
1211 /// ```rust,compile_fail
1212 /// #![deny(unreachable_pub)]
1213 /// mod foo {
1214 /// pub mod bar {
1215 ///
1216 /// }
1217 /// }
1218 /// ```
1219 ///
1220 /// {{produces}}
1221 ///
1222 /// ### Explanation
1223 ///
1224 /// The `pub` keyword both expresses an intent for an item to be publicly available, and also
1225 /// signals to the compiler to make the item publicly accessible. The intent can only be
1226 /// satisfied, however, if all items which contain this item are *also* publicly accessible.
1227 /// Thus, this lint serves to identify situations where the intent does not match the reality.
1228 ///
1229 /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the
1230 /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the
1231 /// intent that the item is only visible within its own crate.
1232 ///
1233 /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code.
1234 /// Eventually it is desired for this to become warn-by-default.
1235 ///
1236 /// [`unnameable_types`]: #unnameable-types
1237 pub UNREACHABLE_PUB,
1238 Allow,
1239 "`pub` items not reachable from crate root"
1240}
1241
1242declare_lint_pass!(
1243 /// Lint for items marked `pub` that aren't reachable from other crates.
1244 UnreachablePub => [UNREACHABLE_PUB]
1245);
1246
1247impl UnreachablePub {
1248 fn perform_lint(
1249 &self,
1250 cx: &LateContext<'_>,
1251 what: &str,
1252 def_id: LocalDefId,
1253 vis_span: Span,
1254 exportable: bool,
1255 ) {
1256 let mut applicability = Applicability::MachineApplicable;
1257 if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1258 {
1259 // prefer suggesting `pub(super)` instead of `pub(crate)` when possible,
1260 // except when `pub(super) == pub(crate)`
1261 let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) =
1262 cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| {
1263 effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable)
1264 })
1265 && let parent_parent = cx
1266 .tcx
1267 .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into())
1268 && *restricted_did == parent_parent.to_local_def_id()
1269 && !restricted_did.to_def_id().is_crate_root()
1270 {
1271 "pub(super)"
1272 } else {
1273 "pub(crate)"
1274 };
1275
1276 if vis_span.from_expansion() {
1277 applicability = Applicability::MaybeIncorrect;
1278 }
1279 let def_span = cx.tcx.def_span(def_id);
1280 cx.emit_span_lint(
1281 UNREACHABLE_PUB,
1282 def_span,
1283 BuiltinUnreachablePub {
1284 what,
1285 new_vis,
1286 suggestion: (vis_span, applicability),
1287 help: exportable,
1288 },
1289 );
1290 }
1291 }
1292}
1293
1294impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1295 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1296 // Do not warn for fake `use` statements.
1297 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1298 return;
1299 }
1300 self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1301 }
1302
1303 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1304 self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1305 }
1306
1307 fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) {
1308 // - If an ADT definition is reported then we don't need to check fields
1309 // (as it would add unnecessary complexity to the source code, the struct
1310 // definition is in the immediate proximity to give the "real" visibility).
1311 // - If an ADT is not reported because it's not `pub` - we don't need to
1312 // check fields.
1313 // - If an ADT is not reported because it's reachable - we also don't need
1314 // to check fields because then they are reachable by construction if they
1315 // are pub.
1316 //
1317 // Therefore in no case we check the fields.
1318 //
1319 // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205
1320 // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506
1321 }
1322
1323 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1324 // Only lint inherent impl items.
1325 if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1326 self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
1327 }
1328 }
1329}
1330
1331declare_lint! {
1332 /// The `type_alias_bounds` lint detects bounds in type aliases.
1333 ///
1334 /// ### Example
1335 ///
1336 /// ```rust
1337 /// type SendVec<T: Send> = Vec<T>;
1338 /// ```
1339 ///
1340 /// {{produces}}
1341 ///
1342 /// ### Explanation
1343 ///
1344 /// Trait and lifetime bounds on generic parameters and in where clauses of
1345 /// type aliases are not checked at usage sites of the type alias. Moreover,
1346 /// they are not thoroughly checked for correctness at their definition site
1347 /// either similar to the aliased type.
1348 ///
1349 /// This is a known limitation of the type checker that may be lifted in a
1350 /// future edition. Permitting such bounds in light of this was unintentional.
1351 ///
1352 /// While these bounds may have secondary effects such as enabling the use of
1353 /// "shorthand" associated type paths[^1] and affecting the default trait
1354 /// object lifetime[^2] of trait object types passed to the type alias, this
1355 /// should not have been allowed until the aforementioned restrictions of the
1356 /// type checker have been lifted.
1357 ///
1358 /// Using such bounds is highly discouraged as they are actively misleading.
1359 ///
1360 /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter
1361 /// bounded by trait `Trait` which defines an associated type called `Assoc`
1362 /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`.
1363 /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes>
1364 TYPE_ALIAS_BOUNDS,
1365 Warn,
1366 "bounds in type aliases are not enforced"
1367}
1368
1369declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]);
1370
1371impl TypeAliasBounds {
1372 pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool {
1373 // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults.
1374 if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind
1375 && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_)))
1376 && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS
1377 && pred.bounded_ty.as_generic_param().is_some()
1378 {
1379 return true;
1380 }
1381 false
1382 }
1383}
1384
1385impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1386 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1387 let hir::ItemKind::TyAlias(_, generics, hir_ty) = item.kind else { return };
1388
1389 // There must not be a where clause.
1390 if generics.predicates.is_empty() {
1391 return;
1392 }
1393
1394 // Bounds of lazy type aliases and TAITs are respected.
1395 if cx.tcx.type_alias_is_lazy(item.owner_id) {
1396 return;
1397 }
1398
1399 // FIXME(generic_const_exprs): Revisit this before stabilization.
1400 // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`.
1401 let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
1402 if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION)
1403 && cx.tcx.features().generic_const_exprs()
1404 {
1405 return;
1406 }
1407
1408 // NOTE(inherent_associated_types): While we currently do take some bounds in type
1409 // aliases into consideration during IAT *selection*, we don't perform full use+def
1410 // site wfchecking for such type aliases. Therefore TAB should still trigger.
1411 // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`.
1412
1413 let mut where_spans = Vec::new();
1414 let mut inline_spans = Vec::new();
1415 let mut inline_sugg = Vec::new();
1416
1417 for p in generics.predicates {
1418 let span = p.span;
1419 if p.kind.in_where_clause() {
1420 where_spans.push(span);
1421 } else {
1422 for b in p.kind.bounds() {
1423 inline_spans.push(b.span());
1424 }
1425 inline_sugg.push((span, String::new()));
1426 }
1427 }
1428
1429 let mut ty = Some(hir_ty);
1430 let enable_feat_help = cx.tcx.sess.is_nightly_build();
1431
1432 if let [.., label_sp] = *where_spans {
1433 cx.emit_span_lint(
1434 TYPE_ALIAS_BOUNDS,
1435 where_spans,
1436 BuiltinTypeAliasBounds {
1437 in_where_clause: true,
1438 label: label_sp,
1439 enable_feat_help,
1440 suggestions: vec![(generics.where_clause_span, String::new())],
1441 preds: generics.predicates,
1442 ty: ty.take(),
1443 },
1444 );
1445 }
1446 if let [.., label_sp] = *inline_spans {
1447 cx.emit_span_lint(
1448 TYPE_ALIAS_BOUNDS,
1449 inline_spans,
1450 BuiltinTypeAliasBounds {
1451 in_where_clause: false,
1452 label: label_sp,
1453 enable_feat_help,
1454 suggestions: inline_sugg,
1455 preds: generics.predicates,
1456 ty,
1457 },
1458 );
1459 }
1460 }
1461}
1462
1463pub(crate) struct ShorthandAssocTyCollector {
1464 pub(crate) qselves: Vec<Span>,
1465}
1466
1467impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector {
1468 fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) {
1469 // Look for "type-parameter shorthand-associated-types". I.e., paths of the
1470 // form `T::Assoc` with `T` type param. These are reliant on trait bounds.
