rustc_parse/parser/
expr.rs

1// ignore-tidy-filelength
2
3use core::mem;
4use core::ops::{Bound, ControlFlow};
5
6use ast::mut_visit::{self, MutVisitor};
7use ast::token::IdentIsRaw;
8use ast::{CoroutineKind, ForLoopKind, GenBlockKind, MatchKind, Pat, Path, PathSegment, Recovered};
9use rustc_ast::token::{self, Delimiter, InvisibleOrigin, MetaVarKind, Token, TokenKind};
10use rustc_ast::tokenstream::TokenTree;
11use rustc_ast::util::case::Case;
12use rustc_ast::util::classify;
13use rustc_ast::util::parser::{AssocOp, ExprPrecedence, Fixity, prec_let_scrutinee_needs_par};
14use rustc_ast::visit::{Visitor, walk_expr};
15use rustc_ast::{
16    self as ast, AnonConst, Arm, AssignOp, AssignOpKind, AttrStyle, AttrVec, BinOp, BinOpKind,
17    BlockCheckMode, CaptureBy, ClosureBinder, DUMMY_NODE_ID, Expr, ExprField, ExprKind, FnDecl,
18    FnRetTy, Label, MacCall, MetaItemLit, Movability, Param, RangeLimits, StmtKind, Ty, TyKind,
19    UnOp, UnsafeBinderCastKind, YieldKind,
20};
21use rustc_data_structures::stack::ensure_sufficient_stack;
22use rustc_errors::{Applicability, Diag, PResult, StashKey, Subdiagnostic};
23use rustc_literal_escaper::unescape_char;
24use rustc_macros::Subdiagnostic;
25use rustc_session::errors::{ExprParenthesesNeeded, report_lit_error};
26use rustc_session::lint::BuiltinLintDiag;
27use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
28use rustc_span::edition::Edition;
29use rustc_span::source_map::{self, Spanned};
30use rustc_span::{BytePos, ErrorGuaranteed, Ident, Pos, Span, Symbol, kw, sym};
31use thin_vec::{ThinVec, thin_vec};
32use tracing::instrument;
33
34use super::diagnostics::SnapshotParser;
35use super::pat::{CommaRecoveryMode, Expected, RecoverColon, RecoverComma};
36use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
37use super::{
38    AttrWrapper, BlockMode, ClosureSpans, ExpTokenPair, ForceCollect, Parser, PathStyle,
39    Restrictions, SemiColonMode, SeqSep, TokenType, Trailing, UsePreAttrPos,
40};
41use crate::{errors, exp, maybe_recover_from_interpolated_ty_qpath};
42
43#[derive(Debug)]
44pub(super) enum DestructuredFloat {
45    /// 1e2
46    Single(Symbol, Span),
47    /// 1.
48    TrailingDot(Symbol, Span, Span),
49    /// 1.2 | 1.2e3
50    MiddleDot(Symbol, Span, Span, Symbol, Span),
51    /// Invalid
52    Error,
53}
54
55impl<'a> Parser<'a> {
56    /// Parses an expression.
57    #[inline]
58    pub fn parse_expr(&mut self) -> PResult<'a, Box<Expr>> {
59        self.current_closure.take();
60
61        let attrs = self.parse_outer_attributes()?;
62        self.parse_expr_res(Restrictions::empty(), attrs).map(|res| res.0)
63    }
64
65    /// Parses an expression, forcing tokens to be collected.
66    pub fn parse_expr_force_collect(&mut self) -> PResult<'a, Box<Expr>> {
67        self.current_closure.take();
68
69        // If the expression is associative (e.g. `1 + 2`), then any preceding
70        // outer attribute actually belongs to the first inner sub-expression.
71        // In which case we must use the pre-attr pos to include the attribute
72        // in the collected tokens for the outer expression.
73        let pre_attr_pos = self.collect_pos();
74        let attrs = self.parse_outer_attributes()?;
75        self.collect_tokens(
76            Some(pre_attr_pos),
77            AttrWrapper::empty(),
78            ForceCollect::Yes,
79            |this, _empty_attrs| {
80                let (expr, is_assoc) = this.parse_expr_res(Restrictions::empty(), attrs)?;
81                let use_pre_attr_pos =
82                    if is_assoc { UsePreAttrPos::Yes } else { UsePreAttrPos::No };
83                Ok((expr, Trailing::No, use_pre_attr_pos))
84            },
85        )
86    }
87
88    pub fn parse_expr_anon_const(&mut self) -> PResult<'a, AnonConst> {
89        self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
90    }
91
92    fn parse_expr_catch_underscore(
93        &mut self,
94        restrictions: Restrictions,
95    ) -> PResult<'a, Box<Expr>> {
96        let attrs = self.parse_outer_attributes()?;
97        match self.parse_expr_res(restrictions, attrs) {
98            Ok((expr, _)) => Ok(expr),
99            Err(err) => match self.token.ident() {
100                Some((Ident { name: kw::Underscore, .. }, IdentIsRaw::No))
101                    if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) =>
102                {
103                    // Special-case handling of `foo(_, _, _)`
104                    let guar = err.emit();
105                    self.bump();
106                    Ok(self.mk_expr(self.prev_token.span, ExprKind::Err(guar)))
107                }
108                _ => Err(err),
109            },
110        }
111    }
112
113    /// Parses a sequence of expressions delimited by parentheses.
114    fn parse_expr_paren_seq(&mut self) -> PResult<'a, ThinVec<Box<Expr>>> {
115        self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore(Restrictions::empty()))
116            .map(|(r, _)| r)
117    }
118
119    /// Parses an expression, subject to the given restrictions.
120    #[inline]
121    pub(super) fn parse_expr_res(
122        &mut self,
123        r: Restrictions,
124        attrs: AttrWrapper,
125    ) -> PResult<'a, (Box<Expr>, bool)> {
126        self.with_res(r, |this| this.parse_expr_assoc_with(Bound::Unbounded, attrs))
127    }
128
129    /// Parses an associative expression with operators of at least `min_prec` precedence.
130    /// The `bool` in the return value indicates if it was an assoc expr, i.e. with an operator
131    /// followed by a subexpression (e.g. `1 + 2`).
132    pub(super) fn parse_expr_assoc_with(
133        &mut self,
134        min_prec: Bound<ExprPrecedence>,
135        attrs: AttrWrapper,
136    ) -> PResult<'a, (Box<Expr>, bool)> {
137        let lhs = if self.token.is_range_separator() {
138            return self.parse_expr_prefix_range(attrs).map(|res| (res, false));
139        } else {
140            self.parse_expr_prefix(attrs)?
141        };
142        self.parse_expr_assoc_rest_with(min_prec, false, lhs)
143    }
144
145    /// Parses the rest of an associative expression (i.e. the part after the lhs) with operators
146    /// of at least `min_prec` precedence. The `bool` in the return value indicates if something
147    /// was actually parsed.
