rustc_middle/ty/
sty.rs

1//! This module contains `TyKind` and its major components.
2
3#![allow(rustc::usage_of_ty_tykind)]
4
5use std::assert_matches::debug_assert_matches;
6use std::borrow::Cow;
7use std::ops::{ControlFlow, Range};
8
9use hir::def::{CtorKind, DefKind};
10use rustc_abi::{FIRST_VARIANT, FieldIdx, VariantIdx};
11use rustc_errors::{ErrorGuaranteed, MultiSpan};
12use rustc_hir as hir;
13use rustc_hir::LangItem;
14use rustc_hir::def_id::DefId;
15use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, extension};
16use rustc_span::{DUMMY_SP, Span, Symbol, sym};
17use rustc_type_ir::TyKind::*;
18use rustc_type_ir::solve::SizedTraitKind;
19use rustc_type_ir::walk::TypeWalker;
20use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, DynKind, TypeVisitableExt, elaborate};
21use tracing::instrument;
22use ty::util::IntTypeExt;
23
24use super::GenericParamDefKind;
25use crate::infer::canonical::Canonical;
26use crate::ty::InferTy::*;
27use crate::ty::{
28    self, AdtDef, BoundRegionKind, Discr, GenericArg, GenericArgs, GenericArgsRef, List, ParamEnv,
29    Region, Ty, TyCtxt, TypeFlags, TypeSuperVisitable, TypeVisitable, TypeVisitor, UintTy,
30};
31
32// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
33#[rustc_diagnostic_item = "TyKind"]
34pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>;
35pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>;
36pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>;
37pub type FnSig<'tcx> = ir::FnSig<TyCtxt<'tcx>>;
38pub type Binder<'tcx, T> = ir::Binder<TyCtxt<'tcx>, T>;
39pub type EarlyBinder<'tcx, T> = ir::EarlyBinder<TyCtxt<'tcx>, T>;
40pub type TypingMode<'tcx> = ir::TypingMode<TyCtxt<'tcx>>;
41
42pub trait Article {
43    fn article(&self) -> &'static str;
44}
45
46impl<'tcx> Article for TyKind<'tcx> {
47    /// Get the article ("a" or "an") to use with this type.
48    fn article(&self) -> &'static str {
49        match self {
50            Int(_) | Float(_) | Array(_, _) => "an",
51            Adt(def, _) if def.is_enum() => "an",
52            // This should never happen, but ICEing and causing the user's code
53            // to not compile felt too harsh.
54            Error(_) => "a",
55            _ => "a",
56        }
57    }
58}
59
60#[extension(pub trait CoroutineArgsExt<'tcx>)]
61impl<'tcx> ty::CoroutineArgs<TyCtxt<'tcx>> {
62    /// Coroutine has not been resumed yet.
63    const UNRESUMED: usize = 0;
64    /// Coroutine has returned or is completed.
65    const RETURNED: usize = 1;
66    /// Coroutine has been poisoned.
67    const POISONED: usize = 2;
68    /// Number of variants to reserve in coroutine state. Corresponds to
69    /// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
70    /// (end of a coroutine) states.
71    const RESERVED_VARIANTS: usize = 3;
72
73    const UNRESUMED_NAME: &'static str = "Unresumed";
74    const RETURNED_NAME: &'static str = "Returned";
75    const POISONED_NAME: &'static str = "Panicked";
76
77    /// The valid variant indices of this coroutine.
78    #[inline]
79    fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
80        // FIXME requires optimized MIR
81        FIRST_VARIANT..tcx.coroutine_layout(def_id, self.args).unwrap().variant_fields.next_index()
82    }
83
84    /// The discriminant for the given variant. Panics if the `variant_index` is
85    /// out of range.
86    #[inline]
87    fn discriminant_for_variant(
88        &self,
89        def_id: DefId,
90        tcx: TyCtxt<'tcx>,
91        variant_index: VariantIdx,
92    ) -> Discr<'tcx> {
93        // Coroutines don't support explicit discriminant values, so they are
94        // the same as the variant index.
95        assert!(self.variant_range(def_id, tcx).contains(&variant_index));
96        Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
97    }
98
99    /// The set of all discriminants for the coroutine, enumerated with their
100    /// variant indices.
101    #[inline]
102    fn discriminants(
103        self,
104        def_id: DefId,
105        tcx: TyCtxt<'tcx>,
106    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> {
107        self.variant_range(def_id, tcx).map(move |index| {
108            (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
109        })
110    }
111
112    /// Calls `f` with a reference to the name of the enumerator for the given
113    /// variant `v`.
114    fn variant_name(v: VariantIdx) -> Cow<'static, str> {
115        match v.as_usize() {
116            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
117            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
118            Self::POISONED => Cow::from(Self::POISONED_NAME),
119            _ => Cow::from(format!("Suspend{}", v.as_usize() - Self::RESERVED_VARIANTS)),
120        }
121    }
122
123    /// The type of the state discriminant used in the coroutine type.
124    #[inline]
125    fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
126        tcx.types.u32
127    }
128
129    /// This returns the types of the MIR locals which had to be stored across suspension points.
130    /// It is calculated in rustc_mir_transform::coroutine::StateTransform.
131    /// All the types here must be in the tuple in CoroutineInterior.
132    ///
133    /// The locals are grouped by their variant number. Note that some locals may
134    /// be repeated in multiple variants.
135    #[inline]
136    fn state_tys(
137        self,
138        def_id: DefId,
139        tcx: TyCtxt<'tcx>,
140    ) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>>> {
141        let layout = tcx.coroutine_layout(def_id, self.args).unwrap();
142        layout.variant_fields.iter().map(move |variant| {
143            variant.iter().map(move |field| {
144                if tcx.is_async_drop_in_place_coroutine(def_id) {
145                    layout.field_tys[*field].ty
146                } else {
147                    ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args)
148                }
149            })
150        })
151    }
152
153    /// This is the types of the fields of a coroutine which are not stored in a
154    /// variant.
155    #[inline]
156    fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> {
157        self.upvar_tys()
158    }
159}
160
161#[derive(Debug, Copy, Clone, HashStable, TypeFoldable, TypeVisitable)]
162pub enum UpvarArgs<'tcx> {
163    Closure(GenericArgsRef<'tcx>),
164    Coroutine(GenericArgsRef<'tcx>),
165    CoroutineClosure(GenericArgsRef<'tcx>),
166}
167
168impl<'tcx> UpvarArgs<'tcx> {
169    /// Returns an iterator over the list of types of captured paths by the closure/coroutine.
170    /// In case there was a type error in figuring out the types of the captured path, an
171    /// empty iterator is returned.
172    #[inline]
173    pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
174        let tupled_tys = match self {
175            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
176            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
177            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
178        };
179
180        match tupled_tys.kind() {
181            TyKind::Error(_) => ty::List::empty(),
182            TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
183            TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
184            ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
185        }
186    }
187
188    #[inline]
189    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
190        match self {
191            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
192            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
193            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
194        }
195    }
196}
197
198/// An inline const is modeled like
199/// ```ignore (illustrative)
200/// const InlineConst<'l0...'li, T0...Tj, R>: R;
201/// ```
202/// where:
203///
204/// - 'l0...'li and T0...Tj are the generic parameters
205///   inherited from the item that defined the inline const,
206/// - R represents the type of the constant.
207///
208/// When the inline const is instantiated, `R` is instantiated as the actual inferred
209/// type of the constant. The reason that `R` is represented as an extra type parameter
210/// is the same reason that [`ty::ClosureArgs`] have `CS` and `U` as type parameters:
211/// inline const can reference lifetimes that are internal to the creating function.
212#[derive(Copy, Clone, Debug)]
213pub struct InlineConstArgs<'tcx> {
214    /// Generic parameters from the enclosing item,
215    /// concatenated with the inferred type of the constant.
216    pub args: GenericArgsRef<'tcx>,
217}
218
219/// Struct returned by `split()`.
220pub struct InlineConstArgsParts<'tcx, T> {
221    pub parent_args: &'tcx [GenericArg<'tcx>],
222    pub ty: T,
223}
224
225impl<'tcx> InlineConstArgs<'tcx> {
226    /// Construct `InlineConstArgs` from `InlineConstArgsParts`.
227    pub fn new(
228        tcx: TyCtxt<'tcx>,
229        parts: InlineConstArgsParts<'tcx, Ty<'tcx>>,
230    ) -> InlineConstArgs<'tcx> {
231        InlineConstArgs {
232            args: tcx.mk_args_from_iter(
233                parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())),
234            ),
235        }
236    }
237
238    /// Divides the inline const args into their respective components.