1471 if let hir::QPath::TypeRelative(qself, _) = qpath
1472 && qself.as_generic_param().is_some()
1473 {
1474 self.qselves.push(qself.span);
1475 }
1476 hir::intravisit::walk_qpath(self, qpath, id)
1477 }
1478}
1479
1480declare_lint! {
1481 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1482 /// any type parameters.
1483 ///
1484 /// ### Example
1485 ///
1486 /// ```rust
1487 /// #![feature(trivial_bounds)]
1488 /// pub struct A where i32: Copy;
1489 /// ```
1490 ///
1491 /// {{produces}}
1492 ///
1493 /// ### Explanation
1494 ///
1495 /// Usually you would not write a trait bound that you know is always
1496 /// true, or never true. However, when using macros, the macro may not
1497 /// know whether or not the constraint would hold or not at the time when
1498 /// generating the code. Currently, the compiler does not alert you if the
1499 /// constraint is always true, and generates an error if it is never true.
1500 /// The `trivial_bounds` feature changes this to be a warning in both
1501 /// cases, giving macros more freedom and flexibility to generate code,
1502 /// while still providing a signal when writing non-macro code that
1503 /// something is amiss.
1504 ///
1505 /// See [RFC 2056] for more details. This feature is currently only
1506 /// available on the nightly channel, see [tracking issue #48214].
1507 ///
1508 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1509 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1510 TRIVIAL_BOUNDS,
1511 Warn,
1512 "these bounds don't depend on an type parameters"
1513}
1514
1515declare_lint_pass!(
1516 /// Lint for trait and lifetime bounds that don't depend on type parameters
1517 /// which either do nothing, or stop the item from being used.
1518 TrivialConstraints => [TRIVIAL_BOUNDS]
1519);
1520
1521impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1522 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1523 use rustc_middle::ty::ClauseKind;
1524
1525 if cx.tcx.features().trivial_bounds() {
1526 let predicates = cx.tcx.predicates_of(item.owner_id);
1527 for &(predicate, span) in predicates.predicates {
1528 let predicate_kind_name = match predicate.kind().skip_binder() {
1529 ClauseKind::Trait(..) => "trait",
1530 ClauseKind::TypeOutlives(..) |
1531 ClauseKind::RegionOutlives(..) => "lifetime",
1532
1533 ClauseKind::UnstableFeature(_)
1534 // `ConstArgHasType` is never global as `ct` is always a param
1535 | ClauseKind::ConstArgHasType(..)
1536 // Ignore projections, as they can only be global
1537 // if the trait bound is global
1538 | ClauseKind::Projection(..)
1539 // Ignore bounds that a user can't type
1540 | ClauseKind::WellFormed(..)
1541 // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
1542 | ClauseKind::ConstEvaluatable(..)
1543 // Users don't write this directly, only via another trait ref.
1544 | ty::ClauseKind::HostEffect(..) => continue,
1545 };
1546 if predicate.is_global() {
1547 cx.emit_span_lint(
1548 TRIVIAL_BOUNDS,
1549 span,
1550 BuiltinTrivialBounds { predicate_kind_name, predicate },
1551 );
1552 }
1553 }
1554 }
1555 }
1556}
1557
1558declare_lint! {
1559 /// The `double_negations` lint detects expressions of the form `--x`.
1560 ///
1561 /// ### Example
1562 ///
1563 /// ```rust
1564 /// fn main() {
1565 /// let x = 1;
1566 /// let _b = --x;
1567 /// }
1568 /// ```
1569 ///
1570 /// {{produces}}
1571 ///
1572 /// ### Explanation
1573 ///
1574 /// Negating something twice is usually the same as not negating it at all.
1575 /// However, a double negation in Rust can easily be confused with the
1576 /// prefix decrement operator that exists in many languages derived from C.
1577 /// Use `-(-x)` if you really wanted to negate the value twice.
1578 ///
1579 /// To decrement a value, use `x -= 1` instead.
1580 pub DOUBLE_NEGATIONS,
1581 Warn,
1582 "detects expressions of the form `--x`"
1583}
1584
1585declare_lint_pass!(
1586 /// Lint for expressions of the form `--x` that can be confused with C's
1587 /// prefix decrement operator.
1588 DoubleNegations => [DOUBLE_NEGATIONS]
1589);
1590
1591impl EarlyLintPass for DoubleNegations {
1592 #[inline]
1593 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1594 // only lint on the innermost `--` in a chain of `-` operators,
1595 // even if there are 3 or more negations
1596 if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind
1597 && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind
1598 && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _))
1599 // Don't lint if this jumps macro expansion boundary (Issue #143980)
1600 && expr.span.eq_ctxt(inner.span)
1601 {
1602 cx.emit_span_lint(
1603 DOUBLE_NEGATIONS,
1604 expr.span,
1605 BuiltinDoubleNegations {
1606 add_parens: BuiltinDoubleNegationsAddParens {
1607 start_span: inner.span.shrink_to_lo(),
1608 end_span: inner.span.shrink_to_hi(),
1609 },
1610 },
1611 );
1612 }
1613 }
1614}
1615
1616declare_lint_pass!(
1617 /// Does nothing as a lint pass, but registers some `Lint`s
1618 /// which are used by other parts of the compiler.
1619 SoftLints => [
1620 WHILE_TRUE,
1621 NON_SHORTHAND_FIELD_PATTERNS,
1622 UNSAFE_CODE,
1623 MISSING_DOCS,
1624 MISSING_COPY_IMPLEMENTATIONS,
1625 MISSING_DEBUG_IMPLEMENTATIONS,
1626 ANONYMOUS_PARAMETERS,
1627 UNUSED_DOC_COMMENTS,
1628 NO_MANGLE_CONST_ITEMS,
1629 NO_MANGLE_GENERIC_ITEMS,
1630 MUTABLE_TRANSMUTES,
1631 UNSTABLE_FEATURES,
1632 UNREACHABLE_PUB,
1633 TYPE_ALIAS_BOUNDS,
1634 TRIVIAL_BOUNDS,
1635 DOUBLE_NEGATIONS
1636 ]
1637);
1638
1639declare_lint! {
1640 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1641 /// pattern], which is deprecated.
1642 ///
1643 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1644 ///
1645 /// ### Example
1646 ///
1647 /// ```rust,edition2018
1648 /// let x = 123;
1649 /// match x {
1650 /// 0...100 => {}
1651 /// _ => {}
1652 /// }
1653 /// ```
1654 ///
1655 /// {{produces}}
1656 ///
1657 /// ### Explanation
1658 ///
1659 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1660 /// confusion with the [`..` range expression]. Use the new form instead.
1661 ///
1662 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1663 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1664 Warn,
1665 "`...` range patterns are deprecated",
1666 @future_incompatible = FutureIncompatibleInfo {
1667 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1668 reference: "<https://doc.rust-lang.org/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1669 };
1670}
1671
1672#[derive(Default)]
1673pub struct EllipsisInclusiveRangePatterns {
1674 /// If `Some(_)`, suppress all subsequent pattern
1675 /// warnings for better diagnostics.