148    pub(super) fn parse_expr_assoc_rest_with(
149        &mut self,
150        min_prec: Bound<ExprPrecedence>,
151        starts_stmt: bool,
152        mut lhs: Box<Expr>,
153    ) -> PResult<'a, (Box<Expr>, bool)> {
154        let mut parsed_something = false;
155        if !self.should_continue_as_assoc_expr(&lhs) {
156            return Ok((lhs, parsed_something));
157        }
158
159        self.expected_token_types.insert(TokenType::Operator);
160        while let Some(op) = self.check_assoc_op() {
161            let lhs_span = self.interpolated_or_expr_span(&lhs);
162            let cur_op_span = self.token.span;
163            let restrictions = if op.node.is_assign_like() {
164                self.restrictions & Restrictions::NO_STRUCT_LITERAL
165            } else {
166                self.restrictions
167            };
168            let prec = op.node.precedence();
169            if match min_prec {
170                Bound::Included(min_prec) => prec < min_prec,
171                Bound::Excluded(min_prec) => prec <= min_prec,
172                Bound::Unbounded => false,
173            } {
174                break;
175            }
176            // Check for deprecated `...` syntax
177            if self.token == token::DotDotDot && op.node == AssocOp::Range(RangeLimits::Closed) {
178                self.err_dotdotdot_syntax(self.token.span);
179            }
180
181            if self.token == token::LArrow {
182                self.err_larrow_operator(self.token.span);
183            }
184
185            parsed_something = true;
186            self.bump();
187            if op.node.is_comparison() {
188                if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
189                    return Ok((expr, parsed_something));
190                }
191            }
192
193            // Look for JS' `===` and `!==` and recover
194            if let AssocOp::Binary(bop @ BinOpKind::Eq | bop @ BinOpKind::Ne) = op.node
195                && self.token == token::Eq
196                && self.prev_token.span.hi() == self.token.span.lo()
197            {
198                let sp = op.span.to(self.token.span);
199                let sugg = bop.as_str().into();
200                let invalid = format!("{sugg}=");
201                self.dcx().emit_err(errors::InvalidComparisonOperator {
202                    span: sp,
203                    invalid: invalid.clone(),
204                    sub: errors::InvalidComparisonOperatorSub::Correctable {
205                        span: sp,
206                        invalid,
207                        correct: sugg,
208                    },
209                });
210                self.bump();
211            }
212
213            // Look for PHP's `<>` and recover
214            if op.node == AssocOp::Binary(BinOpKind::Lt)
215                && self.token == token::Gt
216                && self.prev_token.span.hi() == self.token.span.lo()
217            {
218                let sp = op.span.to(self.token.span);
219                self.dcx().emit_err(errors::InvalidComparisonOperator {
220                    span: sp,
221                    invalid: "<>".into(),
222                    sub: errors::InvalidComparisonOperatorSub::Correctable {
223                        span: sp,
224                        invalid: "<>".into(),
225                        correct: "!=".into(),
226                    },
227                });
228                self.bump();
229            }
230
231            // Look for C++'s `<=>` and recover
232            if op.node == AssocOp::Binary(BinOpKind::Le)
233                && self.token == token::Gt
234                && self.prev_token.span.hi() == self.token.span.lo()
235            {
236                let sp = op.span.to(self.token.span);
237                self.dcx().emit_err(errors::InvalidComparisonOperator {
238                    span: sp,
239                    invalid: "<=>".into(),
240                    sub: errors::InvalidComparisonOperatorSub::Spaceship(sp),
241                });
242                self.bump();
243            }
244
245            if self.prev_token == token::Plus
246                && self.token == token::Plus
247                && self.prev_token.span.between(self.token.span).is_empty()
248            {
249                let op_span = self.prev_token.span.to(self.token.span);
250                // Eat the second `+`
251                self.bump();
252                lhs = self.recover_from_postfix_increment(lhs, op_span, starts_stmt)?;
253                continue;
254            }
255
256            if self.prev_token == token::Minus
257                && self.token == token::Minus
258                && self.prev_token.span.between(self.token.span).is_empty()
259                && !self.look_ahead(1, |tok| tok.can_begin_expr())
260            {
261                let op_span = self.prev_token.span.to(self.token.span);
262                // Eat the second `-`
263                self.bump();
264                lhs = self.recover_from_postfix_decrement(lhs, op_span, starts_stmt)?;
265                continue;
266            }
267
268            let op_span = op.span;
269            let op = op.node;
270            // Special cases:
271            if op == AssocOp::Cast {
272                lhs = self.parse_assoc_op_cast(lhs, lhs_span, op_span, ExprKind::Cast)?;
273                continue;
274            } else if let AssocOp::Range(limits) = op {
275                // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
276                // generalise it to the Fixity::None code.
277                lhs = self.parse_expr_range(prec, lhs, limits, cur_op_span)?;
278                break;
279            }
280
281            let min_prec = match op.fixity() {
282                Fixity::Right => Bound::Included(prec),
283                Fixity::Left | Fixity::None => Bound::Excluded(prec),
284            };
285            let (rhs, _) = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
286                let attrs = this.parse_outer_attributes()?;
287                this.parse_expr_assoc_with(min_prec, attrs)
288            })?;
289
290            let span = self.mk_expr_sp(&lhs, lhs_span, op_span, rhs.span);
291            lhs = match op {
292                AssocOp::Binary(ast_op) => {
293                    let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
294                    self.mk_expr(span, binary)
295                }
296                AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)),
297                AssocOp::AssignOp(aop) => {
298                    let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
299                    self.mk_expr(span, aopexpr)
300                }
301                AssocOp::Cast | AssocOp::Range(_) => {
302                    self.dcx().span_bug(span, "AssocOp should have been handled by special case")
303                }
304            };
305        }
306
307        Ok((lhs, parsed_something))
308    }
309
310    fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
311        match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
312            // Semi-statement forms are odd:
313            // See https://github.com/rust-lang/rust/issues/29071
314            (true, None) => false,
315            (false, _) => true, // Continue parsing the expression.
316            // An exhaustive check is done in the following block, but these are checked first
317            // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
318            // want to keep their span info to improve diagnostics in these cases in a later stage.
319            (true, Some(AssocOp::Binary(
320                BinOpKind::Mul | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
321                BinOpKind::Sub | // `{ 42 } -5`
322                BinOpKind::Add | // `{ 42 } + 42` (unary plus)
323                BinOpKind::And | // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
324                BinOpKind::Or | // `{ 42 } || 42` ("logical or" or closure)
325                BinOpKind::BitOr // `{ 42 } | 42` or `{ 42 } |x| 42`
326            ))) => {
327                // These cases are ambiguous and can't be identified in the parser alone.
328                //
329                // Bitwise AND is left out because guessing intent is hard. We can make
330                // suggestions based on the assumption that double-refs are rarely intentional,
331                // and closures are distinct enough that they don't get mixed up with their
332                // return value.
333                let sp = self.psess.source_map().start_point(self.token.span);
334                self.psess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
335                false
336            }
337            (true, Some(op)) if !op.can_continue_expr_unambiguously() => false,
338            (true, Some(_)) => {
339                self.error_found_expr_would_be_stmt(lhs);
340                true
341            }
342        }
343    }
344
345    /// We've found an expression that would be parsed as a statement,
346    /// but the next token implies this should be parsed as an expression.
