rustc_metadata/locator.rs
1//! Finds crate binaries and loads their metadata
2//!
3//! Might I be the first to welcome you to a world of platform differences,
4//! version requirements, dependency graphs, conflicting desires, and fun! This
5//! is the major guts (along with metadata::creader) of the compiler for loading
6//! crates and resolving dependencies. Let's take a tour!
7//!
8//! # The problem
9//!
10//! Each invocation of the compiler is immediately concerned with one primary
11//! problem, to connect a set of crates to resolved crates on the filesystem.
12//! Concretely speaking, the compiler follows roughly these steps to get here:
13//!
14//! 1. Discover a set of `extern crate` statements.
15//! 2. Transform these directives into crate names. If the directive does not
16//! have an explicit name, then the identifier is the name.
17//! 3. For each of these crate names, find a corresponding crate on the
18//! filesystem.
19//!
20//! Sounds easy, right? Let's walk into some of the nuances.
21//!
22//! ## Transitive Dependencies
23//!
24//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
25//! on C. When we're compiling A, we primarily need to find and locate B, but we
26//! also end up needing to find and locate C as well.
27//!
28//! The reason for this is that any of B's types could be composed of C's types,
29//! any function in B could return a type from C, etc. To be able to guarantee
30//! that we can always type-check/translate any function, we have to have
31//! complete knowledge of the whole ecosystem, not just our immediate
32//! dependencies.
33//!
34//! So now as part of the "find a corresponding crate on the filesystem" step
35//! above, this involves also finding all crates for *all upstream
36//! dependencies*. This includes all dependencies transitively.
37//!
38//! ## Rlibs and Dylibs
39//!
40//! The compiler has two forms of intermediate dependencies. These are dubbed
41//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
42//! is a rustc-defined file format (currently just an ar archive) while a dylib
43//! is a platform-defined dynamic library. Each library has a metadata somewhere
44//! inside of it.
45//!
46//! A third kind of dependency is an rmeta file. These are metadata files and do
47//! not contain any code, etc. To a first approximation, these are treated in the
48//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
49//! gets priority (even if the rmeta file is newer). An rmeta file is only
50//! useful for checking a downstream crate, attempting to link one will cause an
51//! error.
52//!
53//! When translating a crate name to a crate on the filesystem, we all of a
54//! sudden need to take into account both rlibs and dylibs! Linkage later on may
55//! use either one of these files, as each has their pros/cons. The job of crate
56//! loading is to discover what's possible by finding all candidates.
57//!
58//! Most parts of this loading systems keep the dylib/rlib as just separate
59//! variables.
60//!
61//! ## Where to look?
62//!
63//! We can't exactly scan your whole hard drive when looking for dependencies,
64//! so we need to places to look. Currently the compiler will implicitly add the
65//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
66//! and otherwise all -L flags are added to the search paths.
67//!
68//! ## What criterion to select on?
69//!
70//! This is a pretty tricky area of loading crates. Given a file, how do we know
71//! whether it's the right crate? Currently, the rules look along these lines:
72//!
73//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
74//! filename have the right prefix/suffix?
75//! 2. Does the filename have the right prefix for the crate name being queried?
76//! This is filtering for files like `libfoo*.rlib` and such. If the crate
77//! we're looking for was originally compiled with -C extra-filename, the
78//! extra filename will be included in this prefix to reduce reading
79//! metadata from crates that would otherwise share our prefix.
80//! 3. Is the file an actual rust library? This is done by loading the metadata
81//! from the library and making sure it's actually there.
82//! 4. Does the name in the metadata agree with the name of the library?
83//! 5. Does the target in the metadata agree with the current target?
84//! 6. Does the SVH match? (more on this later)
85//!
86//! If the file answers `yes` to all these questions, then the file is
87//! considered as being *candidate* for being accepted. It is illegal to have
88//! more than two candidates as the compiler has no method by which to resolve
89//! this conflict. Additionally, rlib/dylib candidates are considered
90//! separately.
91//!
92//! After all this has happened, we have 1 or two files as candidates. These
93//! represent the rlib/dylib file found for a library, and they're returned as
94//! being found.
95//!
96//! ### What about versions?
97//!
98//! A lot of effort has been put forth to remove versioning from the compiler.
99//! There have been forays in the past to have versioning baked in, but it was
100//! largely always deemed insufficient to the point that it was recognized that
101//! it's probably something the compiler shouldn't do anyway due to its
102//! complicated nature and the state of the half-baked solutions.
103//!
104//! With a departure from versioning, the primary criterion for loading crates
105//! is just the name of a crate. If we stopped here, it would imply that you
106//! could never link two crates of the same name from different sources
107//! together, which is clearly a bad state to be in.
108//!
109//! To resolve this problem, we come to the next section!
110//!
111//! # Expert Mode
112//!
113//! A number of flags have been added to the compiler to solve the "version
114//! problem" in the previous section, as well as generally enabling more
115//! powerful usage of the crate loading system of the compiler. The goal of
116//! these flags and options are to enable third-party tools to drive the
117//! compiler with prior knowledge about how the world should look.
118//!
119//! ## The `--extern` flag
120//!
121//! The compiler accepts a flag of this form a number of times:
122//!
123//! ```text
124//! --extern crate-name=path/to/the/crate.rlib
125//! ```
126//!
127//! This flag is basically the following letter to the compiler:
128//!
129//! > Dear rustc,
130//! >
131//! > When you are attempting to load the immediate dependency `crate-name`, I
132//! > would like you to assume that the library is located at
133//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134//! > assume that the path I specified has the name `crate-name`.
135//!
136//! This flag basically overrides most matching logic except for validating that
137//! the file is indeed a rust library. The same `crate-name` can be specified
138//! twice to specify the rlib/dylib pair.
139//!
140//! ## Enabling "multiple versions"
141//!
142//! This basically boils down to the ability to specify arbitrary packages to
143//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144//! would look something like:
145//!