1676 node_id: Option<ast::NodeId>,
1677}
1678
1679impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1680
1681impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1682 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1683 if self.node_id.is_some() {
1684 // Don't recursively warn about patterns inside range endpoints.
1685 return;
1686 }
1687
1688 use self::ast::PatKind;
1689 use self::ast::RangeSyntax::DotDotDot;
1690
1691 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1692 /// corresponding to the ellipsis.
1693 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1694 match &pat.kind {
1695 PatKind::Range(
1696 a,
1697 Some(b),
1698 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1699 ) => Some((a.as_deref(), b, *span)),
1700 _ => None,
1701 }
1702 }
1703
1704 let (parentheses, endpoints) = match &pat.kind {
1705 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(subpat)),
1706 _ => (false, matches_ellipsis_pat(pat)),
1707 };
1708
1709 if let Some((start, end, join)) = endpoints {
1710 if parentheses {
1711 self.node_id = Some(pat.id);
1712 let end = expr_to_string(end);
1713 let replace = match start {
1714 Some(start) => format!("&({}..={})", expr_to_string(start), end),
1715 None => format!("&(..={end})"),
1716 };
1717 if join.edition() >= Edition::Edition2021 {
1718 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1719 span: pat.span,
1720 suggestion: pat.span,
1721 replace,
1722 });
1723 } else {
1724 cx.emit_span_lint(
1725 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1726 pat.span,
1727 BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1728 suggestion: pat.span,
1729 replace,
1730 },
1731 );
1732 }
1733 } else {
1734 let replace = "..=";
1735 if join.edition() >= Edition::Edition2021 {
1736 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1737 span: pat.span,
1738 suggestion: join,
1739 replace: replace.to_string(),
1740 });
1741 } else {
1742 cx.emit_span_lint(
1743 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1744 join,
1745 BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1746 suggestion: join,
1747 },
1748 );
1749 }
1750 };
1751 }
1752 }
1753
1754 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1755 if let Some(node_id) = self.node_id {
1756 if pat.id == node_id {
1757 self.node_id = None
1758 }
1759 }
1760 }
1761}
1762
1763declare_lint! {
1764 /// The `keyword_idents_2018` lint detects edition keywords being used as an
1765 /// identifier.
1766 ///
1767 /// ### Example
1768 ///
1769 /// ```rust,edition2015,compile_fail
1770 /// #![deny(keyword_idents_2018)]
1771 /// // edition 2015
1772 /// fn dyn() {}
1773 /// ```
1774 ///
1775 /// {{produces}}
1776 ///
1777 /// ### Explanation
1778 ///
1779 /// Rust [editions] allow the language to evolve without breaking
1780 /// backwards compatibility. This lint catches code that uses new keywords
1781 /// that are added to the language that are used as identifiers (such as a
1782 /// variable name, function name, etc.). If you switch the compiler to a
1783 /// new edition without updating the code, then it will fail to compile if
1784 /// you are using a new keyword as an identifier.
1785 ///
1786 /// You can manually change the identifiers to a non-keyword, or use a
1787 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1788 ///
1789 /// This lint solves the problem automatically. It is "allow" by default
1790 /// because the code is perfectly valid in older editions. The [`cargo
1791 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1792 /// and automatically apply the suggested fix from the compiler (which is
1793 /// to use a raw identifier). This provides a completely automated way to
1794 /// update old code for a new edition.
1795 ///
1796 /// [editions]: https://doc.rust-lang.org/edition-guide/
1797 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1798 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1799 pub KEYWORD_IDENTS_2018,
1800 Allow,
1801 "detects edition keywords being used as an identifier",
1802 @future_incompatible = FutureIncompatibleInfo {
1803 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1804 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1805 };
1806}
1807
1808declare_lint! {
1809 /// The `keyword_idents_2024` lint detects edition keywords being used as an
1810 /// identifier.
1811 ///
1812 /// ### Example
1813 ///
1814 /// ```rust,edition2015,compile_fail
1815 /// #![deny(keyword_idents_2024)]
1816 /// // edition 2015
1817 /// fn gen() {}
1818 /// ```
1819 ///
1820 /// {{produces}}
1821 ///
1822 /// ### Explanation
1823 ///
1824 /// Rust [editions] allow the language to evolve without breaking
1825 /// backwards compatibility. This lint catches code that uses new keywords
1826 /// that are added to the language that are used as identifiers (such as a
1827 /// variable name, function name, etc.). If you switch the compiler to a
1828 /// new edition without updating the code, then it will fail to compile if
1829 /// you are using a new keyword as an identifier.
1830 ///
1831 /// You can manually change the identifiers to a non-keyword, or use a
1832 /// [raw identifier], for example `r#gen`, to transition to a new edition.
1833 ///
1834 /// This lint solves the problem automatically. It is "allow" by default
1835 /// because the code is perfectly valid in older editions. The [`cargo
1836 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1837 /// and automatically apply the suggested fix from the compiler (which is
1838 /// to use a raw identifier). This provides a completely automated way to
1839 /// update old code for a new edition.
1840 ///
1841 /// [editions]: https://doc.rust-lang.org/edition-guide/
1842 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1843 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1844 pub KEYWORD_IDENTS_2024,
1845 Allow,
1846 "detects edition keywords being used as an identifier",
1847 @future_incompatible = FutureIncompatibleInfo {
1848 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
1849 reference: "<https://doc.rust-lang.org/edition-guide/rust-2024/gen-keyword.html>",
1850 };
1851}
1852
1853declare_lint_pass!(
1854 /// Check for uses of edition keywords used as an identifier.
1855 KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024]
1856);
1857
1858struct UnderMacro(bool);
1859
1860impl KeywordIdents {
1861 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1862 // Check if the preceding token is `$`, because we want to allow `$async`, etc.
1863 let mut prev_dollar = false;
1864 for tt in tokens.iter() {
1865 match tt {
1866 // Only report non-raw idents.
1867 TokenTree::Token(token, _) => {
1868 if let Some((ident, token::IdentIsRaw::No)) = token.ident() {
1869 if !prev_dollar {
1870 self.check_ident_token(cx, UnderMacro(true), ident, "");
1871 }
1872 } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() {
1873 self.check_ident_token(
1874 cx,
1875 UnderMacro(true),
1876 ident.without_first_quote(),
1877 "'",
1878 );
1879 } else if token.kind == TokenKind::Dollar {
1880 prev_dollar = true;
1881 continue;
1882 }
1883 }
1884 TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts),
1885 }
1886 prev_dollar = false;
1887 }
1888 }
1889
1890 fn check_ident_token(
1891 &mut self,
1892 cx: &EarlyContext<'_>,
1893 UnderMacro(under_macro): UnderMacro,
1894 ident: Ident,
1895 prefix: &'static str,
1896 ) {
1897 let (lint, edition) = match ident.name {
1898 kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1899
1900 // rust-lang/rust#56327: Conservatively do not
1901 // attempt to report occurrences of `dyn` within
1902 // macro definitions or invocations, because `dyn`
1903 // can legitimately occur as a contextual keyword
1904 // in 2015 code denoting its 2018 meaning, and we
1905 // do not want rustfix to inject bugs into working
1906 // code by rewriting such occurrences.
1907 //
1908 // But if we see `dyn` outside of a macro, we know
1909 // its precise role in the parsed AST and thus are
1910 // assured this is truly an attempt to use it as
1911 // an identifier.