347    /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
348    fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
349        self.dcx().emit_err(errors::FoundExprWouldBeStmt {
350            span: self.token.span,
351            token: self.token,
352            suggestion: ExprParenthesesNeeded::surrounding(lhs.span),
353        });
354    }
355
356    /// Possibly translate the current token to an associative operator.
357    /// The method does not advance the current token.
358    ///
359    /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
360    pub(super) fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
361        let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
362            // When parsing const expressions, stop parsing when encountering `>`.
363            (
364                Some(
365                    AssocOp::Binary(BinOpKind::Shr | BinOpKind::Gt | BinOpKind::Ge)
366                    | AssocOp::AssignOp(AssignOpKind::ShrAssign),
367                ),
368                _,
369            ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
370                return None;
371            }
372            // When recovering patterns as expressions, stop parsing when encountering an
373            // assignment `=`, an alternative `|`, or a range `..`.
374            (
375                Some(
376                    AssocOp::Assign
377                    | AssocOp::AssignOp(_)
378                    | AssocOp::Binary(BinOpKind::BitOr)
379                    | AssocOp::Range(_),
380                ),
381                _,
382            ) if self.restrictions.contains(Restrictions::IS_PAT) => {
383                return None;
384            }
385            (Some(op), _) => (op, self.token.span),
386            (None, Some((Ident { name: sym::and, span }, IdentIsRaw::No)))
387                if self.may_recover() =>
388            {
389                self.dcx().emit_err(errors::InvalidLogicalOperator {
390                    span: self.token.span,
391                    incorrect: "and".into(),
392                    sub: errors::InvalidLogicalOperatorSub::Conjunction(self.token.span),
393                });
394                (AssocOp::Binary(BinOpKind::And), span)
395            }
396            (None, Some((Ident { name: sym::or, span }, IdentIsRaw::No))) if self.may_recover() => {
397                self.dcx().emit_err(errors::InvalidLogicalOperator {
398                    span: self.token.span,
399                    incorrect: "or".into(),
400                    sub: errors::InvalidLogicalOperatorSub::Disjunction(self.token.span),
401                });
402                (AssocOp::Binary(BinOpKind::Or), span)
403            }
404            _ => return None,
405        };
406        Some(source_map::respan(span, op))
407    }
408
409    /// Checks if this expression is a successfully parsed statement.
410    fn expr_is_complete(&self, e: &Expr) -> bool {
411        self.restrictions.contains(Restrictions::STMT_EXPR) && classify::expr_is_complete(e)
412    }
413
414    /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
415    /// The other two variants are handled in `parse_prefix_range_expr` below.
416    fn parse_expr_range(
417        &mut self,
418        prec: ExprPrecedence,
419        lhs: Box<Expr>,
420        limits: RangeLimits,
421        cur_op_span: Span,
422    ) -> PResult<'a, Box<Expr>> {
423        let rhs = if self.is_at_start_of_range_notation_rhs() {
424            let maybe_lt = self.token;
425            let attrs = self.parse_outer_attributes()?;
426            Some(
427                self.parse_expr_assoc_with(Bound::Excluded(prec), attrs)
428                    .map_err(|err| self.maybe_err_dotdotlt_syntax(maybe_lt, err))?
429                    .0,
430            )
431        } else {
432            None
433        };
434        let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
435        let span = self.mk_expr_sp(&lhs, lhs.span, cur_op_span, rhs_span);
436        let range = self.mk_range(Some(lhs), rhs, limits);
437        Ok(self.mk_expr(span, range))
438    }
439
440    fn is_at_start_of_range_notation_rhs(&self) -> bool {
441        if self.token.can_begin_expr() {
442            // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
443            if self.token == token::OpenBrace {
444                return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
445            }
446            true
447        } else {
448            false
449        }
450    }
451
452    /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
453    fn parse_expr_prefix_range(&mut self, attrs: AttrWrapper) -> PResult<'a, Box<Expr>> {
454        if !attrs.is_empty() {
455            let err = errors::DotDotRangeAttribute { span: self.token.span };
456            self.dcx().emit_err(err);
457        }
458
459        // Check for deprecated `...` syntax.
460        if self.token == token::DotDotDot {
461            self.err_dotdotdot_syntax(self.token.span);
462        }
463
464        debug_assert!(
465            self.token.is_range_separator(),
466            "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
467            self.token
468        );
469
470        let limits = match self.token.kind {
471            token::DotDot => RangeLimits::HalfOpen,
472            _ => RangeLimits::Closed,
473        };
474        let op = AssocOp::from_token(&self.token);
475        let attrs = self.parse_outer_attributes()?;
476        self.collect_tokens_for_expr(attrs, |this, attrs| {
477            let lo = this.token.span;
478            let maybe_lt = this.look_ahead(1, |t| t.clone());
479            this.bump();
480            let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
481                // RHS must be parsed with more associativity than the dots.
482                let attrs = this.parse_outer_attributes()?;
483                this.parse_expr_assoc_with(Bound::Excluded(op.unwrap().precedence()), attrs)
484                    .map(|(x, _)| (lo.to(x.span), Some(x)))
485                    .map_err(|err| this.maybe_err_dotdotlt_syntax(maybe_lt, err))?
486            } else {
487                (lo, None)
488            };
489            let range = this.mk_range(None, opt_end, limits);
490            Ok(this.mk_expr_with_attrs(span, range, attrs))
491        })
492    }
493
494    /// Parses a prefix-unary-operator expr.
495    fn parse_expr_prefix(&mut self, attrs: AttrWrapper) -> PResult<'a, Box<Expr>> {
496        let lo = self.token.span;
497
498        macro_rules! make_it {
499            ($this:ident, $attrs:expr, |this, _| $body:expr) => {
500                $this.collect_tokens_for_expr($attrs, |$this, attrs| {
501                    let (hi, ex) = $body?;
502                    Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs))
503                })
504            };
505        }
506
507        let this = self;
508
509        // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
510        match this.token.uninterpolate().kind {
511            // `!expr`
512            token::Bang => make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Not)),
513            // `~expr`
514            token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)),
515            // `-expr`
516            token::Minus => {
517                make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Neg))
518            }
519            // `*expr`
520            token::Star => {
521                make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Deref))
522            }
523            // `&expr` and `&&expr`
524            token::And | token::AndAnd => {
525                make_it!(this, attrs, |this, _| this.parse_expr_borrow(lo))
526            }
527            // `+lit`
528            token::Plus if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
529                let mut err = errors::LeadingPlusNotSupported {
530                    span: lo,
531                    remove_plus: None,
532                    add_parentheses: None,
533                };
534
535                // a block on the LHS might have been intended to be an expression instead
536                if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
537                    err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp));
538                } else {
539                    err.remove_plus = Some(lo);
540                }
541                this.dcx().emit_err(err);
542
543                this.bump();
544                let attrs = this.parse_outer_attributes()?;
545                this.parse_expr_prefix(attrs)
546            }
547            // Recover from `++x`:
548            token::Plus if this.look_ahead(1, |t| *t == token::Plus) => {
549                let starts_stmt =
550                    this.prev_token == token::Semi || this.prev_token == token::CloseBrace;
551                let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
552                // Eat both `+`s.