146//! ```compile_fail,E0463
147//! extern crate b1;
148//! extern crate b2;
149//!
150//! fn main() {}
151//! ```
152//!
153//! and the compiler would be invoked as:
154//!
155//! ```text
156//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157//! ```
158//!
159//! In this scenario there are two crates named `b` and the compiler must be
160//! manually driven to be informed where each crate is.
161//!
162//! ## Frobbing symbols
163//!
164//! One of the immediate problems with linking the same library together twice
165//! in the same problem is dealing with duplicate symbols. The primary way to
166//! deal with this in rustc is to add hashes to the end of each symbol.
167//!
168//! In order to force hashes to change between versions of a library, if
169//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170//! initially seed each symbol hash. The string `foo` is prepended to each
171//! string-to-hash to ensure that symbols change over time.
172//!
173//! ## Loading transitive dependencies
174//!
175//! Dealing with same-named-but-distinct crates is not just a local problem, but
176//! one that also needs to be dealt with for transitive dependencies. Note that
177//! in the letter above `--extern` flags only apply to the *local* set of
178//! dependencies, not the upstream transitive dependencies. Consider this
179//! dependency graph:
180//!
181//! ```text
182//! A.1 A.2
183//! | |
184//! | |
185//! B C
186//! \ /
187//! \ /
188//! D
189//! ```
190//!
191//! In this scenario, when we compile `D`, we need to be able to distinctly
192//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193//! transitive dependencies.
194//!
195//! Note that the key idea here is that `B` and `C` are both *already compiled*.
196//! That is, they have already resolved their dependencies. Due to unrelated
197//! technical reasons, when a library is compiled, it is only compatible with
198//! the *exact same* version of the upstream libraries it was compiled against.
199//! We use the "Strict Version Hash" to identify the exact copy of an upstream
200//! library.
201//!
202//! With this knowledge, we know that `B` and `C` will depend on `A` with
203//! different SVH values, so we crawl the normal `-L` paths looking for
204//! `liba*.rlib` and filter based on the contained SVH.
205//!
206//! In the end, this ends up not needing `--extern` to specify upstream
207//! transitive dependencies.
208//!
209//! # Wrapping up
210//!
211//! That's the general overview of loading crates in the compiler, but it's by
212//! no means all of the necessary details. Take a look at the rest of
213//! metadata::locator or metadata::creader for all the juicy details!
214
215use std::borrow::Cow;
216use std::io::{Result as IoResult, Write};
217use std::ops::Deref;
218use std::path::{Path, PathBuf};
219use std::{cmp, fmt};
220
221use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
222use rustc_data_structures::memmap::Mmap;
223use rustc_data_structures::owned_slice::{OwnedSlice, slice_owned};
224use rustc_data_structures::svh::Svh;
225use rustc_errors::{DiagArgValue, IntoDiagArg};
226use rustc_fs_util::try_canonicalize;
227use rustc_session::cstore::CrateSource;
228use rustc_session::filesearch::FileSearch;
229use rustc_session::search_paths::PathKind;
230use rustc_session::utils::CanonicalizedPath;
231use rustc_session::{Session, config};
232use rustc_span::{Span, Symbol};
233use rustc_target::spec::{Target, TargetTuple};
234use tempfile::Builder as TempFileBuilder;
235use tracing::{debug, info};
236
237use crate::creader::{Library, MetadataLoader};
238use crate::errors;
239use crate::rmeta::{METADATA_HEADER, MetadataBlob, rustc_version};
240
241#[derive(Clone)]
242pub(crate) struct CrateLocator<'a> {
243 // Immutable per-session configuration.
244 only_needs_metadata: bool,
245 sysroot: &'a Path,
246 metadata_loader: &'a dyn MetadataLoader,
247 cfg_version: &'static str,
248
249 // Immutable per-search configuration.
250 crate_name: Symbol,
251 exact_paths: Vec<CanonicalizedPath>,
252 pub hash: Option<Svh>,
253 extra_filename: Option<&'a str>,
254 target: &'a Target,
255 tuple: TargetTuple,
256 filesearch: &'a FileSearch,
257 is_proc_macro: bool,
258 path_kind: PathKind,
259}
260
261#[derive(Clone, Debug)]
262pub(crate) struct CratePaths {
263 pub(crate) name: Symbol,
264 source: CrateSource,
265}
266
267impl CratePaths {
268 pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
269 CratePaths { name, source }
270 }
271}
272
273#[derive(Copy, Clone, Debug, PartialEq)]
274pub(crate) enum CrateFlavor {
275 Rlib,
276 Rmeta,
277 Dylib,
278 SDylib,
279}
280
281impl fmt::Display for CrateFlavor {
282 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
283 f.write_str(match *self {
284 CrateFlavor::Rlib => "rlib",
285 CrateFlavor::Rmeta => "rmeta",
286 CrateFlavor::Dylib => "dylib",
287 CrateFlavor::SDylib => "sdylib",
288 })
289 }
290}
291
292impl IntoDiagArg for CrateFlavor {
293 fn into_diag_arg(self, _: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
294 match self {
295 CrateFlavor::Rlib => DiagArgValue::Str(Cow::Borrowed("rlib")),
296 CrateFlavor::Rmeta => DiagArgValue::Str(Cow::Borrowed("rmeta")),
297 CrateFlavor::Dylib => DiagArgValue::Str(Cow::Borrowed("dylib")),
298 CrateFlavor::SDylib => DiagArgValue::Str(Cow::Borrowed("sdylib")),
299 }
300 }
301}
302
303impl<'a> CrateLocator<'a> {
304 pub(crate) fn new(
305 sess: &'a Session,
306 metadata_loader: &'a dyn MetadataLoader,
307 crate_name: Symbol,
308 is_rlib: bool,
309 hash: Option<Svh>,
310 extra_filename: Option<&'a str>,
311 path_kind: PathKind,
312 ) -> CrateLocator<'a> {
313 let needs_object_code = sess.opts.output_types.should_codegen();
314 // If we're producing an rlib, then we don't need object code.