239    /// The ordering assumed here must match that used by `InlineConstArgs::new` above.
240    fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> {
241        match self.args[..] {
242            [ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty },
243            _ => bug!("inline const args missing synthetics"),
244        }
245    }
246
247    /// Returns the generic parameters of the inline const's parent.
248    pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
249        self.split().parent_args
250    }
251
252    /// Returns the type of this inline const.
253    pub fn ty(self) -> Ty<'tcx> {
254        self.split().ty.expect_ty()
255    }
256}
257
258#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
259#[derive(HashStable)]
260pub enum BoundVariableKind {
261    Ty(BoundTyKind),
262    Region(BoundRegionKind),
263    Const,
264}
265
266impl BoundVariableKind {
267    pub fn expect_region(self) -> BoundRegionKind {
268        match self {
269            BoundVariableKind::Region(lt) => lt,
270            _ => bug!("expected a region, but found another kind"),
271        }
272    }
273
274    pub fn expect_ty(self) -> BoundTyKind {
275        match self {
276            BoundVariableKind::Ty(ty) => ty,
277            _ => bug!("expected a type, but found another kind"),
278        }
279    }
280
281    pub fn expect_const(self) {
282        match self {
283            BoundVariableKind::Const => (),
284            _ => bug!("expected a const, but found another kind"),
285        }
286    }
287}
288
289pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
290pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
291
292#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
293#[derive(HashStable)]
294pub struct ParamTy {
295    pub index: u32,
296    pub name: Symbol,
297}
298
299impl rustc_type_ir::inherent::ParamLike for ParamTy {
300    fn index(self) -> u32 {
301        self.index
302    }
303}
304
305impl<'tcx> ParamTy {
306    pub fn new(index: u32, name: Symbol) -> ParamTy {
307        ParamTy { index, name }
308    }
309
310    pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
311        ParamTy::new(def.index, def.name)
312    }
313
314    #[inline]
315    pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
316        Ty::new_param(tcx, self.index, self.name)
317    }
318
319    pub fn span_from_generics(self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span {
320        let generics = tcx.generics_of(item_with_generics);
321        let type_param = generics.type_param(self, tcx);
322        tcx.def_span(type_param.def_id)
323    }
324}
325
326#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
327#[derive(HashStable)]
328pub struct ParamConst {
329    pub index: u32,
330    pub name: Symbol,
331}
332
333impl rustc_type_ir::inherent::ParamLike for ParamConst {
334    fn index(self) -> u32 {
335        self.index
336    }
337}
338
339impl ParamConst {
340    pub fn new(index: u32, name: Symbol) -> ParamConst {
341        ParamConst { index, name }
342    }
343
344    pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
345        ParamConst::new(def.index, def.name)
346    }
347
348    #[instrument(level = "debug")]
349    pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
350        let mut candidates = env.caller_bounds().iter().filter_map(|clause| {
351            // `ConstArgHasType` are never desugared to be higher ranked.
352            match clause.kind().skip_binder() {
353                ty::ClauseKind::ConstArgHasType(param_ct, ty) => {
354                    assert!(!(param_ct, ty).has_escaping_bound_vars());
355
356                    match param_ct.kind() {
357                        ty::ConstKind::Param(param_ct) if param_ct.index == self.index => Some(ty),
358                        _ => None,
359                    }
360                }
361                _ => None,
362            }
363        });
364
365        // N.B. it may be tempting to fix ICEs by making this function return
366        // `Option<Ty<'tcx>>` instead of `Ty<'tcx>`; however, this is generally
367        // considered to be a bandaid solution, since it hides more important
368        // underlying issues with how we construct generics and predicates of
369        // items. It's advised to fix the underlying issue rather than trying
370        // to modify this function.
371        let ty = candidates.next().unwrap_or_else(|| {
372            bug!("cannot find `{self:?}` in param-env: {env:#?}");
373        });
374        assert!(
375            candidates.next().is_none(),
376            "did not expect duplicate `ConstParamHasTy` for `{self:?}` in param-env: {env:#?}"
377        );
378        ty
379    }
380}
381
382#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
383#[derive(HashStable)]
384pub struct BoundTy {
385    pub var: BoundVar,
386    pub kind: BoundTyKind,
387}
388
389impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundTy {
390    fn var(self) -> BoundVar {
391        self.var
392    }
393
394    fn assert_eq(self, var: ty::BoundVariableKind) {
395        assert_eq!(self.kind, var.expect_ty())
396    }
397}
398
399#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
400#[derive(HashStable)]
401pub enum BoundTyKind {
402    Anon,
403    Param(DefId),
404}
405
406/// Constructors for `Ty`
407impl<'tcx> Ty<'tcx> {
408    /// Avoid using this in favour of more specific `new_*` methods, where possible.
409    /// The more specific methods will often optimize their creation.
410    #[allow(rustc::usage_of_ty_tykind)]
411    #[inline]
412    fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> {
413        tcx.mk_ty_from_kind(st)
414    }
415
416    #[inline]
417    pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> {
418        Ty::new(tcx, TyKind::Infer(infer))
419    }
420
421    #[inline]
422    pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> {
423        // Use a pre-interned one when possible.
424        tcx.types
425            .ty_vars
426            .get(v.as_usize())
427            .copied()
428            .unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v))))
429    }
430
431    #[inline]
432    pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> {
433        Ty::new_infer(tcx, IntVar(v))
434    }
435
436    #[inline]
437    pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> {
438        Ty::new_infer(tcx, FloatVar(v))
439    }
440
441    #[inline]
442    pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
443        // Use a pre-interned one when possible.
444        tcx.types
445            .fresh_tys
446            .get(n as usize)
447            .copied()
448            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n)))
449    }
450
451    #[inline]
452    pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
453        // Use a pre-interned one when possible.
454        tcx.types
455            .fresh_int_tys
456            .get(n as usize)
457            .copied()
458            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n)))
459    }
460
461    #[inline]
462    pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
463        // Use a pre-interned one when possible.
464        tcx.types
465            .fresh_float_tys
466            .get(n as usize)
467            .copied()
468            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n)))
469    }
470
471    #[inline]
472    pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> {
473        Ty::new(tcx, Param(ParamTy { index, name }))
474    }
475
476    #[inline]
477    pub fn new_bound(
478        tcx: TyCtxt<'tcx>,
479        index: ty::DebruijnIndex,
480        bound_ty: ty::BoundTy,
481    ) -> Ty<'tcx> {
482        // Use a pre-interned one when possible.
483        if let ty::BoundTy { var, kind: ty::BoundTyKind::Anon } = bound_ty
484            && let Some(inner) = tcx.types.anon_bound_tys.get(index.as_usize())
485            && let Some(ty) = inner.get(var.as_usize()).copied()
486        {
487            ty
488        } else {
489            Ty::new(tcx, Bound(index, bound_ty))
490        }
491    }
492
493    #[inline]
494    pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Ty<'tcx> {
495        Ty::new(tcx, Placeholder(placeholder))
496    }
497
498    #[inline]
499    pub fn new_alias(
500        tcx: TyCtxt<'tcx>,
501        kind: ty::AliasTyKind,
502        alias_ty: ty::AliasTy<'tcx>,
503    ) -> Ty<'tcx> {
504        debug_assert_matches!(
505            (kind, tcx.def_kind(alias_ty.def_id)),
506            (ty::Opaque, DefKind::OpaqueTy)
507                | (ty::Projection | ty::Inherent, DefKind::AssocTy)
508                | (ty::Free, DefKind::TyAlias)
509        );
510        Ty::new(tcx, Alias(kind, alias_ty))
511    }
512
513    #[inline]
514    pub fn new_pat(tcx: TyCtxt<'tcx>, base: Ty<'tcx>, pat: ty::Pattern<'tcx>) -> Ty<'tcx> {
515        Ty::new(tcx, Pat(base, pat))
516    }
517
518    #[inline]
519    #[instrument(level = "debug", skip(tcx))]
520    pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
521        Ty::new_alias(tcx, ty::Opaque, AliasTy::new_from_args(tcx, def_id, args))
522    }
523
524    /// Constructs a `TyKind::Error` type with current `ErrorGuaranteed`
525    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> {
526        Ty::new(tcx, Error(guar))
527    }
528
529    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used.
530    #[track_caller]
531    pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
532        Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported")
533    }
534
535    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to
536    /// ensure it gets used.