1912 kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1913
1914 kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024),
1915
1916 _ => return,
1917 };
1918
1919 // Don't lint `r#foo`.
1920 if ident.span.edition() >= edition
1921 || cx.sess().psess.raw_identifier_spans.contains(ident.span)
1922 {
1923 return;
1924 }
1925
1926 cx.emit_span_lint(
1927 lint,
1928 ident.span,
1929 BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix },
1930 );
1931 }
1932}
1933
1934impl EarlyLintPass for KeywordIdents {
1935 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1936 self.check_tokens(cx, &mac_def.body.tokens);
1937 }
1938 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1939 self.check_tokens(cx, &mac.args.tokens);
1940 }
1941 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) {
1942 if ident.name.as_str().starts_with('\'') {
1943 self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'");
1944 } else {
1945 self.check_ident_token(cx, UnderMacro(false), *ident, "");
1946 }
1947 }
1948}
1949
1950declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1951
1952impl ExplicitOutlivesRequirements {
1953 fn lifetimes_outliving_lifetime<'tcx>(
1954 tcx: TyCtxt<'tcx>,
1955 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1956 item: LocalDefId,
1957 lifetime: LocalDefId,
1958 ) -> Vec<ty::Region<'tcx>> {
1959 let item_generics = tcx.generics_of(item);
1960
1961 inferred_outlives
1962 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1963 ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a.kind() {
1964 ty::ReEarlyParam(ebr)
1965 if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() =>
1966 {
1967 Some(b)
1968 }
1969 _ => None,
1970 },
1971 _ => None,
1972 })
1973 .collect()
1974 }
1975
1976 fn lifetimes_outliving_type<'tcx>(
1977 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1978 index: u32,
1979 ) -> Vec<ty::Region<'tcx>> {
1980 inferred_outlives
1981 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1982 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1983 a.is_param(index).then_some(b)
1984 }
1985 _ => None,
1986 })
1987 .collect()
1988 }
1989
1990 fn collect_outlives_bound_spans<'tcx>(
1991 &self,
1992 tcx: TyCtxt<'tcx>,
1993 bounds: &hir::GenericBounds<'_>,
1994 inferred_outlives: &[ty::Region<'tcx>],
1995 predicate_span: Span,
1996 item: DefId,
1997 ) -> Vec<(usize, Span)> {
1998 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
1999
2000 let item_generics = tcx.generics_of(item);
2001
2002 bounds
2003 .iter()
2004 .enumerate()
2005 .filter_map(|(i, bound)| {
2006 let hir::GenericBound::Outlives(lifetime) = bound else {
2007 return None;
2008 };
2009
2010 let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2011 Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
2012 .iter()
2013 .any(|r| matches!(r.kind(), ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })),
2014 _ => false,
2015 };
2016
2017 if !is_inferred {
2018 return None;
2019 }
2020
2021 let span = bound.span().find_ancestor_inside(predicate_span)?;
2022 if span.in_external_macro(tcx.sess.source_map()) {
2023 return None;
2024 }
2025
2026 Some((i, span))
2027 })
2028 .collect()
2029 }
2030
2031 fn consolidate_outlives_bound_spans(
2032 &self,
2033 lo: Span,
2034 bounds: &hir::GenericBounds<'_>,
2035 bound_spans: Vec<(usize, Span)>,
2036 ) -> Vec<Span> {
2037 if bounds.is_empty() {
2038 return Vec::new();
2039 }
2040 if bound_spans.len() == bounds.len() {
2041 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2042 // If all bounds are inferable, we want to delete the colon, so
2043 // start from just after the parameter (span passed as argument)
2044 vec![lo.to(last_bound_span)]
2045 } else {
2046 let mut merged = Vec::new();
2047 let mut last_merged_i = None;
2048
2049 let mut from_start = true;
2050 for (i, bound_span) in bound_spans {
2051 match last_merged_i {
2052 // If the first bound is inferable, our span should also eat the leading `+`.
2053 None if i == 0 => {
2054 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2055 last_merged_i = Some(0);
2056 }
2057 // If consecutive bounds are inferable, merge their spans
2058 Some(h) if i == h + 1 => {
2059 if let Some(tail) = merged.last_mut() {
2060 // Also eat the trailing `+` if the first
2061 // more-than-one bound is inferable
2062 let to_span = if from_start && i < bounds.len() {
2063 bounds[i + 1].span().shrink_to_lo()
2064 } else {
2065 bound_span
2066 };
2067 *tail = tail.to(to_span);
2068 last_merged_i = Some(i);
2069 } else {
2070 bug!("another bound-span visited earlier");
2071 }
2072 }
2073 _ => {
2074 // When we find a non-inferable bound, subsequent inferable bounds
2075 // won't be consecutive from the start (and we'll eat the leading
2076 // `+` rather than the trailing one)
2077 from_start = false;
2078 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2079 last_merged_i = Some(i);
2080 }
2081 }
2082 }
2083 merged
2084 }
2085 }
2086}
2087
2088impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2089 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2090 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2091
2092 let def_id = item.owner_id.def_id;
2093 if let hir::ItemKind::Struct(_, generics, _)
2094 | hir::ItemKind::Enum(_, generics, _)
2095 | hir::ItemKind::Union(_, generics, _) = item.kind
2096 {
2097 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2098 if inferred_outlives.is_empty() {
2099 return;
2100 }
2101
2102 let ty_generics = cx.tcx.generics_of(def_id);
2103 let num_where_predicates = generics
2104 .predicates
2105 .iter()
2106 .filter(|predicate| predicate.kind.in_where_clause())
2107 .count();
2108
2109 let mut bound_count = 0;
2110 let mut lint_spans = Vec::new();
2111 let mut where_lint_spans = Vec::new();
2112 let mut dropped_where_predicate_count = 0;
2113 for (i, where_predicate) in generics.predicates.iter().enumerate() {
2114 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2115 match where_predicate.kind {
2116 hir::WherePredicateKind::RegionPredicate(predicate) => {
2117 if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2118 cx.tcx.named_bound_var(predicate.lifetime.hir_id)
2119 {
2120 (
2121 Self::lifetimes_outliving_lifetime(
2122 cx.tcx,
2123 // don't warn if the inferred span actually came from the predicate we're looking at
2124 // this happens if the type is recursively defined
2125 inferred_outlives.iter().filter(|(_, span)| {
2126 !where_predicate.span.contains(*span)
2127 }),
2128 item.owner_id.def_id,
2129 region_def_id,
2130 ),
2131 &predicate.bounds,
2132 where_predicate.span,
2133 predicate.in_where_clause,
2134 )
2135 } else {
2136 continue;
2137 }
2138 }
2139 hir::WherePredicateKind::BoundPredicate(predicate) => {
2140 // FIXME we can also infer bounds on associated types,
2141 // and should check for them here.