315 // Or, if we're not producing object code, then we don't need it either
316 // (e.g., if we're a cdylib but emitting just metadata).
317 let only_needs_metadata = is_rlib || !needs_object_code;
318
319 CrateLocator {
320 only_needs_metadata,
321 sysroot: sess.opts.sysroot.path(),
322 metadata_loader,
323 cfg_version: sess.cfg_version,
324 crate_name,
325 exact_paths: if hash.is_none() {
326 sess.opts
327 .externs
328 .get(crate_name.as_str())
329 .into_iter()
330 .filter_map(|entry| entry.files())
331 .flatten()
332 .cloned()
333 .collect()
334 } else {
335 // SVH being specified means this is a transitive dependency,
336 // so `--extern` options do not apply.
337 Vec::new()
338 },
339 hash,
340 extra_filename,
341 target: &sess.target,
342 tuple: sess.opts.target_triple.clone(),
343 filesearch: sess.target_filesearch(),
344 path_kind,
345 is_proc_macro: false,
346 }
347 }
348
349 pub(crate) fn for_proc_macro(&mut self, sess: &'a Session, path_kind: PathKind) {
350 self.is_proc_macro = true;
351 self.target = &sess.host;
352 self.tuple = TargetTuple::from_tuple(config::host_tuple());
353 self.filesearch = sess.host_filesearch();
354 self.path_kind = path_kind;
355 }
356
357 pub(crate) fn for_target_proc_macro(&mut self, sess: &'a Session, path_kind: PathKind) {
358 self.is_proc_macro = true;
359 self.target = &sess.target;
360 self.tuple = sess.opts.target_triple.clone();
361 self.filesearch = sess.target_filesearch();
362 self.path_kind = path_kind;
363 }
364
365 pub(crate) fn maybe_load_library_crate(
366 &self,
367 crate_rejections: &mut CrateRejections,
368 ) -> Result<Option<Library>, CrateError> {
369 if !self.exact_paths.is_empty() {
370 return self.find_commandline_library(crate_rejections);
371 }
372 let mut seen_paths = FxHashSet::default();
373 if let Some(extra_filename) = self.extra_filename
374 && let library @ Some(_) =
375 self.find_library_crate(crate_rejections, extra_filename, &mut seen_paths)?
376 {
377 return Ok(library);
378 }
379 self.find_library_crate(crate_rejections, "", &mut seen_paths)
380 }
381
382 fn find_library_crate(
383 &self,
384 crate_rejections: &mut CrateRejections,
385 extra_prefix: &str,
386 seen_paths: &mut FxHashSet<PathBuf>,
387 ) -> Result<Option<Library>, CrateError> {
388 let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
389 let rlib_prefix = rmeta_prefix;
390 let dylib_prefix =
391 &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
392 let staticlib_prefix =
393 &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
394 let interface_prefix = rmeta_prefix;
395
396 let rmeta_suffix = ".rmeta";
397 let rlib_suffix = ".rlib";
398 let dylib_suffix = &self.target.dll_suffix;
399 let staticlib_suffix = &self.target.staticlib_suffix;
400 let interface_suffix = ".rs";
401
402 let mut candidates: FxIndexMap<
403 _,
404 (FxIndexMap<_, _>, FxIndexMap<_, _>, FxIndexMap<_, _>, FxIndexMap<_, _>),
405 > = Default::default();
406
407 // First, find all possible candidate rlibs and dylibs purely based on
408 // the name of the files themselves. We're trying to match against an
409 // exact crate name and a possibly an exact hash.
410 //
411 // During this step, we can filter all found libraries based on the
412 // name and id found in the crate id (we ignore the path portion for
413 // filename matching), as well as the exact hash (if specified). If we
414 // end up having many candidates, we must look at the metadata to
415 // perform exact matches against hashes/crate ids. Note that opening up
416 // the metadata is where we do an exact match against the full contents
417 // of the crate id (path/name/id).
418 //
419 // The goal of this step is to look at as little metadata as possible.
420 // Unfortunately, the prefix-based matching sometimes is over-eager.
421 // E.g. if `rlib_suffix` is `libstd` it'll match the file
422 // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
423 // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
424 // given that `extra_filename` comes from the `-C extra-filename`
425 // option and thus can be anything, and the incorrect match will be
426 // handled safely in `extract_one`.
427 for search_path in self.filesearch.search_paths(self.path_kind) {
428 debug!("searching {}", search_path.dir.display());
429 let spf = &search_path.files;
430
431 let mut should_check_staticlibs = true;
432 for (prefix, suffix, kind) in [
433 (rlib_prefix.as_str(), rlib_suffix, CrateFlavor::Rlib),
434 (rmeta_prefix.as_str(), rmeta_suffix, CrateFlavor::Rmeta),
435 (dylib_prefix, dylib_suffix, CrateFlavor::Dylib),
436 (interface_prefix, interface_suffix, CrateFlavor::SDylib),
437 ] {
438 if prefix == staticlib_prefix && suffix == staticlib_suffix {
439 should_check_staticlibs = false;
440 }
441 if let Some(matches) = spf.query(prefix, suffix) {
442 for (hash, spf) in matches {
443 info!("lib candidate: {}", spf.path.display());
444
445 let (rlibs, rmetas, dylibs, interfaces) =
446 candidates.entry(hash).or_default();
447 {
448 // As a performance optimisation we canonicalize the path and skip
449 // ones we've already seen. This allows us to ignore crates
450 // we know are exactual equal to ones we've already found.
451 // Going to the same crate through different symlinks does not change the result.
452 let path = try_canonicalize(&spf.path)
453 .unwrap_or_else(|_| spf.path.to_path_buf());
454 if seen_paths.contains(&path) {
455 continue;
456 };
457 seen_paths.insert(path);
458 }
459 // Use the original path (potentially with unresolved symlinks),
460 // filesystem code should not care, but this is nicer for diagnostics.