553                this.bump();
554                this.bump();
555
556                let operand_expr = this.parse_expr_dot_or_call(attrs)?;
557                this.recover_from_prefix_increment(operand_expr, pre_span, starts_stmt)
558            }
559            token::Ident(..) if this.token.is_keyword(kw::Box) => {
560                make_it!(this, attrs, |this, _| this.parse_expr_box(lo))
561            }
562            token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => {
563                make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
564            }
565            _ => return this.parse_expr_dot_or_call(attrs),
566        }
567    }
568
569    fn parse_expr_prefix_common(&mut self, lo: Span) -> PResult<'a, (Span, Box<Expr>)> {
570        self.bump();
571        let attrs = self.parse_outer_attributes()?;
572        let expr = if self.token.is_range_separator() {
573            self.parse_expr_prefix_range(attrs)
574        } else {
575            self.parse_expr_prefix(attrs)
576        }?;
577        let span = self.interpolated_or_expr_span(&expr);
578        Ok((lo.to(span), expr))
579    }
580
581    fn parse_expr_unary(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
582        let (span, expr) = self.parse_expr_prefix_common(lo)?;
583        Ok((span, self.mk_unary(op, expr)))
584    }
585
586    /// Recover on `~expr` in favor of `!expr`.
587    fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
588        self.dcx().emit_err(errors::TildeAsUnaryOperator(lo));
589
590        self.parse_expr_unary(lo, UnOp::Not)
591    }
592
593    /// Parse `box expr` - this syntax has been removed, but we still parse this
594    /// for now to provide a more useful error
595    fn parse_expr_box(&mut self, box_kw: Span) -> PResult<'a, (Span, ExprKind)> {
596        let (span, expr) = self.parse_expr_prefix_common(box_kw)?;
597        // Make a multipart suggestion instead of `span_to_snippet` in case source isn't available
598        let box_kw_and_lo = box_kw.until(self.interpolated_or_expr_span(&expr));
599        let hi = span.shrink_to_hi();
600        let sugg = errors::AddBoxNew { box_kw_and_lo, hi };
601        let guar = self.dcx().emit_err(errors::BoxSyntaxRemoved { span, sugg });
602        Ok((span, ExprKind::Err(guar)))
603    }
604
605    fn is_mistaken_not_ident_negation(&self) -> bool {
606        let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
607            // These tokens can start an expression after `!`, but
608            // can't continue an expression after an ident
609            token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
610            token::Literal(..) | token::Pound => true,
611            _ => t.is_metavar_expr(),
612        };
613        self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
614    }
615
616    /// Recover on `not expr` in favor of `!expr`.
617    fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
618        let negated_token = self.look_ahead(1, |t| *t);
619
620        let sub_diag = if negated_token.is_numeric_lit() {
621            errors::NotAsNegationOperatorSub::SuggestNotBitwise
622        } else if negated_token.is_bool_lit() {
623            errors::NotAsNegationOperatorSub::SuggestNotLogical
624        } else {
625            errors::NotAsNegationOperatorSub::SuggestNotDefault
626        };
627
628        self.dcx().emit_err(errors::NotAsNegationOperator {
629            negated: negated_token.span,
630            negated_desc: super::token_descr(&negated_token),
631            // Span the `not` plus trailing whitespace to avoid
632            // trailing whitespace after the `!` in our suggestion
633            sub: sub_diag(
634                self.psess.source_map().span_until_non_whitespace(lo.to(negated_token.span)),
635            ),
636        });
637
638        self.parse_expr_unary(lo, UnOp::Not)
639    }
640
641    /// Returns the span of expr if it was not interpolated, or the span of the interpolated token.
642    fn interpolated_or_expr_span(&self, expr: &Expr) -> Span {
643        match self.prev_token.kind {
644            token::NtIdent(..) | token::NtLifetime(..) => self.prev_token.span,
645            token::CloseInvisible(InvisibleOrigin::MetaVar(_)) => {
646                // `expr.span` is the interpolated span, because invisible open
647                // and close delims both get marked with the same span, one
648                // that covers the entire thing between them. (See
649                // `rustc_expand::mbe::transcribe::transcribe`.)
650                self.prev_token.span
651            }
652            _ => expr.span,
653        }
654    }
655
656    fn parse_assoc_op_cast(
657        &mut self,
658        lhs: Box<Expr>,
659        lhs_span: Span,
660        op_span: Span,
661        expr_kind: fn(Box<Expr>, Box<Ty>) -> ExprKind,
662    ) -> PResult<'a, Box<Expr>> {
663        let mk_expr = |this: &mut Self, lhs: Box<Expr>, rhs: Box<Ty>| {
664            this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, op_span, rhs.span), expr_kind(lhs, rhs))
665        };
666
667        // Save the state of the parser before parsing type normally, in case there is a
668        // LessThan comparison after this cast.
669        let parser_snapshot_before_type = self.clone();
670        let cast_expr = match self.parse_as_cast_ty() {
671            Ok(rhs) => mk_expr(self, lhs, rhs),
672            Err(type_err) => {
673                if !self.may_recover() {
674                    return Err(type_err);
675                }
676
677                // Rewind to before attempting to parse the type with generics, to recover
678                // from situations like `x as usize < y` in which we first tried to parse
679                // `usize < y` as a type with generic arguments.
680                let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
681
682                // Check for typo of `'a: loop { break 'a }` with a missing `'`.
683                match (&lhs.kind, &self.token.kind) {
684                    (
685                        // `foo: `
686                        ExprKind::Path(None, ast::Path { segments, .. }),
687                        token::Ident(kw::For | kw::Loop | kw::While, IdentIsRaw::No),
688                    ) if let [segment] = segments.as_slice() => {
689                        let snapshot = self.create_snapshot_for_diagnostic();
690                        let label = Label {
691                            ident: Ident::from_str_and_span(
692                                &format!("'{}", segment.ident),
693                                segment.ident.span,
694                            ),
695                        };
696                        match self.parse_expr_labeled(label, false) {
697                            Ok(expr) => {
698                                type_err.cancel();
699                                self.dcx().emit_err(errors::MalformedLoopLabel {
700                                    span: label.ident.span,
701                                    suggestion: label.ident.span.shrink_to_lo(),
702                                });
703                                return Ok(expr);
704                            }
705                            Err(err) => {
706                                err.cancel();
707                                self.restore_snapshot(snapshot);
708                            }
709                        }
710                    }
711                    _ => {}
712                }
713
714                match self.parse_path(PathStyle::Expr) {
715                    Ok(path) => {
716                        let span_after_type = parser_snapshot_after_type.token.span;
717                        let expr = mk_expr(
718                            self,
719                            lhs,
720                            self.mk_ty(path.span, TyKind::Path(None, path.clone())),
721                        );
722
723                        let args_span = self.look_ahead(1, |t| t.span).to(span_after_type);
724                        let suggestion = errors::ComparisonOrShiftInterpretedAsGenericSugg {
725                            left: expr.span.shrink_to_lo(),
726                            right: expr.span.shrink_to_hi(),
727                        };
728
729                        match self.token.kind {
730                            token::Lt => {
731                                self.dcx().emit_err(errors::ComparisonInterpretedAsGeneric {
732                                    comparison: self.token.span,
733                                    r#type: path,
734                                    args: args_span,
735                                    suggestion,
736                                })
737                            }
738                            token::Shl => self.dcx().emit_err(errors::ShiftInterpretedAsGeneric {
739                                shift: self.token.span,
740                                r#type: path,
741                                args: args_span,
742                                suggestion,
743                            }),
744                            _ => {
745                                // We can end up here even without `<` being the next token, for
746                                // example because `parse_ty_no_plus` returns `Err` on keywords,
747                                // but `parse_path` returns `Ok` on them due to error recovery.