537    #[track_caller]
538    pub fn new_error_with_message<S: Into<MultiSpan>>(
539        tcx: TyCtxt<'tcx>,
540        span: S,
541        msg: impl Into<Cow<'static, str>>,
542    ) -> Ty<'tcx> {
543        let reported = tcx.dcx().span_delayed_bug(span, msg);
544        Ty::new(tcx, Error(reported))
545    }
546
547    #[inline]
548    pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> {
549        use ty::IntTy::*;
550        match i {
551            Isize => tcx.types.isize,
552            I8 => tcx.types.i8,
553            I16 => tcx.types.i16,
554            I32 => tcx.types.i32,
555            I64 => tcx.types.i64,
556            I128 => tcx.types.i128,
557        }
558    }
559
560    #[inline]
561    pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> {
562        use ty::UintTy::*;
563        match ui {
564            Usize => tcx.types.usize,
565            U8 => tcx.types.u8,
566            U16 => tcx.types.u16,
567            U32 => tcx.types.u32,
568            U64 => tcx.types.u64,
569            U128 => tcx.types.u128,
570        }
571    }
572
573    #[inline]
574    pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> {
575        use ty::FloatTy::*;
576        match f {
577            F16 => tcx.types.f16,
578            F32 => tcx.types.f32,
579            F64 => tcx.types.f64,
580            F128 => tcx.types.f128,
581        }
582    }
583
584    #[inline]
585    pub fn new_ref(
586        tcx: TyCtxt<'tcx>,
587        r: Region<'tcx>,
588        ty: Ty<'tcx>,
589        mutbl: ty::Mutability,
590    ) -> Ty<'tcx> {
591        Ty::new(tcx, Ref(r, ty, mutbl))
592    }
593
594    #[inline]
595    pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
596        Ty::new_ref(tcx, r, ty, hir::Mutability::Mut)
597    }
598
599    #[inline]
600    pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
601        Ty::new_ref(tcx, r, ty, hir::Mutability::Not)
602    }
603
604    pub fn new_pinned_ref(
605        tcx: TyCtxt<'tcx>,
606        r: Region<'tcx>,
607        ty: Ty<'tcx>,
608        mutbl: ty::Mutability,
609    ) -> Ty<'tcx> {
610        let pin = tcx.adt_def(tcx.require_lang_item(LangItem::Pin, DUMMY_SP));
611        Ty::new_adt(tcx, pin, tcx.mk_args(&[Ty::new_ref(tcx, r, ty, mutbl).into()]))
612    }
613
614    #[inline]
615    pub fn new_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, mutbl: ty::Mutability) -> Ty<'tcx> {
616        Ty::new(tcx, ty::RawPtr(ty, mutbl))
617    }
618
619    #[inline]
620    pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
621        Ty::new_ptr(tcx, ty, hir::Mutability::Mut)
622    }
623
624    #[inline]
625    pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
626        Ty::new_ptr(tcx, ty, hir::Mutability::Not)
627    }
628
629    #[inline]
630    pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
631        tcx.debug_assert_args_compatible(def.did(), args);
632        if cfg!(debug_assertions) {
633            match tcx.def_kind(def.did()) {
634                DefKind::Struct | DefKind::Union | DefKind::Enum => {}
635                DefKind::Mod
636                | DefKind::Variant
637                | DefKind::Trait
638                | DefKind::TyAlias
639                | DefKind::ForeignTy
640                | DefKind::TraitAlias
641                | DefKind::AssocTy
642                | DefKind::TyParam
643                | DefKind::Fn
644                | DefKind::Const
645                | DefKind::ConstParam
646                | DefKind::Static { .. }
647                | DefKind::Ctor(..)
648                | DefKind::AssocFn
649                | DefKind::AssocConst
650                | DefKind::Macro(..)
651                | DefKind::ExternCrate
652                | DefKind::Use
653                | DefKind::ForeignMod
654                | DefKind::AnonConst
655                | DefKind::InlineConst
656                | DefKind::OpaqueTy
657                | DefKind::Field
658                | DefKind::LifetimeParam
659                | DefKind::GlobalAsm
660                | DefKind::Impl { .. }
661                | DefKind::Closure
662                | DefKind::SyntheticCoroutineBody => {
663                    bug!("not an adt: {def:?} ({:?})", tcx.def_kind(def.did()))
664                }
665            }
666        }
667        Ty::new(tcx, Adt(def, args))
668    }
669
670    #[inline]
671    pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
672        Ty::new(tcx, Foreign(def_id))
673    }
674
675    #[inline]
676    pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> {
677        Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n)))
678    }
679
680    #[inline]
681    pub fn new_array_with_const_len(
682        tcx: TyCtxt<'tcx>,
683        ty: Ty<'tcx>,
684        ct: ty::Const<'tcx>,
685    ) -> Ty<'tcx> {
686        Ty::new(tcx, Array(ty, ct))
687    }
688
689    #[inline]
690    pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
691        Ty::new(tcx, Slice(ty))
692    }
693
694    #[inline]
695    pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> {
696        if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) }
697    }
698
699    pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output
700    where
701        I: Iterator<Item = T>,
702        T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>,
703    {
704        T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts))
705    }
706
707    #[inline]
708    pub fn new_fn_def(
709        tcx: TyCtxt<'tcx>,
710        def_id: DefId,
711        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
712    ) -> Ty<'tcx> {
713        debug_assert_matches!(
714            tcx.def_kind(def_id),
715            DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn)
716        );
717        let args = tcx.check_and_mk_args(def_id, args);
718        Ty::new(tcx, FnDef(def_id, args))
719    }
720
721    #[inline]
722    pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> {
723        let (sig_tys, hdr) = fty.split();
724        Ty::new(tcx, FnPtr(sig_tys, hdr))
725    }
726
727    #[inline]
728    pub fn new_unsafe_binder(tcx: TyCtxt<'tcx>, b: Binder<'tcx, Ty<'tcx>>) -> Ty<'tcx> {
729        Ty::new(tcx, UnsafeBinder(b.into()))
730    }
731
732    #[inline]
733    pub fn new_dynamic(
734        tcx: TyCtxt<'tcx>,
735        obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
736        reg: ty::Region<'tcx>,
737        repr: DynKind,
738    ) -> Ty<'tcx> {
739        if cfg!(debug_assertions) {
740            let projection_count = obj
741                .projection_bounds()
742                .filter(|item| !tcx.generics_require_sized_self(item.item_def_id()))
743                .count();
744            let expected_count: usize = obj
745                .principal_def_id()
746                .into_iter()
747                .flat_map(|principal_def_id| {
748                    // NOTE: This should agree with `needed_associated_types` in
749                    // dyn trait lowering, or else we'll have ICEs.
750                    elaborate::supertraits(
751                        tcx,
752                        ty::Binder::dummy(ty::TraitRef::identity(tcx, principal_def_id)),
753                    )
754                    .map(|principal| {
755                        tcx.associated_items(principal.def_id())
756                            .in_definition_order()
757                            .filter(|item| item.is_type())
758                            .filter(|item| !item.is_impl_trait_in_trait())
759                            .filter(|item| !tcx.generics_require_sized_self(item.def_id))
760                            .count()
761                    })
762                })
763                .sum();
764            assert_eq!(
765                projection_count, expected_count,
766                "expected {obj:?} to have {expected_count} projections, \
767                but it has {projection_count}"
768            );
769        }
770        Ty::new(tcx, Dynamic(obj, reg, repr))
771    }
772
773    #[inline]
774    pub fn new_projection_from_args(
775        tcx: TyCtxt<'tcx>,
776        item_def_id: DefId,
777        args: ty::GenericArgsRef<'tcx>,
778    ) -> Ty<'tcx> {
779        Ty::new_alias(tcx, ty::Projection, AliasTy::new_from_args(tcx, item_def_id, args))
780    }
781
782    #[inline]
783    pub fn new_projection(
784        tcx: TyCtxt<'tcx>,
785        item_def_id: DefId,
786        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
787    ) -> Ty<'tcx> {
788        Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args))
789    }
790
791    #[inline]
792    pub fn new_closure(
793        tcx: TyCtxt<'tcx>,
794        def_id: DefId,
795        closure_args: GenericArgsRef<'tcx>,
796    ) -> Ty<'tcx> {
797        tcx.debug_assert_args_compatible(def_id, closure_args);
798        Ty::new(tcx, Closure(def_id, closure_args))
799    }
800
801    #[inline]
802    pub fn new_coroutine_closure(
803        tcx: TyCtxt<'tcx>,
804        def_id: DefId,
805        closure_args: GenericArgsRef<'tcx>,
806    ) -> Ty<'tcx> {
807        tcx.debug_assert_args_compatible(def_id, closure_args);
808        Ty::new(tcx, CoroutineClosure(def_id, closure_args))
809    }
810
811    #[inline]
812    pub fn new_coroutine(
813        tcx: TyCtxt<'tcx>,
814        def_id: DefId,
815        coroutine_args: GenericArgsRef<'tcx>,
816    ) -> Ty<'tcx> {
817        tcx.debug_assert_args_compatible(def_id, coroutine_args);
818        Ty::new(tcx, Coroutine(def_id, coroutine_args))
819    }
820
821    #[inline]
822    pub fn new_coroutine_witness(
823        tcx: TyCtxt<'tcx>,
824        def_id: DefId,
825        args: GenericArgsRef<'tcx>,
826    ) -> Ty<'tcx> {
827        if cfg!(debug_assertions) {
828            tcx.debug_assert_args_compatible(tcx.typeck_root_def_id(def_id), args);
829        }
830        Ty::new(tcx, CoroutineWitness(def_id, args))
831    }
832
833    pub fn new_coroutine_witness_for_coroutine(
834        tcx: TyCtxt<'tcx>,
835        def_id: DefId,
836        coroutine_args: GenericArgsRef<'tcx>,
837    ) -> Ty<'tcx> {
838        tcx.debug_assert_args_compatible(def_id, coroutine_args);
839        // HACK: Coroutine witness types are lifetime erased, so they
840        // never reference any lifetime args from the coroutine. We erase
841        // the regions here since we may get into situations where a
842        // coroutine is recursively contained within itself, leading to
843        // witness types that differ by region args. This means that
844        // cycle detection in fulfillment will not kick in, which leads
845        // to unnecessary overflows in async code. See the issue:
846        // <https://github.com/rust-lang/rust/issues/145151>.