461 let path = spf.path.to_path_buf();
462 match kind {
463 CrateFlavor::Rlib => rlibs.insert(path, search_path.kind),
464 CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind),
465 CrateFlavor::Dylib => dylibs.insert(path, search_path.kind),
466 CrateFlavor::SDylib => interfaces.insert(path, search_path.kind),
467 };
468 }
469 }
470 }
471 if let Some(static_matches) = should_check_staticlibs
472 .then(|| spf.query(staticlib_prefix, staticlib_suffix))
473 .flatten()
474 {
475 for (_, spf) in static_matches {
476 crate_rejections.via_kind.push(CrateMismatch {
477 path: spf.path.to_path_buf(),
478 got: "static".to_string(),
479 });
480 }
481 }
482 }
483
484 // We have now collected all known libraries into a set of candidates
485 // keyed of the filename hash listed. For each filename, we also have a
486 // list of rlibs/dylibs that apply. Here, we map each of these lists
487 // (per hash), to a Library candidate for returning.
488 //
489 // A Library candidate is created if the metadata for the set of
490 // libraries corresponds to the crate id and hash criteria that this
491 // search is being performed for.
492 let mut libraries = FxIndexMap::default();
493 for (_hash, (rlibs, rmetas, dylibs, interfaces)) in candidates {
494 if let Some((svh, lib)) =
495 self.extract_lib(crate_rejections, rlibs, rmetas, dylibs, interfaces)?
496 {
497 libraries.insert(svh, lib);
498 }
499 }
500
501 // Having now translated all relevant found hashes into libraries, see
502 // what we've got and figure out if we found multiple candidates for
503 // libraries or not.
504 match libraries.len() {
505 0 => Ok(None),
506 1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
507 _ => {
508 let mut candidates: Vec<PathBuf> = libraries
509 .into_values()
510 .map(|lib| lib.source.paths().next().unwrap().clone())
511 .collect();
512 candidates.sort();
513
514 Err(CrateError::MultipleCandidates(
515 self.crate_name,
516 // these are the same for all candidates
517 get_flavor_from_path(candidates.first().unwrap()),
518 candidates,
519 ))
520 }
521 }
522 }
523
524 fn extract_lib(
525 &self,
526 crate_rejections: &mut CrateRejections,
527 rlibs: FxIndexMap<PathBuf, PathKind>,
528 rmetas: FxIndexMap<PathBuf, PathKind>,
529 dylibs: FxIndexMap<PathBuf, PathKind>,
530 interfaces: FxIndexMap<PathBuf, PathKind>,
531 ) -> Result<Option<(Svh, Library)>, CrateError> {
532 let mut slot = None;
533 // Order here matters, rmeta should come first.
534 //
535 // Make sure there's at most one rlib and at most one dylib.
536 //
537 // See comment in `extract_one` below.
538 let rmeta = self.extract_one(crate_rejections, rmetas, CrateFlavor::Rmeta, &mut slot)?;
539 let rlib = self.extract_one(crate_rejections, rlibs, CrateFlavor::Rlib, &mut slot)?;
540 let sdylib_interface =
541 self.extract_one(crate_rejections, interfaces, CrateFlavor::SDylib, &mut slot)?;
542 let dylib = self.extract_one(crate_rejections, dylibs, CrateFlavor::Dylib, &mut slot)?;
543
544 if sdylib_interface.is_some() && dylib.is_none() {
545 return Err(CrateError::FullMetadataNotFound(self.crate_name, CrateFlavor::SDylib));
546 }
547
548 let source = CrateSource { rmeta, rlib, dylib, sdylib_interface };
549 Ok(slot.map(|(svh, metadata, _, _)| (svh, Library { source, metadata })))
550 }
551
552 fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
553 if flavor == CrateFlavor::Dylib && self.is_proc_macro {
554 return true;
555 }
556
557 if self.only_needs_metadata {
558 flavor == CrateFlavor::Rmeta
559 } else {
560 // we need all flavors (perhaps not true, but what we do for now)
561 true
562 }
563 }
564
565 // Attempts to extract *one* library from the set `m`. If the set has no
566 // elements, `None` is returned. If the set has more than one element, then
567 // the errors and notes are emitted about the set of libraries.
568 //
569 // With only one library in the set, this function will extract it, and then
570 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
571 // be read, it is assumed that the file isn't a valid rust library (no
572 // errors are emitted).
573 //
574 // The `PathBuf` in `slot` will only be used for diagnostic purposes.
575 fn extract_one(
576 &self,
577 crate_rejections: &mut CrateRejections,
578 m: FxIndexMap<PathBuf, PathKind>,
579 flavor: CrateFlavor,
580 slot: &mut Option<(Svh, MetadataBlob, PathBuf, CrateFlavor)>,
581 ) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
582 // If we are producing an rlib, and we've already loaded metadata, then
583 // we should not attempt to discover further crate sources (unless we're
584 // locating a proc macro; exact logic is in needs_crate_flavor). This means
585 // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
586 // the *unused* rlib, and by returning `None` here immediately we
587 // guarantee that we do indeed not use it.
588 //
589 // See also #68149 which provides more detail on why emitting the
590 // dependency on the rlib is a bad thing.
591 if slot.is_some() {
592 if m.is_empty() || !self.needs_crate_flavor(flavor) {
593 return Ok(None);
594 }
595 }
596
597 let mut ret: Option<(PathBuf, PathKind)> = None;
598 let mut err_data: Option<Vec<PathBuf>> = None;
599 for (lib, kind) in m {
600 info!("{} reading metadata from: {}", flavor, lib.display());
601 if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
602 // Empty files will cause get_metadata_section to fail. Rmeta
603 // files can be empty, for example with binaries (which can
604 // often appear with `cargo check` when checking a library as
605 // a unittest). We don't want to emit a user-visible warning
606 // in this case as it is not a real problem.