2142 match predicate.bounded_ty.kind {
2143 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2144 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2145 continue;
2146 };
2147 let index = ty_generics.param_def_id_to_index[&def_id];
2148 (
2149 Self::lifetimes_outliving_type(
2150 // don't warn if the inferred span actually came from the predicate we're looking at
2151 // this happens if the type is recursively defined
2152 inferred_outlives.iter().filter(|(_, span)| {
2153 !where_predicate.span.contains(*span)
2154 }),
2155 index,
2156 ),
2157 &predicate.bounds,
2158 where_predicate.span,
2159 predicate.origin == PredicateOrigin::WhereClause,
2160 )
2161 }
2162 _ => {
2163 continue;
2164 }
2165 }
2166 }
2167 _ => continue,
2168 };
2169 if relevant_lifetimes.is_empty() {
2170 continue;
2171 }
2172
2173 let bound_spans = self.collect_outlives_bound_spans(
2174 cx.tcx,
2175 bounds,
2176 &relevant_lifetimes,
2177 predicate_span,
2178 item.owner_id.to_def_id(),
2179 );
2180 bound_count += bound_spans.len();
2181
2182 let drop_predicate = bound_spans.len() == bounds.len();
2183 if drop_predicate && in_where_clause {
2184 dropped_where_predicate_count += 1;
2185 }
2186
2187 if drop_predicate {
2188 if !in_where_clause {
2189 lint_spans.push(predicate_span);
2190 } else if predicate_span.from_expansion() {
2191 // Don't try to extend the span if it comes from a macro expansion.
2192 where_lint_spans.push(predicate_span);
2193 } else if i + 1 < num_where_predicates {
2194 // If all the bounds on a predicate were inferable and there are
2195 // further predicates, we want to eat the trailing comma.
2196 let next_predicate_span = generics.predicates[i + 1].span;
2197 if next_predicate_span.from_expansion() {
2198 where_lint_spans.push(predicate_span);
2199 } else {
2200 where_lint_spans
2201 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2202 }
2203 } else {
2204 // Eat the optional trailing comma after the last predicate.
2205 let where_span = generics.where_clause_span;
2206 if where_span.from_expansion() {
2207 where_lint_spans.push(predicate_span);
2208 } else {
2209 where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2210 }
2211 }
2212 } else {
2213 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2214 predicate_span.shrink_to_lo(),
2215 bounds,
2216 bound_spans,
2217 ));
2218 }
2219 }
2220
2221 // If all predicates in where clause are inferable, drop the entire clause
2222 // (including the `where`)
2223 if generics.has_where_clause_predicates
2224 && dropped_where_predicate_count == num_where_predicates
2225 {
2226 let where_span = generics.where_clause_span;
2227 // Extend the where clause back to the closing `>` of the
2228 // generics, except for tuple struct, which have the `where`
2229 // after the fields of the struct.
2230 let full_where_span =
2231 if let hir::ItemKind::Struct(_, _, hir::VariantData::Tuple(..)) = item.kind {
2232 where_span
2233 } else {
2234 generics.span.shrink_to_hi().to(where_span)
2235 };
2236
2237 // Due to macro expansions, the `full_where_span` might not actually contain all
2238 // predicates.
2239 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2240 lint_spans.push(full_where_span);
2241 } else {
2242 lint_spans.extend(where_lint_spans);
2243 }
2244 } else {
2245 lint_spans.extend(where_lint_spans);
2246 }
2247
2248 if !lint_spans.is_empty() {
2249 // Do not automatically delete outlives requirements from macros.
2250 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2251 {
2252 Applicability::MachineApplicable
2253 } else {
2254 Applicability::MaybeIncorrect
2255 };
2256
2257 // Due to macros, there might be several predicates with the same span
2258 // and we only want to suggest removing them once.
2259 lint_spans.sort_unstable();
2260 lint_spans.dedup();
2261
2262 cx.emit_span_lint(
2263 EXPLICIT_OUTLIVES_REQUIREMENTS,
2264 lint_spans.clone(),
2265 BuiltinExplicitOutlives {
2266 count: bound_count,
2267 suggestion: BuiltinExplicitOutlivesSuggestion {
2268 spans: lint_spans,
2269 applicability,
2270 },
2271 },
2272 );
2273 }
2274 }
2275 }
2276}
2277
2278declare_lint! {
2279 /// The `incomplete_features` lint detects unstable features enabled with
2280 /// the [`feature` attribute] that may function improperly in some or all
2281 /// cases.
2282 ///
2283 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2284 ///
2285 /// ### Example
2286 ///
2287 /// ```rust
2288 /// #![feature(generic_const_exprs)]
2289 /// ```
2290 ///
2291 /// {{produces}}
2292 ///
2293 /// ### Explanation
2294 ///
2295 /// Although it is encouraged for people to experiment with unstable
2296 /// features, some of them are known to be incomplete or faulty. This lint
2297 /// is a signal that the feature has not yet been finished, and you may
2298 /// experience problems with it.
2299 pub INCOMPLETE_FEATURES,
2300 Warn,
2301 "incomplete features that may function improperly in some or all cases"
2302}
2303
2304declare_lint! {
2305 /// The `internal_features` lint detects unstable features enabled with
2306 /// the [`feature` attribute] that are internal to the compiler or standard
2307 /// library.
2308 ///
2309 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2310 ///
2311 /// ### Example
2312 ///
2313 /// ```rust
2314 /// #![feature(rustc_attrs)]
2315 /// ```
2316 ///
2317 /// {{produces}}
2318 ///
2319 /// ### Explanation
2320 ///
2321 /// These features are an implementation detail of the compiler and standard
2322 /// library and are not supposed to be used in user code.
2323 pub INTERNAL_FEATURES,
2324 Warn,
2325 "internal features are not supposed to be used"
2326}
2327
2328declare_lint_pass!(
2329 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`.
2330 IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES]
2331);
2332
2333impl EarlyLintPass for IncompleteInternalFeatures {
2334 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2335 let features = cx.builder.features();
2336 let lang_features =
2337 features.enabled_lang_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2338 let lib_features =
2339 features.enabled_lib_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2340
2341 lang_features
2342 .chain(lib_features)
2343 .filter(|(name, _)| features.incomplete(*name) || features.internal(*name))
2344 .for_each(|(name, span)| {
2345 if features.incomplete(name) {
2346 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2347 .map(|n| BuiltinFeatureIssueNote { n });
2348 let help =
2349 HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
2350
2351 cx.emit_span_lint(
2352 INCOMPLETE_FEATURES,
2353 span,
2354 BuiltinIncompleteFeatures { name, note, help },
2355 );
2356 } else {
2357 cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name });
2358 }
2359 });
2360 }
2361}
2362
2363const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2364
2365declare_lint! {
2366 /// The `invalid_value` lint detects creating a value that is not valid,
2367 /// such as a null reference.
2368 ///
2369 /// ### Example
2370 ///
2371 /// ```rust,no_run
2372 /// # #![allow(unused)]
2373 /// unsafe {
2374 /// let x: &'static i32 = std::mem::zeroed();
2375 /// }
2376 /// ```
2377 ///
2378 /// {{produces}}
2379 ///
2380 /// ### Explanation
2381 ///
2382 /// In some situations the compiler can detect that the code is creating
2383 /// an invalid value, which should be avoided.
2384 ///
2385 /// In particular, this lint will check for improper use of
2386 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2387 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2388 /// lint should provide extra information to indicate what the problem is
2389 /// and a possible solution.
2390 ///
2391 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2392 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2393 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2394 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2395 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2396 pub INVALID_VALUE,
2397 Warn,
2398 "an invalid value is being created (such as a null reference)"
2399}
2400
2401declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2402
2403/// Information about why a type cannot be initialized this way.
2404pub struct InitError {
2405 pub(crate) message: String,
2406 /// Spans from struct fields and similar that can be obtained from just the type.
2407 pub(crate) span: Option<Span>,
2408 /// Used to report a trace through adts.