847        let args =
848            ty::GenericArgs::for_item(tcx, tcx.typeck_root_def_id(def_id), |def, _| {
849                match def.kind {
850                    ty::GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
851                    ty::GenericParamDefKind::Type { .. }
852                    | ty::GenericParamDefKind::Const { .. } => coroutine_args[def.index as usize],
853                }
854            });
855        Ty::new_coroutine_witness(tcx, def_id, args)
856    }
857
858    // misc
859
860    #[inline]
861    pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
862        Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_)
863    }
864
865    #[inline]
866    pub fn new_diverging_default(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
867        if tcx.features().never_type_fallback() { tcx.types.never } else { tcx.types.unit }
868    }
869
870    // lang and diagnostic tys
871
872    fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> {
873        let adt_def = tcx.adt_def(wrapper_def_id);
874        let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind {
875            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(),
876            GenericParamDefKind::Type { has_default, .. } => {
877                if param.index == 0 {
878                    ty_param.into()
879                } else {
880                    assert!(has_default);
881                    tcx.type_of(param.def_id).instantiate(tcx, args).into()
882                }
883            }
884        });
885        Ty::new_adt(tcx, adt_def, args)
886    }
887
888    #[inline]
889    pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> {
890        let def_id = tcx.lang_items().get(item)?;
891        Some(Ty::new_generic_adt(tcx, def_id, ty))
892    }
893
894    #[inline]
895    pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> {
896        let def_id = tcx.get_diagnostic_item(name)?;
897        Some(Ty::new_generic_adt(tcx, def_id, ty))
898    }
899
900    #[inline]
901    pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
902        let def_id = tcx.require_lang_item(LangItem::OwnedBox, DUMMY_SP);
903        Ty::new_generic_adt(tcx, def_id, ty)
904    }
905
906    #[inline]
907    pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
908        let def_id = tcx.require_lang_item(LangItem::MaybeUninit, DUMMY_SP);
909        Ty::new_generic_adt(tcx, def_id, ty)
910    }
911
912    /// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes.
913    pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
914        let context_did = tcx.require_lang_item(LangItem::Context, DUMMY_SP);
915        let context_adt_ref = tcx.adt_def(context_did);
916        let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]);
917        let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args);
918        Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty)
919    }
920}
921
922impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
923    fn new_bool(tcx: TyCtxt<'tcx>) -> Self {
924        tcx.types.bool
925    }
926
927    fn new_u8(tcx: TyCtxt<'tcx>) -> Self {
928        tcx.types.u8
929    }
930
931    fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Self {
932        Ty::new_infer(tcx, infer)
933    }
934
935    fn new_var(tcx: TyCtxt<'tcx>, vid: ty::TyVid) -> Self {
936        Ty::new_var(tcx, vid)
937    }
938
939    fn new_param(tcx: TyCtxt<'tcx>, param: ty::ParamTy) -> Self {
940        Ty::new_param(tcx, param.index, param.name)
941    }
942
943    fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Self {
944        Ty::new_placeholder(tcx, placeholder)
945    }
946
947    fn new_bound(interner: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundTy) -> Self {
948        Ty::new_bound(interner, debruijn, var)
949    }
950
951    fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
952        Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
953    }
954
955    fn new_alias(
956        interner: TyCtxt<'tcx>,
957        kind: ty::AliasTyKind,
958        alias_ty: ty::AliasTy<'tcx>,
959    ) -> Self {
960        Ty::new_alias(interner, kind, alias_ty)
961    }
962
963    fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
964        Ty::new_error(interner, guar)
965    }
966
967    fn new_adt(
968        interner: TyCtxt<'tcx>,
969        adt_def: ty::AdtDef<'tcx>,
970        args: ty::GenericArgsRef<'tcx>,
971    ) -> Self {
972        Ty::new_adt(interner, adt_def, args)
973    }
974
975    fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self {
976        Ty::new_foreign(interner, def_id)
977    }
978
979    fn new_dynamic(
980        interner: TyCtxt<'tcx>,
981        preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
982        region: ty::Region<'tcx>,
983        kind: ty::DynKind,
984    ) -> Self {
985        Ty::new_dynamic(interner, preds, region, kind)
986    }
987
988    fn new_coroutine(
989        interner: TyCtxt<'tcx>,
990        def_id: DefId,
991        args: ty::GenericArgsRef<'tcx>,
992    ) -> Self {
993        Ty::new_coroutine(interner, def_id, args)
994    }
995
996    fn new_coroutine_closure(
997        interner: TyCtxt<'tcx>,
998        def_id: DefId,
999        args: ty::GenericArgsRef<'tcx>,
1000    ) -> Self {
1001        Ty::new_coroutine_closure(interner, def_id, args)
1002    }
1003
1004    fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
1005        Ty::new_closure(interner, def_id, args)
1006    }
1007
1008    fn new_coroutine_witness(
1009        interner: TyCtxt<'tcx>,
1010        def_id: DefId,
1011        args: ty::GenericArgsRef<'tcx>,
1012    ) -> Self {
1013        Ty::new_coroutine_witness(interner, def_id, args)
1014    }
1015
1016    fn new_coroutine_witness_for_coroutine(
1017        interner: TyCtxt<'tcx>,
1018        def_id: DefId,
1019        coroutine_args: ty::GenericArgsRef<'tcx>,
1020    ) -> Self {
1021        Ty::new_coroutine_witness_for_coroutine(interner, def_id, coroutine_args)
1022    }
1023
1024    fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self {
1025        Ty::new_ptr(interner, ty, mutbl)
1026    }
1027
1028    fn new_ref(
1029        interner: TyCtxt<'tcx>,
1030        region: ty::Region<'tcx>,
1031        ty: Self,
1032        mutbl: hir::Mutability,
1033    ) -> Self {
1034        Ty::new_ref(interner, region, ty, mutbl)
1035    }
1036
1037    fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self {
1038        Ty::new_array_with_const_len(interner, ty, len)
1039    }
1040
1041    fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self {
1042        Ty::new_slice(interner, ty)
1043    }
1044
1045    fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self {
1046        Ty::new_tup(interner, tys)
1047    }
1048
1049    fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output
1050    where
1051        It: Iterator<Item = T>,
1052        T: CollectAndApply<Self, Self>,
1053    {
1054        Ty::new_tup_from_iter(interner, iter)
1055    }
1056
1057    fn tuple_fields(self) -> &'tcx ty::List<Ty<'tcx>> {
1058        self.tuple_fields()
1059    }
1060
1061    fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1062        self.to_opt_closure_kind()
1063    }
1064
1065    fn from_closure_kind(interner: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Self {
1066        Ty::from_closure_kind(interner, kind)
1067    }
1068
1069    fn from_coroutine_closure_kind(
1070        interner: TyCtxt<'tcx>,
1071        kind: rustc_type_ir::ClosureKind,
1072    ) -> Self {
1073        Ty::from_coroutine_closure_kind(interner, kind)
1074    }
1075
1076    fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
1077        Ty::new_fn_def(interner, def_id, args)
1078    }
1079
1080    fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self {
1081        Ty::new_fn_ptr(interner, sig)
1082    }
1083
1084    fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self {
1085        Ty::new_pat(interner, ty, pat)
1086    }
1087
1088    fn new_unsafe_binder(interner: TyCtxt<'tcx>, ty: ty::Binder<'tcx, Ty<'tcx>>) -> Self {
1089        Ty::new_unsafe_binder(interner, ty)
1090    }
1091
1092    fn new_unit(interner: TyCtxt<'tcx>) -> Self {
1093        interner.types.unit
1094    }
1095
1096    fn new_usize(interner: TyCtxt<'tcx>) -> Self {
1097        interner.types.usize
1098    }
1099
1100    fn discriminant_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> {
1101        self.discriminant_ty(interner)
1102    }
1103
1104    fn has_unsafe_fields(self) -> bool {
1105        Ty::has_unsafe_fields(self)
1106    }
1107}
1108
1109/// Type utilities
1110impl<'tcx> Ty<'tcx> {
1111    // It would be nicer if this returned the value instead of a reference,
1112    // like how `Predicate::kind` and `Region::kind` do. (It would result in
1113    // many fewer subsequent dereferences.) But that gives a small but
1114    // noticeable performance hit. See #126069 for details.