607 debug!("skipping empty file");
608 continue;
609 }
610 let (hash, metadata) = match get_metadata_section(
611 self.target,
612 flavor,
613 &lib,
614 self.metadata_loader,
615 self.cfg_version,
616 Some(self.crate_name),
617 ) {
618 Ok(blob) => {
619 if let Some(h) = self.crate_matches(crate_rejections, &blob, &lib) {
620 (h, blob)
621 } else {
622 info!("metadata mismatch");
623 continue;
624 }
625 }
626 Err(MetadataError::VersionMismatch { expected_version, found_version }) => {
627 // The file was present and created by the same compiler version, but we
628 // couldn't load it for some reason. Give a hard error instead of silently
629 // ignoring it, but only if we would have given an error anyway.
630 info!(
631 "Rejecting via version: expected {} got {}",
632 expected_version, found_version
633 );
634 crate_rejections
635 .via_version
636 .push(CrateMismatch { path: lib, got: found_version });
637 continue;
638 }
639 Err(MetadataError::LoadFailure(err)) => {
640 info!("no metadata found: {}", err);
641 // Metadata was loaded from interface file earlier.
642 if let Some((.., CrateFlavor::SDylib)) = slot {
643 ret = Some((lib, kind));
644 continue;
645 }
646 // The file was present and created by the same compiler version, but we
647 // couldn't load it for some reason. Give a hard error instead of silently
648 // ignoring it, but only if we would have given an error anyway.
649 crate_rejections.via_invalid.push(CrateMismatch { path: lib, got: err });
650 continue;
651 }
652 Err(err @ MetadataError::NotPresent(_)) => {
653 info!("no metadata found: {}", err);
654 continue;
655 }
656 };
657 // If we see multiple hashes, emit an error about duplicate candidates.
658 if slot.as_ref().is_some_and(|s| s.0 != hash) {
659 if let Some(candidates) = err_data {
660 return Err(CrateError::MultipleCandidates(
661 self.crate_name,
662 flavor,
663 candidates,
664 ));
665 }
666 err_data = Some(vec![slot.take().unwrap().2]);
667 }
668 if let Some(candidates) = &mut err_data {
669 candidates.push(lib);
670 continue;
671 }
672
673 // Ok so at this point we've determined that `(lib, kind)` above is
674 // a candidate crate to load, and that `slot` is either none (this
675 // is the first crate of its kind) or if some the previous path has
676 // the exact same hash (e.g., it's the exact same crate).
677 //
678 // In principle these two candidate crates are exactly the same so
679 // we can choose either of them to link. As a stupidly gross hack,
680 // however, we favor crate in the sysroot.
681 //
682 // You can find more info in rust-lang/rust#39518 and various linked
683 // issues, but the general gist is that during testing libstd the
684 // compilers has two candidates to choose from: one in the sysroot
685 // and one in the deps folder. These two crates are the exact same
686 // crate but if the compiler chooses the one in the deps folder
687 // it'll cause spurious errors on Windows.
688 //
689 // As a result, we favor the sysroot crate here. Note that the
690 // candidates are all canonicalized, so we canonicalize the sysroot
691 // as well.
692 if let Some((prev, _)) = &ret {
693 let sysroot = self.sysroot;
694 let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf());
695 if prev.starts_with(&sysroot) {
696 continue;
697 }
698 }
699
700 // We error eagerly here. If we're locating a rlib, then in theory the full metadata
701 // could still be in a (later resolved) dylib. In practice, if the rlib and dylib
702 // were produced in a way where one has full metadata and the other hasn't, it would
703 // mean that they were compiled using different compiler flags and probably also have
704 // a different SVH value.
705 if metadata.get_header().is_stub {
706 // `is_stub` should never be true for .rmeta files.
707 assert_ne!(flavor, CrateFlavor::Rmeta);
708
709 // Because rmeta files are resolved before rlib/dylib files, if this is a stub and
710 // we haven't found a slot already, it means that the full metadata is missing.
711 if slot.is_none() {
712 return Err(CrateError::FullMetadataNotFound(self.crate_name, flavor));
713 }
714 } else {
715 *slot = Some((hash, metadata, lib.clone(), flavor));
716 }
717 ret = Some((lib, kind));
718 }
719
720 if let Some(candidates) = err_data {
721 Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
722 } else {
723 Ok(ret)
724 }
725 }
726
727 fn crate_matches(
728 &self,
729 crate_rejections: &mut CrateRejections,
730 metadata: &MetadataBlob,
731 libpath: &Path,
732 ) -> Option<Svh> {
733 let header = metadata.get_header();
734 if header.is_proc_macro_crate != self.is_proc_macro {
735 info!(
736 "Rejecting via proc macro: expected {} got {}",
737 self.is_proc_macro, header.is_proc_macro_crate,
738 );
739 return None;
740 }
741
742 if self.exact_paths.is_empty() && self.crate_name != header.name {
743 info!("Rejecting via crate name");
744 return None;
745 }
746
747 if header.triple != self.tuple {
748 info!("Rejecting via crate triple: expected {} got {}", self.tuple, header.triple);
749 crate_rejections.via_triple.push(CrateMismatch {
750 path: libpath.to_path_buf(),
751 got: header.triple.to_string(),
752 });
753 return None;
754 }
755
756 let hash = header.hash;
757 if let Some(expected_hash) = self.hash {
758 if hash != expected_hash {
759 info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
760 crate_rejections
761 .via_hash
762 .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
763 return None;
764 }
765 }
766
767 Some(hash)
768 }
769
770 fn find_commandline_library(
771 &self,
772 crate_rejections: &mut CrateRejections,
773 ) -> Result<Option<Library>, CrateError> {
774 // First, filter out all libraries that look suspicious. We only accept
775 // files which actually exist that have the correct naming scheme for
776 // rlibs/dylibs.