748                                // Return original error and parser state.
749                                *self = parser_snapshot_after_type;
750                                return Err(type_err);
751                            }
752                        };
753
754                        // Successfully parsed the type path leaving a `<` yet to parse.
755                        type_err.cancel();
756
757                        // Keep `x as usize` as an expression in AST and continue parsing.
758                        expr
759                    }
760                    Err(path_err) => {
761                        // Couldn't parse as a path, return original error and parser state.
762                        path_err.cancel();
763                        *self = parser_snapshot_after_type;
764                        return Err(type_err);
765                    }
766                }
767            }
768        };
769
770        // Try to parse a postfix operator such as `.`, `?`, or index (`[]`)
771        // after a cast. If one is present, emit an error then return a valid
772        // parse tree; For something like `&x as T[0]` will be as if it was
773        // written `((&x) as T)[0]`.
774
775        let span = cast_expr.span;
776
777        let with_postfix = self.parse_expr_dot_or_call_with(AttrVec::new(), cast_expr, span)?;
778
779        // Check if an illegal postfix operator has been added after the cast.
780        // If the resulting expression is not a cast, it is an illegal postfix operator.
781        if !matches!(with_postfix.kind, ExprKind::Cast(_, _)) {
782            let msg = format!(
783                "cast cannot be followed by {}",
784                match with_postfix.kind {
785                    ExprKind::Index(..) => "indexing",
786                    ExprKind::Try(_) => "`?`",
787                    ExprKind::Field(_, _) => "a field access",
788                    ExprKind::MethodCall(_) => "a method call",
789                    ExprKind::Call(_, _) => "a function call",
790                    ExprKind::Await(_, _) => "`.await`",
791                    ExprKind::Use(_, _) => "`.use`",
792                    ExprKind::Yield(YieldKind::Postfix(_)) => "`.yield`",
793                    ExprKind::Match(_, _, MatchKind::Postfix) => "a postfix match",
794                    ExprKind::Err(_) => return Ok(with_postfix),
795                    _ => unreachable!(
796                        "did not expect {:?} as an illegal postfix operator following cast",
797                        with_postfix.kind
798                    ),
799                }
800            );
801            let mut err = self.dcx().struct_span_err(span, msg);
802
803            let suggest_parens = |err: &mut Diag<'_>| {
804                let suggestions = vec![
805                    (span.shrink_to_lo(), "(".to_string()),
806                    (span.shrink_to_hi(), ")".to_string()),
807                ];
808                err.multipart_suggestion(
809                    "try surrounding the expression in parentheses",
810                    suggestions,
811                    Applicability::MachineApplicable,
812                );
813            };
814
815            suggest_parens(&mut err);
816
817            err.emit();
818        };
819        Ok(with_postfix)
820    }
821
822    /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
823    fn parse_expr_borrow(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
824        self.expect_and()?;
825        let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
826        let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
827        let (borrow_kind, mutbl) = self.parse_borrow_modifiers();
828        let attrs = self.parse_outer_attributes()?;
829        let expr = if self.token.is_range_separator() {
830            self.parse_expr_prefix_range(attrs)
831        } else {
832            self.parse_expr_prefix(attrs)
833        }?;
834        let hi = self.interpolated_or_expr_span(&expr);
835        let span = lo.to(hi);
836        if let Some(lt) = lifetime {
837            self.error_remove_borrow_lifetime(span, lt.ident.span.until(expr.span));
838        }
839
840        // Add expected tokens if we parsed `&raw` as an expression.
841        // This will make sure we see "expected `const`, `mut`", and
842        // guides recovery in case we write `&raw expr`.
843        if borrow_kind == ast::BorrowKind::Ref
844            && mutbl == ast::Mutability::Not
845            && matches!(&expr.kind, ExprKind::Path(None, p) if *p == kw::Raw)
846        {
847            self.expected_token_types.insert(TokenType::KwMut);
848            self.expected_token_types.insert(TokenType::KwConst);
849        }
850
851        Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
852    }
853
854    fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
855        self.dcx().emit_err(errors::LifetimeInBorrowExpression { span, lifetime_span: lt_span });
856    }
857
858    /// Parse `mut?` or `[ raw | pin ] [ const | mut ]`.
859    fn parse_borrow_modifiers(&mut self) -> (ast::BorrowKind, ast::Mutability) {
860        if self.check_keyword(exp!(Raw)) && self.look_ahead(1, Token::is_mutability) {
861            // `raw [ const | mut ]`.
862            let found_raw = self.eat_keyword(exp!(Raw));
863            assert!(found_raw);
864            let mutability = self.parse_const_or_mut().unwrap();
865            (ast::BorrowKind::Raw, mutability)
866        } else if let Some((ast::Pinnedness::Pinned, mutbl)) = self.parse_pin_and_mut() {
867            // `pin [ const | mut ]`.
868            // `pin` has been gated in `self.parse_pin_and_mut()` so we don't
869            // need to gate it here.
870            (ast::BorrowKind::Pin, mutbl)
871        } else {
872            // `mut?`
873            (ast::BorrowKind::Ref, self.parse_mutability())
874        }
875    }
876
877    /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
878    fn parse_expr_dot_or_call(&mut self, attrs: AttrWrapper) -> PResult<'a, Box<Expr>> {
879        self.collect_tokens_for_expr(attrs, |this, attrs| {
880            let base = this.parse_expr_bottom()?;
881            let span = this.interpolated_or_expr_span(&base);
882            this.parse_expr_dot_or_call_with(attrs, base, span)
883        })
884    }
885
886    pub(super) fn parse_expr_dot_or_call_with(
887        &mut self,
888        mut attrs: ast::AttrVec,
889        mut e: Box<Expr>,
890        lo: Span,
891    ) -> PResult<'a, Box<Expr>> {
892        let mut res = ensure_sufficient_stack(|| {
893            loop {
894                let has_question =
895                    if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
896                        // We are using noexpect here because we don't expect a `?` directly after
897                        // a `return` which could be suggested otherwise.
898                        self.eat_noexpect(&token::Question)
899                    } else {
900                        self.eat(exp!(Question))
901                    };
902                if has_question {
903                    // `expr?`
904                    e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e));
905                    continue;
906                }
907                let has_dot = if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
908                    // We are using noexpect here because we don't expect a `.` directly after
909                    // a `return` which could be suggested otherwise.
910                    self.eat_noexpect(&token::Dot)
911                } else if self.token == TokenKind::RArrow && self.may_recover() {
912                    // Recovery for `expr->suffix`.