1115    #[inline(always)]
1116    pub fn kind(self) -> &'tcx TyKind<'tcx> {
1117        self.0.0
1118    }
1119
1120    // FIXME(compiler-errors): Think about removing this.
1121    #[inline(always)]
1122    pub fn flags(self) -> TypeFlags {
1123        self.0.0.flags
1124    }
1125
1126    #[inline]
1127    pub fn is_unit(self) -> bool {
1128        match self.kind() {
1129            Tuple(tys) => tys.is_empty(),
1130            _ => false,
1131        }
1132    }
1133
1134    /// Check if type is an `usize`.
1135    #[inline]
1136    pub fn is_usize(self) -> bool {
1137        matches!(self.kind(), Uint(UintTy::Usize))
1138    }
1139
1140    /// Check if type is an `usize` or an integral type variable.
1141    #[inline]
1142    pub fn is_usize_like(self) -> bool {
1143        matches!(self.kind(), Uint(UintTy::Usize) | Infer(IntVar(_)))
1144    }
1145
1146    #[inline]
1147    pub fn is_never(self) -> bool {
1148        matches!(self.kind(), Never)
1149    }
1150
1151    #[inline]
1152    pub fn is_primitive(self) -> bool {
1153        matches!(self.kind(), Bool | Char | Int(_) | Uint(_) | Float(_))
1154    }
1155
1156    #[inline]
1157    pub fn is_adt(self) -> bool {
1158        matches!(self.kind(), Adt(..))
1159    }
1160
1161    #[inline]
1162    pub fn is_ref(self) -> bool {
1163        matches!(self.kind(), Ref(..))
1164    }
1165
1166    #[inline]
1167    pub fn is_ty_var(self) -> bool {
1168        matches!(self.kind(), Infer(TyVar(_)))
1169    }
1170
1171    #[inline]
1172    pub fn ty_vid(self) -> Option<ty::TyVid> {
1173        match self.kind() {
1174            &Infer(TyVar(vid)) => Some(vid),
1175            _ => None,
1176        }
1177    }
1178
1179    #[inline]
1180    pub fn is_ty_or_numeric_infer(self) -> bool {
1181        matches!(self.kind(), Infer(_))
1182    }
1183
1184    #[inline]
1185    pub fn is_phantom_data(self) -> bool {
1186        if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
1187    }
1188
1189    #[inline]
1190    pub fn is_bool(self) -> bool {
1191        *self.kind() == Bool
1192    }
1193
1194    /// Returns `true` if this type is a `str`.
1195    #[inline]
1196    pub fn is_str(self) -> bool {
1197        *self.kind() == Str
1198    }
1199
1200    #[inline]
1201    pub fn is_param(self, index: u32) -> bool {
1202        match self.kind() {
1203            ty::Param(data) => data.index == index,
1204            _ => false,
1205        }
1206    }
1207
1208    #[inline]
1209    pub fn is_slice(self) -> bool {
1210        matches!(self.kind(), Slice(_))
1211    }
1212
1213    #[inline]
1214    pub fn is_array_slice(self) -> bool {
1215        match self.kind() {
1216            Slice(_) => true,
1217            ty::RawPtr(ty, _) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
1218            _ => false,
1219        }
1220    }
1221
1222    #[inline]
1223    pub fn is_array(self) -> bool {
1224        matches!(self.kind(), Array(..))
1225    }
1226
1227    #[inline]
1228    pub fn is_simd(self) -> bool {
1229        match self.kind() {
1230            Adt(def, _) => def.repr().simd(),
1231            _ => false,
1232        }
1233    }
1234
1235    pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1236        match self.kind() {
1237            Array(ty, _) | Slice(ty) => *ty,
1238            Str => tcx.types.u8,
1239            _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
1240        }
1241    }
1242
1243    pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
1244        let Adt(def, args) = self.kind() else {
1245            bug!("`simd_size_and_type` called on invalid type")
1246        };
1247        assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
1248        let variant = def.non_enum_variant();
1249        assert_eq!(variant.fields.len(), 1);
1250        let field_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);
1251        let Array(f0_elem_ty, f0_len) = field_ty.kind() else {
1252            bug!("Simd type has non-array field type {field_ty:?}")
1253        };
1254        // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
1255        // The way we evaluate the `N` in `[T; N]` here only works since we use
1256        // `simd_size_and_type` post-monomorphization. It will probably start to ICE
1257        // if we use it in generic code. See the `simd-array-trait` ui test.
1258        (
1259            f0_len
1260                .try_to_target_usize(tcx)
1261                .expect("expected SIMD field to have definite array size"),
1262            *f0_elem_ty,
1263        )
1264    }
1265
1266    #[inline]
1267    pub fn is_mutable_ptr(self) -> bool {
1268        matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut))
1269    }
1270
1271    /// Get the mutability of the reference or `None` when not a reference
1272    #[inline]
1273    pub fn ref_mutability(self) -> Option<hir::Mutability> {
1274        match self.kind() {
1275            Ref(_, _, mutability) => Some(*mutability),
1276            _ => None,
1277        }
1278    }
1279
1280    #[inline]
1281    pub fn is_raw_ptr(self) -> bool {
1282        matches!(self.kind(), RawPtr(_, _))
1283    }
1284
1285    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
1286    /// `Box` is *not* considered a pointer here!
1287    #[inline]
1288    pub fn is_any_ptr(self) -> bool {
1289        self.is_ref() || self.is_raw_ptr() || self.is_fn_ptr()
1290    }
1291
1292    #[inline]
1293    pub fn is_box(self) -> bool {
1294        match self.kind() {
1295            Adt(def, _) => def.is_box(),
1296            _ => false,
1297        }
1298    }
1299
1300    /// Tests whether this is a Box definitely using the global allocator.
1301    ///
1302    /// If the allocator is still generic, the answer is `false`, but it may
1303    /// later turn out that it does use the global allocator.
1304    #[inline]
1305    pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
1306        match self.kind() {
1307            Adt(def, args) if def.is_box() => {
1308                let Some(alloc) = args.get(1) else {
1309                    // Single-argument Box is always global. (for "minicore" tests)
1310                    return true;
1311                };
1312                alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
1313                    tcx.is_lang_item(alloc_adt.did(), LangItem::GlobalAlloc)
1314                })
1315            }
1316            _ => false,
1317        }
1318    }
1319
1320    pub fn boxed_ty(self) -> Option<Ty<'tcx>> {
1321        match self.kind() {
1322            Adt(def, args) if def.is_box() => Some(args.type_at(0)),
1323            _ => None,
1324        }
1325    }
1326
1327    /// Panics if called on any type other than `Box<T>`.
1328    pub fn expect_boxed_ty(self) -> Ty<'tcx> {
1329        self.boxed_ty()
1330            .unwrap_or_else(|| bug!("`expect_boxed_ty` is called on non-box type {:?}", self))
1331    }
1332
1333    /// A scalar type is one that denotes an atomic datum, with no sub-components.