2409 pub(crate) nested: Option<Box<InitError>>,
2410}
2411impl InitError {
2412 fn spanned(self, span: Span) -> InitError {
2413 Self { span: Some(span), ..self }
2414 }
2415
2416 fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2417 assert!(self.nested.is_none());
2418 Self { nested: nested.into().map(Box::new), ..self }
2419 }
2420}
2421
2422impl<'a> From<&'a str> for InitError {
2423 fn from(s: &'a str) -> Self {
2424 s.to_owned().into()
2425 }
2426}
2427impl From<String> for InitError {
2428 fn from(message: String) -> Self {
2429 Self { message, span: None, nested: None }
2430 }
2431}
2432
2433impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2434 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2435 #[derive(Debug, Copy, Clone, PartialEq)]
2436 enum InitKind {
2437 Zeroed,
2438 Uninit,
2439 }
2440
2441 /// Test if this constant is all-0.
2442 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2443 use hir::ExprKind::*;
2444 use rustc_ast::LitKind::*;
2445 match &expr.kind {
2446 Lit(lit) => {
2447 if let Int(i, _) = lit.node {
2448 i == 0
2449 } else {
2450 false
2451 }
2452 }
2453 Tup(tup) => tup.iter().all(is_zero),
2454 _ => false,
2455 }
2456 }
2457
2458 /// Determine if this expression is a "dangerous initialization".
2459 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2460 if let hir::ExprKind::Call(path_expr, args) = expr.kind
2461 // Find calls to `mem::{uninitialized,zeroed}` methods.
2462 && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2463 {
2464 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2465 match cx.tcx.get_diagnostic_name(def_id) {
2466 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2467 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2468 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2469 _ => {}
2470 }
2471 } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2472 // Find problematic calls to `MaybeUninit::assume_init`.
2473 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2474 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2475 // This is a call to *some* method named `assume_init`.
2476 // See if the `self` parameter is one of the dangerous constructors.
2477 if let hir::ExprKind::Call(path_expr, _) = receiver.kind
2478 && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2479 {
2480 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2481 match cx.tcx.get_diagnostic_name(def_id) {
2482 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2483 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2484 _ => {}
2485 }
2486 }
2487 }
2488 }
2489
2490 None
2491 }
2492
2493 fn variant_find_init_error<'tcx>(
2494 cx: &LateContext<'tcx>,
2495 ty: Ty<'tcx>,
2496 variant: &VariantDef,
2497 args: ty::GenericArgsRef<'tcx>,
2498 descr: &str,
2499 init: InitKind,
2500 ) -> Option<InitError> {
2501 let mut field_err = variant.fields.iter().find_map(|field| {
2502 ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| {
2503 if !field.did.is_local() {
2504 err
2505 } else if err.span.is_none() {
2506 err.span = Some(cx.tcx.def_span(field.did));
2507 write!(&mut err.message, " (in this {descr})").unwrap();
2508 err
2509 } else {
2510 InitError::from(format!("in this {descr}"))
2511 .spanned(cx.tcx.def_span(field.did))
2512 .nested(err)
2513 }
2514 })
2515 });
2516
2517 // Check if this ADT has a constrained layout (like `NonNull` and friends).
2518 if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) {
2519 if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
2520 &layout.backend_repr
2521 {
2522 let range = scalar.valid_range(cx);
2523 let msg = if !range.contains(0) {
2524 "must be non-null"
2525 } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2526 // Prefer reporting on the fields over the entire struct for uninit,
2527 // as the information bubbles out and it may be unclear why the type can't
2528 // be null from just its outside signature.
2529
2530 "must be initialized inside its custom valid range"
2531 } else {
2532 return field_err;
2533 };
2534 if let Some(field_err) = &mut field_err {
2535 // Most of the time, if the field error is the same as the struct error,
2536 // the struct error only happens because of the field error.
2537 if field_err.message.contains(msg) {
2538 field_err.message = format!("because {}", field_err.message);
2539 }
2540 }
2541 return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2542 }
2543 }
2544 field_err
2545 }
2546
2547 /// Return `Some` only if we are sure this type does *not*
2548 /// allow zero initialization.
2549 fn ty_find_init_error<'tcx>(
2550 cx: &LateContext<'tcx>,
2551 ty: Ty<'tcx>,
2552 init: InitKind,
2553 ) -> Option<InitError> {
2554 let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty);
2555
2556 match ty.kind() {
2557 // Primitive types that don't like 0 as a value.
2558 ty::Ref(..) => Some("references must be non-null".into()),
2559 ty::Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2560 ty::FnPtr(..) => Some("function pointers must be non-null".into()),
2561 ty::Never => Some("the `!` type has no valid value".into()),
2562 ty::RawPtr(ty, _) if matches!(ty.kind(), ty::Dynamic(..)) =>
2563 // raw ptr to dyn Trait
2564 {
2565 Some("the vtable of a wide raw pointer must be non-null".into())
2566 }
2567 // Primitive types with other constraints.
2568 ty::Bool if init == InitKind::Uninit => {
2569 Some("booleans must be either `true` or `false`".into())
2570 }
2571 ty::Char if init == InitKind::Uninit => {
2572 Some("characters must be a valid Unicode codepoint".into())
2573 }
2574 ty::Int(_) | ty::Uint(_) if init == InitKind::Uninit => {
2575 Some("integers must be initialized".into())
2576 }
2577 ty::Float(_) if init == InitKind::Uninit => {
2578 Some("floats must be initialized".into())
2579 }
2580 ty::RawPtr(_, _) if init == InitKind::Uninit => {
2581 Some("raw pointers must be initialized".into())
2582 }
2583 // Recurse and checks for some compound types. (but not unions)
2584 ty::Adt(adt_def, args) if !adt_def.is_union() => {
2585 // Handle structs.
2586 if adt_def.is_struct() {
2587 return variant_find_init_error(
2588 cx,
2589 ty,
2590 adt_def.non_enum_variant(),
2591 args,
2592 "struct field",
2593 init,
2594 );
2595 }
2596 // And now, enums.
2597 let span = cx.tcx.def_span(adt_def.did());
2598 let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2599 let definitely_inhabited = match variant
2600 .inhabited_predicate(cx.tcx, *adt_def)
2601 .instantiate(cx.tcx, args)
2602 .apply_any_module(cx.tcx, cx.typing_env())
2603 {
2604 // Entirely skip uninhabited variants.
2605 Some(false) => return None,
2606 // Forward the others, but remember which ones are definitely inhabited.
2607 Some(true) => true,
2608 None => false,
2609 };
2610 Some((variant, definitely_inhabited))
2611 });
2612 let Some(first_variant) = potential_variants.next() else {
2613 return Some(
2614 InitError::from("enums with no inhabited variants have no valid value")
2615 .spanned(span),
2616 );
2617 };
2618 // So we have at least one potentially inhabited variant. Might we have two?
2619 let Some(second_variant) = potential_variants.next() else {
2620 // There is only one potentially inhabited variant. So we can recursively
2621 // check that variant!
2622 return variant_find_init_error(
2623 cx,
2624 ty,
2625 first_variant.0,
2626 args,
2627 "field of the only potentially inhabited enum variant",
2628 init,
2629 );
2630 };
2631 // So we have at least two potentially inhabited variants. If we can prove that
2632 // we have at least two *definitely* inhabited variants, then we have a tag and
2633 // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could
2634 // be okay, depending on which variant is encoded as zero tag.)
2635 if init == InitKind::Uninit {
2636 let definitely_inhabited = (first_variant.1 as usize)
2637 + (second_variant.1 as usize)
2638 + potential_variants
2639 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2640 .count();
2641 if definitely_inhabited > 1 {
2642 return Some(InitError::from(
2643 "enums with multiple inhabited variants have to be initialized to a variant",
2644 ).spanned(span));
2645 }
2646 }
2647 // We couldn't find anything wrong here.