913                    self.bump();
914                    let span = self.prev_token.span;
915                    self.dcx().emit_err(errors::ExprRArrowCall { span });
916                    true
917                } else {
918                    self.eat(exp!(Dot))
919                };
920                if has_dot {
921                    // expr.f
922                    e = self.parse_dot_suffix_expr(lo, e)?;
923                    continue;
924                }
925                if self.expr_is_complete(&e) {
926                    return Ok(e);
927                }
928                e = match self.token.kind {
929                    token::OpenParen => self.parse_expr_fn_call(lo, e),
930                    token::OpenBracket => self.parse_expr_index(lo, e)?,
931                    _ => return Ok(e),
932                }
933            }
934        });
935
936        // Stitch the list of outer attributes onto the return value. A little
937        // bit ugly, but the best way given the current code structure.
938        if !attrs.is_empty()
939            && let Ok(expr) = &mut res
940        {
941            mem::swap(&mut expr.attrs, &mut attrs);
942            expr.attrs.extend(attrs)
943        }
944        res
945    }
946
947    pub(super) fn parse_dot_suffix_expr(
948        &mut self,
949        lo: Span,
950        base: Box<Expr>,
951    ) -> PResult<'a, Box<Expr>> {
952        // At this point we've consumed something like `expr.` and `self.token` holds the token
953        // after the dot.
954        match self.token.uninterpolate().kind {
955            token::Ident(..) => self.parse_dot_suffix(base, lo),
956            token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
957                let ident_span = self.token.span;
958                self.bump();
959                Ok(self.mk_expr_tuple_field_access(lo, ident_span, base, symbol, suffix))
960            }
961            token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
962                Ok(match self.break_up_float(symbol, self.token.span) {
963                    // 1e2
964                    DestructuredFloat::Single(sym, _sp) => {
965                        // `foo.1e2`: a single complete dot access, fully consumed. We end up with
966                        // the `1e2` token in `self.prev_token` and the following token in
967                        // `self.token`.
968                        let ident_span = self.token.span;
969                        self.bump();
970                        self.mk_expr_tuple_field_access(lo, ident_span, base, sym, suffix)
971                    }
972                    // 1.
973                    DestructuredFloat::TrailingDot(sym, ident_span, dot_span) => {
974                        // `foo.1.`: a single complete dot access and the start of another.
975                        // We end up with the `sym` (`1`) token in `self.prev_token` and a dot in
976                        // `self.token`.
977                        assert!(suffix.is_none());
978                        self.token = Token::new(token::Ident(sym, IdentIsRaw::No), ident_span);
979                        self.bump_with((Token::new(token::Dot, dot_span), self.token_spacing));
980                        self.mk_expr_tuple_field_access(lo, ident_span, base, sym, None)
981                    }
982                    // 1.2 | 1.2e3
983                    DestructuredFloat::MiddleDot(
984                        sym1,
985                        ident1_span,
986                        _dot_span,
987                        sym2,
988                        ident2_span,
989                    ) => {
990                        // `foo.1.2` (or `foo.1.2e3`): two complete dot accesses. We end up with
991                        // the `sym2` (`2` or `2e3`) token in `self.prev_token` and the following
992                        // token in `self.token`.
993                        let next_token2 =
994                            Token::new(token::Ident(sym2, IdentIsRaw::No), ident2_span);
995                        self.bump_with((next_token2, self.token_spacing));
996                        self.bump();
997                        let base1 =
998                            self.mk_expr_tuple_field_access(lo, ident1_span, base, sym1, None);
999                        self.mk_expr_tuple_field_access(lo, ident2_span, base1, sym2, suffix)
1000                    }
1001                    DestructuredFloat::Error => base,
1002                })
1003            }
1004            _ => {
1005                self.error_unexpected_after_dot();
1006                Ok(base)
1007            }
1008        }
1009    }
1010
1011    fn error_unexpected_after_dot(&self) {
1012        let actual = super::token_descr(&self.token);
1013        let span = self.token.span;
1014        let sm = self.psess.source_map();
1015        let (span, actual) = match (&self.token.kind, self.subparser_name) {
1016            (token::Eof, Some(_)) if let Ok(snippet) = sm.span_to_snippet(sm.next_point(span)) => {
1017                (span.shrink_to_hi(), format!("`{}`", snippet))
1018            }
1019            (token::CloseInvisible(InvisibleOrigin::MetaVar(_)), _) => {
1020                // No need to report an error. This case will only occur when parsing a pasted
1021                // metavariable, and we should have emitted an error when parsing the macro call in
1022                // the first place. E.g. in this code:
1023                // ```
1024                // macro_rules! m { ($e:expr) => { $e }; }
1025                //
1026                // fn main() {
1027                //     let f = 1;
1028                //     m!(f.);
1029                // }
1030                // ```
1031                // we'll get an error "unexpected token: `)` when parsing the `m!(f.)`, so we don't
1032                // want to issue a second error when parsing the expansion `«f.»` (where `«`/`»`
1033                // represent the invisible delimiters).
1034                self.dcx().span_delayed_bug(span, "bad dot expr in metavariable");
1035                return;
1036            }
1037            _ => (span, actual),
1038        };
1039        self.dcx().emit_err(errors::UnexpectedTokenAfterDot { span, actual });
1040    }
1041
1042    /// We need an identifier or integer, but the next token is a float.
1043    /// Break the float into components to extract the identifier or integer.
1044    ///
1045    /// See also [`TokenKind::break_two_token_op`] which does similar splitting of `>>` into `>`.
1046    //
1047    // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1048    //  parts unless those parts are processed immediately. `TokenCursor` should either
1049    //  support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1050    //  we should break everything including floats into more basic proc-macro style
1051    //  tokens in the lexer (probably preferable).
1052    pub(super) fn break_up_float(&self, float: Symbol, span: Span) -> DestructuredFloat {
1053        #[derive(Debug)]
1054        enum FloatComponent {
1055            IdentLike(String),
1056            Punct(char),
1057        }
1058        use FloatComponent::*;
1059
1060        let float_str = float.as_str();
1061        let mut components = Vec::new();
1062        let mut ident_like = String::new();
1063        for c in float_str.chars() {
1064            if c == '_' || c.is_ascii_alphanumeric() {
1065                ident_like.push(c);
1066            } else if matches!(c, '.' | '+' | '-') {
1067                if !ident_like.is_empty() {
1068                    components.push(IdentLike(mem::take(&mut ident_like)));
1069                }
1070                components.push(Punct(c));
1071            } else {
1072                panic!("unexpected character in a float token: {c:?}")
1073            }
1074        }
1075        if !ident_like.is_empty() {
1076            components.push(IdentLike(ident_like));
1077        }
1078
1079        // With proc macros the span can refer to anything, the source may be too short,
1080        // or too long, or non-ASCII. It only makes sense to break our span into components
1081        // if its underlying text is identical to our float literal.
1082        let can_take_span_apart =
1083            || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1084
1085        match &*components {
1086            // 1e2
1087            [IdentLike(i)] => {
1088                DestructuredFloat::Single(Symbol::intern(i), span)
1089            }
1090            // 1.