1334    /// (A RawPtr is scalar because it represents a non-managed pointer, so its
1335    /// contents are abstract to rustc.)
1336    #[inline]
1337    pub fn is_scalar(self) -> bool {
1338        matches!(
1339            self.kind(),
1340            Bool | Char
1341                | Int(_)
1342                | Float(_)
1343                | Uint(_)
1344                | FnDef(..)
1345                | FnPtr(..)
1346                | RawPtr(_, _)
1347                | Infer(IntVar(_) | FloatVar(_))
1348        )
1349    }
1350
1351    /// Returns `true` if this type is a floating point type.
1352    #[inline]
1353    pub fn is_floating_point(self) -> bool {
1354        matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
1355    }
1356
1357    #[inline]
1358    pub fn is_trait(self) -> bool {
1359        matches!(self.kind(), Dynamic(_, _, ty::Dyn))
1360    }
1361
1362    #[inline]
1363    pub fn is_enum(self) -> bool {
1364        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
1365    }
1366
1367    #[inline]
1368    pub fn is_union(self) -> bool {
1369        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
1370    }
1371
1372    #[inline]
1373    pub fn is_closure(self) -> bool {
1374        matches!(self.kind(), Closure(..))
1375    }
1376
1377    #[inline]
1378    pub fn is_coroutine(self) -> bool {
1379        matches!(self.kind(), Coroutine(..))
1380    }
1381
1382    #[inline]
1383    pub fn is_coroutine_closure(self) -> bool {
1384        matches!(self.kind(), CoroutineClosure(..))
1385    }
1386
1387    #[inline]
1388    pub fn is_integral(self) -> bool {
1389        matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
1390    }
1391
1392    #[inline]
1393    pub fn is_fresh_ty(self) -> bool {
1394        matches!(self.kind(), Infer(FreshTy(_)))
1395    }
1396
1397    #[inline]
1398    pub fn is_fresh(self) -> bool {
1399        matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
1400    }
1401
1402    #[inline]
1403    pub fn is_char(self) -> bool {
1404        matches!(self.kind(), Char)
1405    }
1406
1407    #[inline]
1408    pub fn is_numeric(self) -> bool {
1409        self.is_integral() || self.is_floating_point()
1410    }
1411
1412    #[inline]
1413    pub fn is_signed(self) -> bool {
1414        matches!(self.kind(), Int(_))
1415    }
1416
1417    #[inline]
1418    pub fn is_ptr_sized_integral(self) -> bool {
1419        matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
1420    }
1421
1422    #[inline]
1423    pub fn has_concrete_skeleton(self) -> bool {
1424        !matches!(self.kind(), Param(_) | Infer(_) | Error(_))
1425    }
1426
1427    /// Checks whether a type recursively contains another type
1428    ///
1429    /// Example: `Option<()>` contains `()`
1430    pub fn contains(self, other: Ty<'tcx>) -> bool {
1431        struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
1432
1433        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
1434            type Result = ControlFlow<()>;
1435
1436            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1437                if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
1438            }
1439        }
1440
1441        let cf = self.visit_with(&mut ContainsTyVisitor(other));
1442        cf.is_break()
1443    }
1444
1445    /// Checks whether a type recursively contains any closure
1446    ///
1447    /// Example: `Option<{closure@file.rs:4:20}>` returns true
1448    pub fn contains_closure(self) -> bool {
1449        struct ContainsClosureVisitor;
1450
1451        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
1452            type Result = ControlFlow<()>;
1453
1454            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1455                if let ty::Closure(..) = t.kind() {
1456                    ControlFlow::Break(())
1457                } else {
1458                    t.super_visit_with(self)
1459                }
1460            }
1461        }
1462
1463        let cf = self.visit_with(&mut ContainsClosureVisitor);
1464        cf.is_break()
1465    }
1466
1467    /// Returns the deepest `async_drop_in_place::{closure}` implementation.
1468    ///
1469    /// `async_drop_in_place<T>::{closure}`, when T is a coroutine, is a proxy-impl
1470    /// to call async drop poll from impl coroutine.
1471    pub fn find_async_drop_impl_coroutine<F: FnMut(Ty<'tcx>)>(
1472        self,
1473        tcx: TyCtxt<'tcx>,
1474        mut f: F,
1475    ) -> Ty<'tcx> {
1476        assert!(self.is_coroutine());
1477        let mut cor_ty = self;
1478        let mut ty = cor_ty;
1479        loop {
1480            if let ty::Coroutine(def_id, args) = ty.kind() {
1481                cor_ty = ty;
1482                f(ty);
1483                if tcx.is_async_drop_in_place_coroutine(*def_id) {
1484                    ty = args.first().unwrap().expect_ty();
1485                    continue;
1486                } else {
1487                    return cor_ty;
1488                }
1489            } else {
1490                return cor_ty;
1491            }
1492        }
1493    }
1494
1495    /// Returns the type of `*ty`.
1496    ///
1497    /// The parameter `explicit` indicates if this is an *explicit* dereference.
1498    /// Some types -- notably raw ptrs -- can only be dereferenced explicitly.
1499    pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> {
1500        match *self.kind() {
1501            _ if let Some(boxed) = self.boxed_ty() => Some(boxed),
1502            Ref(_, ty, _) => Some(ty),
1503            RawPtr(ty, _) if explicit => Some(ty),
1504            _ => None,
1505        }
1506    }
1507
1508    /// Returns the type of `ty[i]`.
1509    pub fn builtin_index(self) -> Option<Ty<'tcx>> {
1510        match self.kind() {
1511            Array(ty, _) | Slice(ty) => Some(*ty),
1512            _ => None,
1513        }
1514    }
1515
1516    #[tracing::instrument(level = "trace", skip(tcx))]
1517    pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
1518        self.kind().fn_sig(tcx)
1519    }
1520
1521    #[inline]
1522    pub fn is_fn(self) -> bool {
1523        matches!(self.kind(), FnDef(..) | FnPtr(..))
1524    }
1525
1526    #[inline]
1527    pub fn is_fn_ptr(self) -> bool {
1528        matches!(self.kind(), FnPtr(..))
1529    }
1530
1531    #[inline]
1532    pub fn is_impl_trait(self) -> bool {
1533        matches!(self.kind(), Alias(ty::Opaque, ..))
1534    }
1535
1536    #[inline]
1537    pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
1538        match self.kind() {
1539            Adt(adt, _) => Some(*adt),
1540            _ => None,
1541        }
1542    }
1543
1544    /// Iterates over tuple fields.
1545    /// Panics when called on anything but a tuple.
1546    #[inline]
1547    pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
1548        match self.kind() {
1549            Tuple(args) => args,
1550            _ => bug!("tuple_fields called on non-tuple: {self:?}"),
1551        }
1552    }
1553
1554    /// If the type contains variants, returns the valid range of variant indices.
1555    //
1556    // FIXME: This requires the optimized MIR in the case of coroutines.
1557    #[inline]
1558    pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
1559        match self.kind() {
1560            TyKind::Adt(adt, _) => Some(adt.variant_range()),
1561            TyKind::Coroutine(def_id, args) => {
1562                Some(args.as_coroutine().variant_range(*def_id, tcx))
1563            }
1564            _ => None,
1565        }
1566    }
1567
1568    /// If the type contains variants, returns the variant for `variant_index`.
1569    /// Panics if `variant_index` is out of range.
1570    //
1571    // FIXME: This requires the optimized MIR in the case of coroutines.
1572    #[inline]
1573    pub fn discriminant_for_variant(
1574        self,
1575        tcx: TyCtxt<'tcx>,
1576        variant_index: VariantIdx,
1577    ) -> Option<Discr<'tcx>> {
1578        match self.kind() {
1579            TyKind::Adt(adt, _) if adt.is_enum() => {
1580                Some(adt.discriminant_for_variant(tcx, variant_index))
1581            }
1582            TyKind::Coroutine(def_id, args) => {
1583                Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
1584            }
1585            _ => None,
1586        }
1587    }
1588
1589    /// Returns the type of the discriminant of this type.
1590    pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1591        match self.kind() {
1592            ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
1593            ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),
1594
1595            ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
1596                let assoc_items = tcx.associated_item_def_ids(
1597                    tcx.require_lang_item(hir::LangItem::DiscriminantKind, DUMMY_SP),
1598                );
1599                Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
1600            }
1601
1602            ty::Pat(ty, _) => ty.discriminant_ty(tcx),
1603
1604            ty::Bool
1605            | ty::Char
1606            | ty::Int(_)
1607            | ty::Uint(_)
1608            | ty::Float(_)
1609            | ty::Adt(..)