777 let mut rlibs = FxIndexMap::default();
778 let mut rmetas = FxIndexMap::default();
779 let mut dylibs = FxIndexMap::default();
780 let mut sdylib_interfaces = FxIndexMap::default();
781 for loc in &self.exact_paths {
782 let loc_canon = loc.canonicalized();
783 let loc_orig = loc.original();
784 if !loc_canon.exists() {
785 return Err(CrateError::ExternLocationNotExist(self.crate_name, loc_orig.clone()));
786 }
787 if !loc_orig.is_file() {
788 return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
789 }
790 // Note to take care and match against the non-canonicalized name:
791 // some systems save build artifacts into content-addressed stores
792 // that do not preserve extensions, and then link to them using
793 // e.g. symbolic links. If we canonicalize too early, we resolve
794 // the symlink, the file type is lost and we might treat rlibs and
795 // rmetas as dylibs.
796 let Some(file) = loc_orig.file_name().and_then(|s| s.to_str()) else {
797 return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
798 };
799 if file.starts_with("lib") {
800 if file.ends_with(".rlib") {
801 rlibs.insert(loc_canon.clone(), PathKind::ExternFlag);
802 continue;
803 }
804 if file.ends_with(".rmeta") {
805 rmetas.insert(loc_canon.clone(), PathKind::ExternFlag);
806 continue;
807 }
808 if file.ends_with(".rs") {
809 sdylib_interfaces.insert(loc_canon.clone(), PathKind::ExternFlag);
810 }
811 }
812 let dll_prefix = self.target.dll_prefix.as_ref();
813 let dll_suffix = self.target.dll_suffix.as_ref();
814 if file.starts_with(dll_prefix) && file.ends_with(dll_suffix) {
815 dylibs.insert(loc_canon.clone(), PathKind::ExternFlag);
816 continue;
817 }
818 crate_rejections
819 .via_filename
820 .push(CrateMismatch { path: loc_orig.clone(), got: String::new() });
821 }
822
823 // Extract the dylib/rlib/rmeta triple.
824 self.extract_lib(crate_rejections, rlibs, rmetas, dylibs, sdylib_interfaces)
825 .map(|opt| opt.map(|(_, lib)| lib))
826 }
827
828 pub(crate) fn into_error(
829 self,
830 crate_rejections: CrateRejections,
831 dep_root: Option<CratePaths>,
832 ) -> CrateError {
833 CrateError::LocatorCombined(Box::new(CombinedLocatorError {
834 crate_name: self.crate_name,
835 dep_root,
836 triple: self.tuple,
837 dll_prefix: self.target.dll_prefix.to_string(),
838 dll_suffix: self.target.dll_suffix.to_string(),
839 crate_rejections,
840 }))
841 }
842}
843
844fn get_metadata_section<'p>(
845 target: &Target,
846 flavor: CrateFlavor,
847 filename: &'p Path,
848 loader: &dyn MetadataLoader,
849 cfg_version: &'static str,
850 crate_name: Option<Symbol>,
851) -> Result<MetadataBlob, MetadataError<'p>> {
852 if !filename.exists() {
853 return Err(MetadataError::NotPresent(filename));
854 }
855 let raw_bytes = match flavor {
856 CrateFlavor::Rlib => {
857 loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
858 }
859 CrateFlavor::SDylib => {
860 let compiler = std::env::current_exe().map_err(|_err| {
861 MetadataError::LoadFailure(
862 "couldn't obtain current compiler binary when loading sdylib interface"
863 .to_string(),
864 )
865 })?;
866
867 let tmp_path = match TempFileBuilder::new().prefix("rustc").tempdir() {
868 Ok(tmp_path) => tmp_path,
869 Err(error) => {
870 return Err(MetadataError::LoadFailure(format!(
871 "couldn't create a temp dir: {}",
872 error
873 )));
874 }
875 };
876
877 let crate_name = crate_name.unwrap();
878 debug!("compiling {}", filename.display());
879 // FIXME: This will need to be done either within the current compiler session or
880 // as a separate compiler session in the same process.
881 let res = std::process::Command::new(compiler)
882 .arg(&filename)
883 .arg("--emit=metadata")
884 .arg(format!("--crate-name={}", crate_name))
885 .arg(format!("--out-dir={}", tmp_path.path().display()))
886 .arg("-Zbuild-sdylib-interface")
887 .output()
888 .map_err(|err| {
889 MetadataError::LoadFailure(format!("couldn't compile interface: {}", err))
890 })?;
891
892 if !res.status.success() {
893 return Err(MetadataError::LoadFailure(format!(
894 "couldn't compile interface: {}",
895 std::str::from_utf8(&res.stderr).unwrap_or_default()
896 )));
897 }
898
899 // Load interface metadata instead of crate metadata.