1091            [IdentLike(left), Punct('.')] => {
1092                let (left_span, dot_span) = if can_take_span_apart() {
1093                    let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len()));
1094                    let dot_span = span.with_lo(left_span.hi());
1095                    (left_span, dot_span)
1096                } else {
1097                    (span, span)
1098                };
1099                let left = Symbol::intern(left);
1100                DestructuredFloat::TrailingDot(left, left_span, dot_span)
1101            }
1102            // 1.2 | 1.2e3
1103            [IdentLike(left), Punct('.'), IdentLike(right)] => {
1104                let (left_span, dot_span, right_span) = if can_take_span_apart() {
1105                    let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len()));
1106                    let dot_span = span.with_lo(left_span.hi()).with_hi(left_span.hi() + BytePos(1));
1107                    let right_span = span.with_lo(dot_span.hi());
1108                    (left_span, dot_span, right_span)
1109                } else {
1110                    (span, span, span)
1111                };
1112                let left = Symbol::intern(left);
1113                let right = Symbol::intern(right);
1114                DestructuredFloat::MiddleDot(left, left_span, dot_span, right, right_span)
1115            }
1116            // 1e+ | 1e- (recovered)
1117            [IdentLike(_), Punct('+' | '-')] |
1118            // 1e+2 | 1e-2
1119            [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1120            // 1.2e+ | 1.2e-
1121            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1122            // 1.2e+3 | 1.2e-3
1123            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1124                // See the FIXME about `TokenCursor` above.
1125                self.error_unexpected_after_dot();
1126                DestructuredFloat::Error
1127            }
1128            _ => panic!("unexpected components in a float token: {components:?}"),
1129        }
1130    }
1131
1132    /// Parse the field access used in offset_of, matched by `$(e:expr)+`.
1133    /// Currently returns a list of idents. However, it should be possible in
1134    /// future to also do array indices, which might be arbitrary expressions.
1135    fn parse_floating_field_access(&mut self) -> PResult<'a, Vec<Ident>> {
1136        let mut fields = Vec::new();
1137        let mut trailing_dot = None;
1138
1139        loop {
1140            // This is expected to use a metavariable $(args:expr)+, but the builtin syntax
1141            // could be called directly. Calling `parse_expr` allows this function to only
1142            // consider `Expr`s.
1143            let expr = self.parse_expr()?;
1144            let mut current = &expr;
1145            let start_idx = fields.len();
1146            loop {
1147                match current.kind {
1148                    ExprKind::Field(ref left, right) => {
1149                        // Field access is read right-to-left.
1150                        fields.insert(start_idx, right);
1151                        trailing_dot = None;
1152                        current = left;
1153                    }
1154                    // Parse this both to give helpful error messages and to
1155                    // verify it can be done with this parser setup.
1156                    ExprKind::Index(ref left, ref _right, span) => {
1157                        self.dcx().emit_err(errors::ArrayIndexInOffsetOf(span));
1158                        current = left;
1159                    }
1160                    ExprKind::Lit(token::Lit {
1161                        kind: token::Float | token::Integer,
1162                        symbol,
1163                        suffix,
1164                    }) => {
1165                        if let Some(suffix) = suffix {
1166                            self.expect_no_tuple_index_suffix(current.span, suffix);
1167                        }
1168                        match self.break_up_float(symbol, current.span) {
1169                            // 1e2
1170                            DestructuredFloat::Single(sym, sp) => {
1171                                trailing_dot = None;
1172                                fields.insert(start_idx, Ident::new(sym, sp));
1173                            }
1174                            // 1.
1175                            DestructuredFloat::TrailingDot(sym, sym_span, dot_span) => {
1176                                assert!(suffix.is_none());
1177                                trailing_dot = Some(dot_span);
1178                                fields.insert(start_idx, Ident::new(sym, sym_span));
1179                            }
1180                            // 1.2 | 1.2e3
1181                            DestructuredFloat::MiddleDot(
1182                                symbol1,
1183                                span1,
1184                                _dot_span,
1185                                symbol2,
1186                                span2,
1187                            ) => {
1188                                trailing_dot = None;
1189                                fields.insert(start_idx, Ident::new(symbol2, span2));
1190                                fields.insert(start_idx, Ident::new(symbol1, span1));
1191                            }
1192                            DestructuredFloat::Error => {
1193                                trailing_dot = None;
1194                                fields.insert(start_idx, Ident::new(symbol, self.prev_token.span));
1195                            }
1196                        }
1197                        break;
1198                    }
1199                    ExprKind::Path(None, Path { ref segments, .. }) => {
1200                        match &segments[..] {
1201                            [PathSegment { ident, args: None, .. }] => {
1202                                trailing_dot = None;
1203                                fields.insert(start_idx, *ident)
1204                            }
1205                            _ => {
1206                                self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
1207                                break;
1208                            }
1209                        }
1210                        break;
1211                    }
1212                    _ => {
1213                        self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
1214                        break;
1215                    }
1216                }
1217            }
1218
1219            if self.token.kind.close_delim().is_some() || self.token.kind == token::Comma {
1220                break;
1221            } else if trailing_dot.is_none() {
1222                // This loop should only repeat if there is a trailing dot.
1223                self.dcx().emit_err(errors::InvalidOffsetOf(self.token.span));
1224                break;
1225            }
1226        }
1227        if let Some(dot) = trailing_dot {
1228            self.dcx().emit_err(errors::InvalidOffsetOf(dot));
1229        }
1230        Ok(fields.into_iter().collect())
1231    }
1232
1233    fn mk_expr_tuple_field_access(
1234        &self,
1235        lo: Span,
1236        ident_span: Span,
1237        base: Box<Expr>,
1238        field: Symbol,
1239        suffix: Option<Symbol>,
1240    ) -> Box<Expr> {
1241        if let Some(suffix) = suffix {
1242            self.expect_no_tuple_index_suffix(ident_span, suffix);
1243        }
1244        self.mk_expr(lo.to(ident_span), ExprKind::Field(base, Ident::new(field, ident_span)))
1245    }
1246
1247    /// Parse a function call expression, `expr(...)`.
1248    fn parse_expr_fn_call(&mut self, lo: Span, fun: Box<Expr>) -> Box<Expr> {
1249        let snapshot = if self.token == token::OpenParen {
1250            Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1251        } else {
1252            None
1253        };
1254        let open_paren = self.token.span;
1255
1256        let seq = self
1257            .parse_expr_paren_seq()
1258            .map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args)));
1259        match self.maybe_recover_struct_lit_bad_delims(lo, open_paren, seq, snapshot) {
1260            Ok(expr) => expr,
1261            Err(err) => self.recover_seq_parse_error(exp!(OpenParen), exp!(CloseParen), lo, err),
1262        }
1263    }
1264
1265    /// If we encounter a parser state that looks like the user has written a `struct` literal with
1266    /// parentheses instead of braces, recover the parser state and provide suggestions.