1610            | ty::Foreign(_)
1611            | ty::Str
1612            | ty::Array(..)
1613            | ty::Slice(_)
1614            | ty::RawPtr(_, _)
1615            | ty::Ref(..)
1616            | ty::FnDef(..)
1617            | ty::FnPtr(..)
1618            | ty::Dynamic(..)
1619            | ty::Closure(..)
1620            | ty::CoroutineClosure(..)
1621            | ty::CoroutineWitness(..)
1622            | ty::Never
1623            | ty::Tuple(_)
1624            | ty::UnsafeBinder(_)
1625            | ty::Error(_)
1626            | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
1627
1628            ty::Bound(..)
1629            | ty::Placeholder(_)
1630            | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1631                bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
1632            }
1633        }
1634    }
1635
1636    /// Returns the type of metadata for (potentially wide) pointers to this type,
1637    /// or the struct tail if the metadata type cannot be determined.
1638    pub fn ptr_metadata_ty_or_tail(
1639        self,
1640        tcx: TyCtxt<'tcx>,
1641        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1642    ) -> Result<Ty<'tcx>, Ty<'tcx>> {
1643        let tail = tcx.struct_tail_raw(self, normalize, || {});
1644        match tail.kind() {
1645            // Sized types
1646            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1647            | ty::Uint(_)
1648            | ty::Int(_)
1649            | ty::Bool
1650            | ty::Float(_)
1651            | ty::FnDef(..)
1652            | ty::FnPtr(..)
1653            | ty::RawPtr(..)
1654            | ty::Char
1655            | ty::Ref(..)
1656            | ty::Coroutine(..)
1657            | ty::CoroutineWitness(..)
1658            | ty::Array(..)
1659            | ty::Closure(..)
1660            | ty::CoroutineClosure(..)
1661            | ty::Never
1662            | ty::Error(_)
1663            // Extern types have metadata = ().
1664            | ty::Foreign(..)
1665            // If returned by `struct_tail_raw` this is a unit struct
1666            // without any fields, or not a struct, and therefore is Sized.
1667            | ty::Adt(..)
1668            // If returned by `struct_tail_raw` this is the empty tuple,
1669            // a.k.a. unit type, which is Sized
1670            | ty::Tuple(..) => Ok(tcx.types.unit),
1671
1672            ty::Str | ty::Slice(_) => Ok(tcx.types.usize),
1673
1674            ty::Dynamic(_, _, ty::Dyn) => {
1675                let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, DUMMY_SP);
1676                Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
1677            }
1678
1679            // We don't know the metadata of `self`, but it must be equal to the
1680            // metadata of `tail`.
1681            ty::Param(_) | ty::Alias(..) => Err(tail),
1682
1683            | ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
1684
1685            ty::Infer(ty::TyVar(_))
1686            | ty::Pat(..)
1687            | ty::Bound(..)
1688            | ty::Placeholder(..)
1689            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!(
1690                "`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
1691            ),
1692        }
1693    }
1694
1695    /// Returns the type of metadata for (potentially wide) pointers to this type.
1696    /// Causes an ICE if the metadata type cannot be determined.
1697    pub fn ptr_metadata_ty(
1698        self,
1699        tcx: TyCtxt<'tcx>,
1700        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1701    ) -> Ty<'tcx> {
1702        match self.ptr_metadata_ty_or_tail(tcx, normalize) {
1703            Ok(metadata) => metadata,
1704            Err(tail) => bug!(
1705                "`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
1706            ),
1707        }
1708    }
1709
1710    /// Given a pointer or reference type, returns the type of the *pointee*'s
1711    /// metadata. If it can't be determined exactly (perhaps due to still
1712    /// being generic) then a projection through `ptr::Pointee` will be returned.
1713    ///
1714    /// This is particularly useful for getting the type of the result of
1715    /// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata).
1716    ///
1717    /// Panics if `self` is not dereferenceable.
1718    #[track_caller]
1719    pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1720        let Some(pointee_ty) = self.builtin_deref(true) else {
1721            bug!("Type {self:?} is not a pointer or reference type")
1722        };
1723        if pointee_ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized) {
1724            tcx.types.unit
1725        } else {
1726            match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) {
1727                Ok(metadata_ty) => metadata_ty,
1728                Err(tail_ty) => {
1729                    let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, DUMMY_SP);
1730                    Ty::new_projection(tcx, metadata_def_id, [tail_ty])
1731                }
1732            }
1733        }
1734    }
1735
1736    /// When we create a closure, we record its kind (i.e., what trait
1737    /// it implements, constrained by how it uses its borrows) into its
1738    /// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
1739    /// parameter. This is kind of a phantom type, except that the
1740    /// most convenient thing for us to are the integral types. This
1741    /// function converts such a special type into the closure
1742    /// kind. To go the other way, use [`Ty::from_closure_kind`].
1743    ///
1744    /// Note that during type checking, we use an inference variable
1745    /// to represent the closure kind, because it has not yet been
1746    /// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
1747    /// is complete, that type variable will be unified with one of
1748    /// the integral types.
1749    ///
1750    /// ```rust,ignore (snippet of compiler code)
1751    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1752    ///     && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
1753    /// {
1754    ///     println!("{closure_kind:?}");
1755    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1756    ///     && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
1757    /// {
1758    ///     println!("{closure_kind:?}");
1759    /// }
1760    /// ```
1761    ///
1762    /// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`]
1763    /// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
1764    /// has been constrained instead of manually calling this method.
1765    ///
1766    /// ```rust,ignore (snippet of compiler code)
1767    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1768    /// {
1769    ///     println!("{:?}", args.as_closure().kind());
1770    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1771    /// {
1772    ///     println!("{:?}", args.as_coroutine_closure().kind());
1773    /// }
1774    /// ```
1775    pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1776        match self.kind() {
1777            Int(int_ty) => match int_ty {
1778                ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
1779                ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
1780                ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
1781                _ => bug!("cannot convert type `{:?}` to a closure kind", self),
1782            },
1783
1784            // "Bound" types appear in canonical queries when the
1785            // closure type is not yet known, and `Placeholder` and `Param`
1786            // may be encountered in generic `AsyncFnKindHelper` goals.
1787            Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,
1788
1789            Error(_) => Some(ty::ClosureKind::Fn),
1790
1791            _ => bug!("cannot convert type `{:?}` to a closure kind", self),
1792        }
1793    }
1794
1795    /// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
1796    /// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
1797    pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1798        match kind {
1799            ty::ClosureKind::Fn => tcx.types.i8,
1800            ty::ClosureKind::FnMut => tcx.types.i16,
1801            ty::ClosureKind::FnOnce => tcx.types.i32,
1802        }
1803    }
1804
1805    /// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind
1806    /// to `FnMut`. This is because although we have three capability states,
1807    /// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine
1808    /// bodies: by-ref and by-value.
1809    ///
1810    /// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture`
1811    /// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and
1812    /// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies.
1813    ///
1814    /// This method should be used when constructing a `Coroutine` out of a
1815    /// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated
1816    /// directly from the `CoroutineClosure`'s `kind`.
1817    pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1818        match kind {
1819            ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16,
1820            ty::ClosureKind::FnOnce => tcx.types.i32,
1821        }
1822    }
1823
1824    /// Fast path helper for testing if a type is `Sized` or `MetaSized`.
1825    ///
1826    /// Returning true means the type is known to implement the sizedness trait. Returning `false`
1827    /// means nothing -- could be sized, might not be.
1828    ///
1829    /// Note that we could never rely on the fact that a type such as `[_]` is trivially `!Sized`
1830    /// because we could be in a type environment with a bound such as `[_]: Copy`. A function with
1831    /// such a bound obviously never can be called, but that doesn't mean it shouldn't typecheck.
1832    /// This is why this method doesn't return `Option<bool>`.
1833    #[instrument(skip(tcx), level = "debug")]
1834    pub fn has_trivial_sizedness(self, tcx: TyCtxt<'tcx>, sizedness: SizedTraitKind) -> bool {
1835        match self.kind() {
1836            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1837            | ty::Uint(_)
1838            | ty::Int(_)
1839            | ty::Bool
1840            | ty::Float(_)
1841            | ty::FnDef(..)
1842            | ty::FnPtr(..)
1843            | ty::UnsafeBinder(_)
1844            | ty::RawPtr(..)
1845            | ty::Char
1846            | ty::Ref(..)