900 let interface_metadata_name = format!("lib{}.rmeta", crate_name);
901 let rmeta_file = tmp_path.path().join(interface_metadata_name);
902 debug!("loading interface metadata from {}", rmeta_file.display());
903 let rmeta = get_rmeta_metadata_section(&rmeta_file)?;
904 let _ = std::fs::remove_file(rmeta_file);
905
906 rmeta
907 }
908 CrateFlavor::Dylib => {
909 let buf =
910 loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
911 let header_len = METADATA_HEADER.len();
912 // header + u64 length of data
913 let data_start = header_len + 8;
914
915 debug!("checking {} bytes of metadata-version stamp", header_len);
916 let header = &buf[..cmp::min(header_len, buf.len())];
917 if header != METADATA_HEADER {
918 return Err(MetadataError::LoadFailure(format!(
919 "invalid metadata version found: {}",
920 filename.display()
921 )));
922 }
923
924 // Length of the metadata - this allows linkers to pad the section if they want
925 let Ok(len_bytes) =
926 <[u8; 8]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())])
927 else {
928 return Err(MetadataError::LoadFailure(
929 "invalid metadata length found".to_string(),
930 ));
931 };
932 let metadata_len = u64::from_le_bytes(len_bytes) as usize;
933
934 // Header is okay -> inflate the actual metadata
935 buf.slice(|buf| &buf[data_start..(data_start + metadata_len)])
936 }
937 CrateFlavor::Rmeta => get_rmeta_metadata_section(filename)?,
938 };
939 let Ok(blob) = MetadataBlob::new(raw_bytes) else {
940 return Err(MetadataError::LoadFailure(format!(
941 "corrupt metadata encountered in {}",
942 filename.display()
943 )));
944 };
945 match blob.check_compatibility(cfg_version) {
946 Ok(()) => {
947 debug!("metadata blob read okay");
948 Ok(blob)
949 }
950 Err(None) => Err(MetadataError::LoadFailure(format!(
951 "invalid metadata version found: {}",
952 filename.display()
953 ))),
954 Err(Some(found_version)) => {
955 return Err(MetadataError::VersionMismatch {
956 expected_version: rustc_version(cfg_version),
957 found_version,
958 });
959 }
960 }
961}
962
963fn get_rmeta_metadata_section<'a, 'p>(filename: &'p Path) -> Result<OwnedSlice, MetadataError<'a>> {
964 // mmap the file, because only a small fraction of it is read.
965 let file = std::fs::File::open(filename).map_err(|_| {
966 MetadataError::LoadFailure(format!(
967 "failed to open rmeta metadata: '{}'",
968 filename.display()
969 ))
970 })?;
971 let mmap = unsafe { Mmap::map(file) };
972 let mmap = mmap.map_err(|_| {
973 MetadataError::LoadFailure(format!(
974 "failed to mmap rmeta metadata: '{}'",
975 filename.display()
976 ))
977 })?;
978
979 Ok(slice_owned(mmap, Deref::deref))
980}
981
982/// A diagnostic function for dumping crate metadata to an output stream.
983pub fn list_file_metadata(
984 target: &Target,
985 path: &Path,
986 metadata_loader: &dyn MetadataLoader,
987 out: &mut dyn Write,
988 ls_kinds: &[String],
989 cfg_version: &'static str,
990) -> IoResult<()> {
991 let flavor = get_flavor_from_path(path);
992 match get_metadata_section(target, flavor, path, metadata_loader, cfg_version, None) {
993 Ok(metadata) => metadata.list_crate_metadata(out, ls_kinds),
994 Err(msg) => write!(out, "{msg}\n"),
995 }
996}
997
998fn get_flavor_from_path(path: &Path) -> CrateFlavor {
999 let filename = path.file_name().unwrap().to_str().unwrap();
1000
1001 if filename.ends_with(".rlib") {
1002 CrateFlavor::Rlib
1003 } else if filename.ends_with(".rmeta") {
1004 CrateFlavor::Rmeta
1005 } else {
1006 CrateFlavor::Dylib
1007 }
1008}
1009
1010// ------------------------------------------ Error reporting -------------------------------------
1011
1012#[derive(Clone, Debug)]
1013struct CrateMismatch {
1014 path: PathBuf,
1015 got: String,
1016}
1017
1018#[derive(Clone, Debug, Default)]
1019pub(crate) struct CrateRejections {
1020 via_hash: Vec<CrateMismatch>,
1021 via_triple: Vec<CrateMismatch>,
1022 via_kind: Vec<CrateMismatch>,
1023 via_version: Vec<CrateMismatch>,
1024 via_filename: Vec<CrateMismatch>,
1025 via_invalid: Vec<CrateMismatch>,
1026}
1027
1028/// Candidate rejection reasons collected during crate search.
1029/// If no candidate is accepted, then these reasons are presented to the user,
1030/// otherwise they are ignored.
1031#[derive(Debug)]
1032pub(crate) struct CombinedLocatorError {
1033 crate_name: Symbol,
1034 dep_root: Option<CratePaths>,
1035 triple: TargetTuple,
1036 dll_prefix: String,
1037 dll_suffix: String,
1038 crate_rejections: CrateRejections,
1039}
1040
1041#[derive(Debug)]
1042pub(crate) enum CrateError {
1043 NonAsciiName(Symbol),
1044 ExternLocationNotExist(Symbol, PathBuf),
1045 ExternLocationNotFile(Symbol, PathBuf),
1046 MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
1047 FullMetadataNotFound(Symbol, CrateFlavor),
1048 SymbolConflictsCurrent(Symbol),
1049 StableCrateIdCollision(Symbol, Symbol),
1050 DlOpen(String, String),
1051 DlSym(String, String),
1052 LocatorCombined(Box<CombinedLocatorError>),
1053 NotFound(Symbol),
1054}
1055
1056enum MetadataError<'a> {
1057 /// The file was missing.
1058 NotPresent(&'a Path),
1059 /// The file was present and invalid.
1060 LoadFailure(String),
1061 /// The file was present, but compiled with a different rustc version.