2648 None
2649 }
2650 ty::Tuple(..) => {
2651 // Proceed recursively, check all fields.
2652 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2653 }
2654 ty::Array(ty, len) => {
2655 if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) {
2656 // Array length known at array non-empty -- recurse.
2657 ty_find_init_error(cx, *ty, init)
2658 } else {
2659 // Empty array or size unknown.
2660 None
2661 }
2662 }
2663 // Conservative fallback.
2664 _ => None,
2665 }
2666 }
2667
2668 if let Some(init) = is_dangerous_init(cx, expr) {
2669 // This conjures an instance of a type out of nothing,
2670 // using zeroed or uninitialized memory.
2671 // We are extremely conservative with what we warn about.
2672 let conjured_ty = cx.typeck_results().expr_ty(expr);
2673 if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2674 let msg = match init {
2675 InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2676 InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
2677 };
2678 let sub = BuiltinUnpermittedTypeInitSub { err };
2679 cx.emit_span_lint(
2680 INVALID_VALUE,
2681 expr.span,
2682 BuiltinUnpermittedTypeInit {
2683 msg,
2684 ty: conjured_ty,
2685 label: expr.span,
2686 sub,
2687 tcx: cx.tcx,
2688 },
2689 );
2690 }
2691 }
2692 }
2693}
2694
2695declare_lint! {
2696 /// The `deref_nullptr` lint detects when a null pointer is dereferenced,
2697 /// which causes [undefined behavior].
2698 ///
2699 /// ### Example
2700 ///
2701 /// ```rust,no_run
2702 /// # #![allow(unused)]
2703 /// use std::ptr;
2704 /// unsafe {
2705 /// let x = &*ptr::null::<i32>();
2706 /// let x = ptr::addr_of!(*ptr::null::<i32>());
2707 /// let x = *(0 as *const i32);
2708 /// }
2709 /// ```
2710 ///
2711 /// {{produces}}
2712 ///
2713 /// ### Explanation
2714 ///
2715 /// Dereferencing a null pointer causes [undefined behavior] if it is accessed
2716 /// (loaded from or stored to).
2717 ///
2718 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2719 pub DEREF_NULLPTR,
2720 Warn,
2721 "detects when an null pointer is dereferenced"
2722}
2723
2724declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
2725
2726impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
2727 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2728 /// test if expression is a null ptr
2729 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
2730 match &expr.kind {
2731 hir::ExprKind::Cast(expr, ty) => {
2732 if let hir::TyKind::Ptr(_) = ty.kind {
2733 return is_zero(expr) || is_null_ptr(cx, expr);
2734 }
2735 }
2736 // check for call to `core::ptr::null` or `core::ptr::null_mut`
2737 hir::ExprKind::Call(path, _) => {
2738 if let hir::ExprKind::Path(ref qpath) = path.kind
2739 && let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
2740 {
2741 return matches!(
2742 cx.tcx.get_diagnostic_name(def_id),
2743 Some(sym::ptr_null | sym::ptr_null_mut)
2744 );
2745 }
2746 }
2747 _ => {}
2748 }
2749 false
2750 }
2751
2752 /// test if expression is the literal `0`
2753 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2754 match &expr.kind {
2755 hir::ExprKind::Lit(lit) => {
2756 if let LitKind::Int(a, _) = lit.node {
2757 return a == 0;
2758 }
2759 }
2760 _ => {}
2761 }
2762 false
2763 }
2764
2765 if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind
2766 && is_null_ptr(cx, expr_deref)
2767 {
2768 if let hir::Node::Expr(hir::Expr {
2769 kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..),
2770 ..
2771 }) = cx.tcx.parent_hir_node(expr.hir_id)
2772 {
2773 // `&raw *NULL` is ok.
2774 } else {
2775 cx.emit_span_lint(
2776 DEREF_NULLPTR,
2777 expr.span,
2778 BuiltinDerefNullptr { label: expr.span },
2779 );
2780 }
2781 }
2782 }
2783}
2784
2785declare_lint! {
2786 /// The `named_asm_labels` lint detects the use of named labels in the
2787 /// inline `asm!` macro.
2788 ///
2789 /// ### Example
2790 ///
2791 /// ```rust,compile_fail
2792 /// # #![feature(asm_experimental_arch)]
2793 /// use std::arch::asm;
2794 ///
2795 /// fn main() {
2796 /// unsafe {
2797 /// asm!("foo: bar");
2798 /// }
2799 /// }
2800 /// ```
2801 ///
2802 /// {{produces}}
2803 ///
2804 /// ### Explanation
2805 ///
2806 /// LLVM is allowed to duplicate inline assembly blocks for any
2807 /// reason, for example when it is in a function that gets inlined. Because
2808 /// of this, GNU assembler [local labels] *must* be used instead of labels
2809 /// with a name. Using named labels might cause assembler or linker errors.
2810 ///
2811 /// See the explanation in [Rust By Example] for more details.
2812 ///
2813 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
2814 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2815 pub NAMED_ASM_LABELS,
2816 Deny,
2817 "named labels in inline assembly",
2818}
2819
2820declare_lint! {
2821 /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary
2822 /// digits in the inline `asm!` macro.
2823 ///
2824 /// ### Example
2825 ///
2826 /// ```rust,ignore (fails on non-x86_64)
2827 /// #![cfg(target_arch = "x86_64")]
2828 ///
2829 /// use std::arch::asm;
2830 ///
2831 /// fn main() {
2832 /// unsafe {
2833 /// asm!("0: jmp 0b");
2834 /// }
2835 /// }
2836 /// ```
2837 ///
2838 /// This will produce:
2839 ///
2840 /// ```text
2841 /// error: avoid using labels containing only the digits `0` and `1` in inline assembly
2842 /// --> <source>:7:15
2843 /// |
2844 /// 7 | asm!("0: jmp 0b");
2845 /// | ^ use a different label that doesn't start with `0` or `1`
2846 /// |
2847 /// = help: start numbering with `2` instead
2848 /// = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86
2849 /// = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information
2850 /// = note: `#[deny(binary_asm_labels)]` on by default
2851 /// ```
2852 ///
2853 /// ### Explanation
2854 ///
2855 /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary
2856 /// literal instead of a reference to the previous local label `0`. To work around this bug,
2857 /// don't use labels that could be confused with a binary literal.
2858 ///
2859 /// This behavior is platform-specific to x86 and x86-64.
2860 ///
2861 /// See the explanation in [Rust By Example] for more details.
2862 ///
2863 /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547
2864 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2865 pub BINARY_ASM_LABELS,
2866 Deny,
2867 "labels in inline assembly containing only 0 or 1 digits",
2868}
2869
2870declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]);
2871
2872#[derive(Debug, Clone, Copy, PartialEq, Eq)]
2873enum AsmLabelKind {
2874 Named,
2875 FormatArg,
2876 Binary,
2877}
2878
2879impl<'tcx> LateLintPass<'tcx> for AsmLabels {
2880 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
2881 if let hir::Expr {
2882 kind:
2883 hir::ExprKind::InlineAsm(hir::InlineAsm {
2884 asm_macro: asm_macro @ (AsmMacro::Asm | AsmMacro::NakedAsm),
2885 template_strs,
2886 options,
2887 ..
2888 }),
2889 ..
2890 } = expr
2891 {
2892 // Non-generic naked functions are allowed to define arbitrary
2893 // labels.