1847            | ty::Coroutine(..)
1848            | ty::CoroutineWitness(..)
1849            | ty::Array(..)
1850            | ty::Pat(..)
1851            | ty::Closure(..)
1852            | ty::CoroutineClosure(..)
1853            | ty::Never
1854            | ty::Error(_) => true,
1855
1856            ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) => match sizedness {
1857                SizedTraitKind::Sized => false,
1858                SizedTraitKind::MetaSized => true,
1859            },
1860
1861            ty::Foreign(..) => match sizedness {
1862                SizedTraitKind::Sized | SizedTraitKind::MetaSized => false,
1863            },
1864
1865            ty::Tuple(tys) => tys.last().is_none_or(|ty| ty.has_trivial_sizedness(tcx, sizedness)),
1866
1867            ty::Adt(def, args) => def
1868                .sizedness_constraint(tcx, sizedness)
1869                .is_none_or(|ty| ty.instantiate(tcx, args).has_trivial_sizedness(tcx, sizedness)),
1870
1871            ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,
1872
1873            ty::Infer(ty::TyVar(_)) => false,
1874
1875            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1876                bug!("`has_trivial_sizedness` applied to unexpected type: {:?}", self)
1877            }
1878        }
1879    }
1880
1881    /// Fast path helper for primitives which are always `Copy` and which
1882    /// have a side-effect-free `Clone` impl.
1883    ///
1884    /// Returning true means the type is known to be pure and `Copy+Clone`.
1885    /// Returning `false` means nothing -- could be `Copy`, might not be.
1886    ///
1887    /// This is mostly useful for optimizations, as these are the types
1888    /// on which we can replace cloning with dereferencing.
1889    pub fn is_trivially_pure_clone_copy(self) -> bool {
1890        match self.kind() {
1891            ty::Bool | ty::Char | ty::Never => true,
1892
1893            // These aren't even `Clone`
1894            ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
1895
1896            ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
1897            | ty::Int(..)
1898            | ty::Uint(..)
1899            | ty::Float(..) => true,
1900
1901            // ZST which can't be named are fine.
1902            ty::FnDef(..) => true,
1903
1904            ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
1905
1906            // A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
1907            ty::Tuple(field_tys) => {
1908                field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
1909            }
1910
1911            ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(),
1912
1913            // Sometimes traits aren't implemented for every ABI or arity,
1914            // because we can't be generic over everything yet.
1915            ty::FnPtr(..) => false,
1916
1917            // Definitely absolutely not copy.
1918            ty::Ref(_, _, hir::Mutability::Mut) => false,
1919
1920            // The standard library has a blanket Copy impl for shared references and raw pointers,
1921            // for all unsized types.
1922            ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => true,
1923
1924            ty::Coroutine(..) | ty::CoroutineWitness(..) => false,
1925
1926            // Might be, but not "trivial" so just giving the safe answer.
1927            ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,
1928
1929            ty::UnsafeBinder(_) => false,
1930
1931            // Needs normalization or revealing to determine, so no is the safe answer.
1932            ty::Alias(..) => false,
1933
1934            ty::Param(..) | ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(..) => {
1935                false
1936            }
1937        }
1938    }
1939
1940    pub fn is_trivially_wf(self, tcx: TyCtxt<'tcx>) -> bool {
1941        match *self.kind() {
1942            ty::Bool
1943            | ty::Char
1944            | ty::Int(_)
1945            | ty::Uint(_)
1946            | ty::Float(_)
1947            | ty::Str
1948            | ty::Never
1949            | ty::Param(_)
1950            | ty::Placeholder(_)
1951            | ty::Bound(..) => true,
1952
1953            ty::Slice(ty) => {
1954                ty.is_trivially_wf(tcx) && ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized)
1955            }
1956            ty::RawPtr(ty, _) => ty.is_trivially_wf(tcx),
1957
1958            ty::FnPtr(sig_tys, _) => {
1959                sig_tys.skip_binder().inputs_and_output.iter().all(|ty| ty.is_trivially_wf(tcx))
1960            }
1961            ty::Ref(_, ty, _) => ty.is_global() && ty.is_trivially_wf(tcx),
1962
1963            ty::Infer(infer) => match infer {
1964                ty::TyVar(_) => false,
1965                ty::IntVar(_) | ty::FloatVar(_) => true,
1966                ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => true,
1967            },
1968
1969            ty::Adt(_, _)
1970            | ty::Tuple(_)
1971            | ty::Array(..)
1972            | ty::Foreign(_)
1973            | ty::Pat(_, _)
1974            | ty::FnDef(..)
1975            | ty::UnsafeBinder(..)
1976            | ty::Dynamic(..)
1977            | ty::Closure(..)
1978            | ty::CoroutineClosure(..)
1979            | ty::Coroutine(..)
1980            | ty::CoroutineWitness(..)
1981            | ty::Alias(..)
1982            | ty::Error(_) => false,
1983        }
1984    }
1985
1986    /// If `self` is a primitive, return its [`Symbol`].
1987    pub fn primitive_symbol(self) -> Option<Symbol> {
1988        match self.kind() {
1989            ty::Bool => Some(sym::bool),
1990            ty::Char => Some(sym::char),
1991            ty::Float(f) => match f {
1992                ty::FloatTy::F16 => Some(sym::f16),
1993                ty::FloatTy::F32 => Some(sym::f32),
1994                ty::FloatTy::F64 => Some(sym::f64),
1995                ty::FloatTy::F128 => Some(sym::f128),
1996            },
1997            ty::Int(f) => match f {
1998                ty::IntTy::Isize => Some(sym::isize),
1999                ty::IntTy::I8 => Some(sym::i8),
2000                ty::IntTy::I16 => Some(sym::i16),
2001                ty::IntTy::I32 => Some(sym::i32),
2002                ty::IntTy::I64 => Some(sym::i64),
2003                ty::IntTy::I128 => Some(sym::i128),
2004            },
2005            ty::Uint(f) => match f {
2006                ty::UintTy::Usize => Some(sym::usize),
2007                ty::UintTy::U8 => Some(sym::u8),
2008                ty::UintTy::U16 => Some(sym::u16),
2009                ty::UintTy::U32 => Some(sym::u32),
2010                ty::UintTy::U64 => Some(sym::u64),
2011                ty::UintTy::U128 => Some(sym::u128),
2012            },
2013            ty::Str => Some(sym::str),
2014            _ => None,
2015        }
2016    }
2017
2018    pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
2019        match self.kind() {
2020            ty::Adt(adt, _) => tcx.is_lang_item(adt.did(), LangItem::CVoid),
2021            _ => false,
2022        }
2023    }
2024
2025    pub fn is_async_drop_in_place_coroutine(self, tcx: TyCtxt<'_>) -> bool {
2026        match self.kind() {
2027            ty::Coroutine(def, ..) => tcx.is_async_drop_in_place_coroutine(*def),
2028            _ => false,
2029        }
2030    }
2031
2032    /// Returns `true` when the outermost type cannot be further normalized,
2033    /// resolved, or instantiated. This includes all primitive types, but also
2034    /// things like ADTs and trait objects, since even if their arguments or
2035    /// nested types may be further simplified, the outermost [`TyKind`] or
2036    /// type constructor remains the same.
2037    pub fn is_known_rigid(self) -> bool {
2038        self.kind().is_known_rigid()
2039    }
2040
2041    /// Iterator that walks `self` and any types reachable from
2042    /// `self`, in depth-first order. Note that just walks the types
2043    /// that appear in `self`, it does not descend into the fields of
2044    /// structs or variants. For example:
2045    ///
2046    /// ```text
2047    /// isize => { isize }
2048    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2049    /// [isize] => { [isize], isize }
2050    /// ```
2051    pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> {
2052        TypeWalker::new(self.into())
2053    }
2054}
2055
2056impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> {
2057    fn inputs(self) -> &'tcx [Ty<'tcx>] {
2058        self.split_last().unwrap().1
2059    }
2060
2061    fn output(self) -> Ty<'tcx> {
2062        *self.split_last().unwrap().0
2063    }
2064}
2065
2066// Some types are used a lot. Make sure they don't unintentionally get bigger.
2067#[cfg(target_pointer_width = "64")]
2068mod size_asserts {
2069    use rustc_data_structures::static_assert_size;
2070
2071    use super::*;
2072    // tidy-alphabetical-start
2073    static_assert_size!(TyKind<'_>, 24);
2074    static_assert_size!(ty::WithCachedTypeInfo<TyKind<'_>>, 48);
2075    // tidy-alphabetical-end
2076}