1062 VersionMismatch { expected_version: String, found_version: String },
1063}
1064
1065impl fmt::Display for MetadataError<'_> {
1066 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1067 match self {
1068 MetadataError::NotPresent(filename) => {
1069 f.write_str(&format!("no such file: '{}'", filename.display()))
1070 }
1071 MetadataError::LoadFailure(msg) => f.write_str(msg),
1072 MetadataError::VersionMismatch { expected_version, found_version } => {
1073 f.write_str(&format!(
1074 "rustc version mismatch. expected {}, found {}",
1075 expected_version, found_version,
1076 ))
1077 }
1078 }
1079 }
1080}
1081
1082impl CrateError {
1083 pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
1084 let dcx = sess.dcx();
1085 match self {
1086 CrateError::NonAsciiName(crate_name) => {
1087 dcx.emit_err(errors::NonAsciiName { span, crate_name });
1088 }
1089 CrateError::ExternLocationNotExist(crate_name, loc) => {
1090 dcx.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
1091 }
1092 CrateError::ExternLocationNotFile(crate_name, loc) => {
1093 dcx.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
1094 }
1095 CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
1096 dcx.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
1097 }
1098 CrateError::FullMetadataNotFound(crate_name, flavor) => {
1099 dcx.emit_err(errors::FullMetadataNotFound { span, crate_name, flavor });
1100 }
1101 CrateError::SymbolConflictsCurrent(root_name) => {
1102 dcx.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
1103 }
1104 CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
1105 dcx.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
1106 }
1107 CrateError::DlOpen(path, err) | CrateError::DlSym(path, err) => {
1108 dcx.emit_err(errors::DlError { span, path, err });
1109 }
1110 CrateError::LocatorCombined(locator) => {
1111 let crate_name = locator.crate_name;
1112 let add_info = match &locator.dep_root {
1113 None => String::new(),
1114 Some(r) => format!(" which `{}` depends on", r.name),
1115 };
1116 if !locator.crate_rejections.via_filename.is_empty() {
1117 let mismatches = locator.crate_rejections.via_filename.iter();
1118 for CrateMismatch { path, .. } in mismatches {
1119 dcx.emit_err(errors::CrateLocationUnknownType { span, path, crate_name });
1120 dcx.emit_err(errors::LibFilenameForm {
1121 span,
1122 dll_prefix: &locator.dll_prefix,
1123 dll_suffix: &locator.dll_suffix,
1124 });
1125 }
1126 }
1127 let mut found_crates = String::new();
1128 if !locator.crate_rejections.via_hash.is_empty() {
1129 let mismatches = locator.crate_rejections.via_hash.iter();
1130 for CrateMismatch { path, .. } in mismatches {
1131 found_crates.push_str(&format!(
1132 "\ncrate `{}`: {}",
1133 crate_name,
1134 path.display()
1135 ));
1136 }
1137 if let Some(r) = locator.dep_root {
1138 for path in r.source.paths() {
1139 found_crates.push_str(&format!(
1140 "\ncrate `{}`: {}",
1141 r.name,
1142 path.display()
1143 ));
1144 }
1145 }
1146 dcx.emit_err(errors::NewerCrateVersion {
1147 span,
1148 crate_name,
1149 add_info,
1150 found_crates,
1151 });
1152 } else if !locator.crate_rejections.via_triple.is_empty() {
1153 let mismatches = locator.crate_rejections.via_triple.iter();
1154 for CrateMismatch { path, got } in mismatches {
1155 found_crates.push_str(&format!(
1156 "\ncrate `{}`, target triple {}: {}",
1157 crate_name,
1158 got,
1159 path.display(),
1160 ));
1161 }
1162 dcx.emit_err(errors::NoCrateWithTriple {
1163 span,
1164 crate_name,
1165 locator_triple: locator.triple.tuple(),
1166 add_info,
1167 found_crates,
1168 });
1169 } else if !locator.crate_rejections.via_kind.is_empty() {
1170 let mismatches = locator.crate_rejections.via_kind.iter();
1171 for CrateMismatch { path, .. } in mismatches {
1172 found_crates.push_str(&format!(
1173 "\ncrate `{}`: {}",
1174 crate_name,
1175 path.display()
1176 ));
1177 }
1178 dcx.emit_err(errors::FoundStaticlib {
1179 span,
1180 crate_name,
1181 add_info,
1182 found_crates,
1183 });
1184 } else if !locator.crate_rejections.via_version.is_empty() {
1185 let mismatches = locator.crate_rejections.via_version.iter();
1186 for CrateMismatch { path, got } in mismatches {
1187 found_crates.push_str(&format!(
1188 "\ncrate `{}` compiled by {}: {}",
1189 crate_name,
1190 got,
1191 path.display(),
1192 ));
1193 }
1194 dcx.emit_err(errors::IncompatibleRustc {
1195 span,
1196 crate_name,
1197 add_info,
1198 found_crates,
1199 rustc_version: rustc_version(sess.cfg_version),
1200 });
1201 } else if !locator.crate_rejections.via_invalid.is_empty() {
1202 let mut crate_rejections = Vec::new();
1203 for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
1204 crate_rejections.push(got);
1205 }
1206 dcx.emit_err(errors::InvalidMetadataFiles {
1207 span,
1208 crate_name,
1209 add_info,
1210 crate_rejections,
1211 });
1212 } else {
1213 let error = errors::CannotFindCrate {
1214 span,
1215 crate_name,
1216 add_info,
1217 missing_core,
1218 current_crate: sess
1219 .opts
1220 .crate_name
1221 .clone()
1222 .unwrap_or_else(|| "<unknown>".to_string()),
1223 is_nightly_build: sess.is_nightly_build(),
1224 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1225 locator_triple: locator.triple,
1226 is_ui_testing: sess.opts.unstable_opts.ui_testing,
1227 };
1228 // The diagnostic for missing core is very good, but it is followed by a lot of
1229 // other diagnostics that do not add information.
1230 if missing_core {
1231 dcx.emit_fatal(error);
1232 } else {
1233 dcx.emit_err(error);
1234 }
1235 }
1236 }
1237 CrateError::NotFound(crate_name) => {
1238 let error = errors::CannotFindCrate {
1239 span,
1240 crate_name,
1241 add_info: String::new(),
1242 missing_core,
1243 current_crate: sess
1244 .opts
1245 .crate_name
1246 .clone()
1247 .unwrap_or_else(|| "<unknown>".to_string()),
1248 is_nightly_build: sess.is_nightly_build(),
1249 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1250 locator_triple: sess.opts.target_triple.clone(),
1251 is_ui_testing: sess.opts.unstable_opts.ui_testing,
1252 };
1253 // The diagnostic for missing core is very good, but it is followed by a lot of
1254 // other diagnostics that do not add information.
1255 if missing_core {
1256 dcx.emit_fatal(error);
1257 } else {
1258 dcx.emit_err(error);
1259 }
1260 }
1261 }
1262 }
1263}