2894 if *asm_macro == AsmMacro::NakedAsm {
2895 let def_id = expr.hir_id.owner.def_id;
2896 if !cx.tcx.generics_of(def_id).requires_monomorphization(cx.tcx) {
2897 return;
2898 }
2899 }
2900
2901 // asm with `options(raw)` does not do replacement with `{` and `}`.
2902 let raw = options.contains(InlineAsmOptions::RAW);
2903
2904 for (template_sym, template_snippet, template_span) in template_strs.iter() {
2905 let template_str = template_sym.as_str();
2906 let find_label_span = |needle: &str| -> Option<Span> {
2907 if let Some(template_snippet) = template_snippet {
2908 let snippet = template_snippet.as_str();
2909 if let Some(pos) = snippet.find(needle) {
2910 let end = pos
2911 + snippet[pos..]
2912 .find(|c| c == ':')
2913 .unwrap_or(snippet[pos..].len() - 1);
2914 let inner = InnerSpan::new(pos, end);
2915 return Some(template_span.from_inner(inner));
2916 }
2917 }
2918
2919 None
2920 };
2921
2922 // diagnostics are emitted per-template, so this is created here as opposed to the outer loop
2923 let mut spans = Vec::new();
2924
2925 // A semicolon might not actually be specified as a separator for all targets, but
2926 // it seems like LLVM accepts it always.
2927 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
2928 for statement in statements {
2929 // If there's a comment, trim it from the statement
2930 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
2931
2932 // In this loop, if there is ever a non-label, no labels can come after it.
2933 let mut start_idx = 0;
2934 'label_loop: for (idx, _) in statement.match_indices(':') {
2935 let possible_label = statement[start_idx..idx].trim();
2936 let mut chars = possible_label.chars();
2937
2938 let Some(start) = chars.next() else {
2939 // Empty string means a leading ':' in this section, which is not a
2940 // label.
2941 break 'label_loop;
2942 };
2943
2944 // Whether a { bracket has been seen and its } hasn't been found yet.
2945 let mut in_bracket = false;
2946 let mut label_kind = AsmLabelKind::Named;
2947
2948 // A label can also start with a format arg, if it's not a raw asm block.
2949 if !raw && start == '{' {
2950 in_bracket = true;
2951 label_kind = AsmLabelKind::FormatArg;
2952 } else if matches!(start, '0' | '1') {
2953 // Binary labels have only the characters `0` or `1`.
2954 label_kind = AsmLabelKind::Binary;
2955 } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) {
2956 // Named labels start with ASCII letters, `.` or `_`.
2957 // anything else is not a label
2958 break 'label_loop;
2959 }
2960
2961 for c in chars {
2962 // Inside a template format arg, any character is permitted for the
2963 // puproses of label detection because we assume that it can be
2964 // replaced with some other valid label string later. `options(raw)`
2965 // asm blocks cannot have format args, so they are excluded from this
2966 // special case.
2967 if !raw && in_bracket {
2968 if c == '{' {
2969 // Nested brackets are not allowed in format args, this cannot
2970 // be a label.
2971 break 'label_loop;
2972 }
2973
2974 if c == '}' {
2975 // The end of the format arg.
2976 in_bracket = false;
2977 }
2978 } else if !raw && c == '{' {
2979 // Start of a format arg.
2980 in_bracket = true;
2981 label_kind = AsmLabelKind::FormatArg;
2982 } else {
2983 let can_continue = match label_kind {
2984 // Format arg labels are considered to be named labels for the purposes
2985 // of continuing outside of their {} pair.
2986 AsmLabelKind::Named | AsmLabelKind::FormatArg => {
2987 c.is_ascii_alphanumeric() || matches!(c, '_' | '$')
2988 }
2989 AsmLabelKind::Binary => matches!(c, '0' | '1'),
2990 };
2991
2992 if !can_continue {
2993 // The potential label had an invalid character inside it, it
2994 // cannot be a label.
2995 break 'label_loop;
2996 }
2997 }
2998 }
2999
3000 // If all characters passed the label checks, this is a label.
3001 spans.push((find_label_span(possible_label), label_kind));
3002 start_idx = idx + 1;
3003 }
3004 }
3005
3006 for (span, label_kind) in spans {
3007 let missing_precise_span = span.is_none();
3008 let span = span.unwrap_or(*template_span);
3009 match label_kind {
3010 AsmLabelKind::Named => {
3011 cx.emit_span_lint(
3012 NAMED_ASM_LABELS,
3013 span,
3014 InvalidAsmLabel::Named { missing_precise_span },
3015 );
3016 }
3017 AsmLabelKind::FormatArg => {
3018 cx.emit_span_lint(
3019 NAMED_ASM_LABELS,
3020 span,
3021 InvalidAsmLabel::FormatArg { missing_precise_span },
3022 );
3023 }
3024 // the binary asm issue only occurs when using intel syntax on x86 targets
3025 AsmLabelKind::Binary
3026 if !options.contains(InlineAsmOptions::ATT_SYNTAX)
3027 && matches!(
3028 cx.tcx.sess.asm_arch,
3029 Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None
3030 ) =>
3031 {
3032 cx.emit_span_lint(
3033 BINARY_ASM_LABELS,
3034 span,
3035 InvalidAsmLabel::Binary { missing_precise_span, span },
3036 )
3037 }
3038 // No lint on anything other than x86
3039 AsmLabelKind::Binary => (),
3040 };
3041 }
3042 }
3043 }
3044 }
3045}
3046
3047declare_lint! {
3048 /// The `special_module_name` lint detects module
3049 /// declarations for files that have a special meaning.
3050 ///
3051 /// ### Example
3052 ///
3053 /// ```rust,compile_fail
3054 /// mod lib;
3055 ///
3056 /// fn main() {
3057 /// lib::run();
3058 /// }
3059 /// ```
3060 ///
3061 /// {{produces}}
3062 ///
3063 /// ### Explanation
3064 ///
3065 /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3066 /// library or binary crate, so declaring them as modules
3067 /// will lead to miscompilation of the crate unless configured
3068 /// explicitly.
3069 ///
3070 /// To access a library from a binary target within the same crate,
3071 /// use `your_crate_name::` as the path instead of `lib::`:
3072 ///
3073 /// ```rust,compile_fail
3074 /// // bar/src/lib.rs
3075 /// fn run() {
3076 /// // ...
3077 /// }
3078 ///
3079 /// // bar/src/main.rs
3080 /// fn main() {
3081 /// bar::run();
3082 /// }
3083 /// ```
3084 ///
3085 /// Binary targets cannot be used as libraries and so declaring
3086 /// one as a module is not allowed.
3087 pub SPECIAL_MODULE_NAME,
3088 Warn,
3089 "module declarations for files with a special meaning",
3090}
3091
3092declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3093
3094impl EarlyLintPass for SpecialModuleName {
3095 fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3096 for item in &krate.items {
3097 if let ast::ItemKind::Mod(
3098 _,
3099 ident,
3100 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No { .. }, _),
3101 ) = item.kind
3102 {
3103 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3104 continue;
3105 }
3106
3107 match ident.name.as_str() {
3108 "lib" => cx.emit_span_lint(
3109 SPECIAL_MODULE_NAME,
3110 item.span,
3111 BuiltinSpecialModuleNameUsed::Lib,
3112 ),
3113 "main" => cx.emit_span_lint(
3114 SPECIAL_MODULE_NAME,
3115 item.span,
3116 BuiltinSpecialModuleNameUsed::Main,
3117 ),
3118 _ => continue,
3119 }
3120 }
3121 }
3122 }
3123}