1267    #[instrument(skip(self, seq, snapshot), level = "trace")]
1268    fn maybe_recover_struct_lit_bad_delims(
1269        &mut self,
1270        lo: Span,
1271        open_paren: Span,
1272        seq: PResult<'a, Box<Expr>>,
1273        snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1274    ) -> PResult<'a, Box<Expr>> {
1275        match (self.may_recover(), seq, snapshot) {
1276            (true, Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1277                snapshot.bump(); // `(`
1278                match snapshot.parse_struct_fields(path.clone(), false, exp!(CloseParen)) {
1279                    Ok((fields, ..)) if snapshot.eat(exp!(CloseParen)) => {
1280                        // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1281                        // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1282                        self.restore_snapshot(snapshot);
1283                        let close_paren = self.prev_token.span;
1284                        let span = lo.to(close_paren);
1285                        // filter shorthand fields
1286                        let fields: Vec<_> =
1287                            fields.into_iter().filter(|field| !field.is_shorthand).collect();
1288
1289                        let guar = if !fields.is_empty() &&
1290                            // `token.kind` should not be compared here.
1291                            // This is because the `snapshot.token.kind` is treated as the same as
1292                            // that of the open delim in `TokenTreesReader::parse_token_tree`, even
1293                            // if they are different.
1294                            self.span_to_snippet(close_paren).is_ok_and(|snippet| snippet == ")")
1295                        {
1296                            err.cancel();
1297                            self.dcx()
1298                                .create_err(errors::ParenthesesWithStructFields {
1299                                    span,
1300                                    r#type: path,
1301                                    braces_for_struct: errors::BracesForStructLiteral {
1302                                        first: open_paren,
1303                                        second: close_paren,
1304                                    },
1305                                    no_fields_for_fn: errors::NoFieldsForFnCall {
1306                                        fields: fields
1307                                            .into_iter()
1308                                            .map(|field| field.span.until(field.expr.span))
1309                                            .collect(),
1310                                    },
1311                                })
1312                                .emit()
1313                        } else {
1314                            err.emit()
1315                        };
1316                        Ok(self.mk_expr_err(span, guar))
1317                    }
1318                    Ok(_) => Err(err),
1319                    Err(err2) => {
1320                        err2.cancel();
1321                        Err(err)
1322                    }
1323                }
1324            }
1325            (_, seq, _) => seq,
1326        }
1327    }
1328
1329    /// Parse an indexing expression `expr[...]`.
1330    fn parse_expr_index(&mut self, lo: Span, base: Box<Expr>) -> PResult<'a, Box<Expr>> {
1331        let prev_span = self.prev_token.span;
1332        let open_delim_span = self.token.span;
1333        self.bump(); // `[`
1334        let index = self.parse_expr()?;
1335        self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?;
1336        self.expect(exp!(CloseBracket))?;
1337        Ok(self.mk_expr(
1338            lo.to(self.prev_token.span),
1339            self.mk_index(base, index, open_delim_span.to(self.prev_token.span)),
1340        ))
1341    }
1342
1343    /// Assuming we have just parsed `.`, continue parsing into an expression.
1344    fn parse_dot_suffix(&mut self, self_arg: Box<Expr>, lo: Span) -> PResult<'a, Box<Expr>> {
1345        if self.token_uninterpolated_span().at_least_rust_2018() && self.eat_keyword(exp!(Await)) {
1346            return Ok(self.mk_await_expr(self_arg, lo));
1347        }
1348
1349        if self.eat_keyword(exp!(Use)) {
1350            let use_span = self.prev_token.span;
1351            self.psess.gated_spans.gate(sym::ergonomic_clones, use_span);
1352            return Ok(self.mk_use_expr(self_arg, lo));
1353        }
1354
1355        // Post-fix match
1356        if self.eat_keyword(exp!(Match)) {
1357            let match_span = self.prev_token.span;
1358            self.psess.gated_spans.gate(sym::postfix_match, match_span);
1359            return self.parse_match_block(lo, match_span, self_arg, MatchKind::Postfix);
1360        }
1361
1362        // Parse a postfix `yield`.
1363        if self.eat_keyword(exp!(Yield)) {
1364            let yield_span = self.prev_token.span;
1365            self.psess.gated_spans.gate(sym::yield_expr, yield_span);
1366            return Ok(
1367                self.mk_expr(lo.to(yield_span), ExprKind::Yield(YieldKind::Postfix(self_arg)))
1368            );
1369        }
1370
1371        let fn_span_lo = self.token.span;
1372        let mut seg = self.parse_path_segment(PathStyle::Expr, None)?;
1373        self.check_trailing_angle_brackets(&seg, &[exp!(OpenParen)]);
1374        self.check_turbofish_missing_angle_brackets(&mut seg);
1375
1376        if self.check(exp!(OpenParen)) {
1377            // Method call `expr.f()`
1378            let args = self.parse_expr_paren_seq()?;
1379            let fn_span = fn_span_lo.to(self.prev_token.span);
1380            let span = lo.to(self.prev_token.span);
1381            Ok(self.mk_expr(
1382                span,
1383                ExprKind::MethodCall(Box::new(ast::MethodCall {
1384                    seg,
1385                    receiver: self_arg,
1386                    args,
1387                    span: fn_span,
1388                })),
1389            ))
1390        } else {
1391            // Field access `expr.f`
1392            let span = lo.to(self.prev_token.span);
1393            if let Some(args) = seg.args {
1394                // See `StashKey::GenericInFieldExpr` for more info on why we stash this.
1395                self.dcx()
1396                    .create_err(errors::FieldExpressionWithGeneric(args.span()))
1397                    .stash(seg.ident.span, StashKey::GenericInFieldExpr);
1398            }
1399
1400            Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident)))
1401        }
1402    }
1403
1404    /// At the bottom (top?) of the precedence hierarchy,
1405    /// Parses things like parenthesized exprs, macros, `return`, etc.
1406    ///
1407    /// N.B., this does not parse outer attributes, and is private because it only works
1408    /// correctly if called from `parse_expr_dot_or_call`.
1409    fn parse_expr_bottom(&mut self) -> PResult<'a, Box<Expr>> {
1410        maybe_recover_from_interpolated_ty_qpath!(self, true);
1411
1412        let span = self.token.span;
1413        if let Some(expr) = self.eat_metavar_seq_with_matcher(
1414            |mv_kind| matches!(mv_kind, MetaVarKind::Expr { .. }),
1415            |this| {
1416                // Force collection (as opposed to just `parse_expr`) is required to avoid the
1417                // attribute duplication seen in #138478.
1418                let expr = this.parse_expr_force_collect();
1419                // FIXME(nnethercote) Sometimes with expressions we get a trailing comma, possibly
1420                // related to the FIXME in `collect_tokens_for_expr`. Examples are the multi-line
1421                // `assert_eq!` calls involving arguments annotated with `#[rustfmt::skip]` in
1422                // `compiler/rustc_index/src/bit_set/tests.rs`.
1423                if this.token.kind == token::Comma {
1424                    this.bump();
1425                }
1426                expr
1427            },
1428        ) {
1429            return Ok(expr);
1430        } else if let Some(lit) =
1431            self.eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
1432        {
1433            return Ok(lit);
1434        } else if let Some(block) =
1435            self.eat_metavar_seq(MetaVarKind::Block, |this| this.parse_block())
1436        {
1437            return Ok(self.mk_expr(span, ExprKind::Block(block, None)));
1438        } else if let Some(path) =
1439            self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
1440        {
1441            return Ok(self.mk_expr(span, ExprKind::Path(None, path)));
1442        }
1443
1444        // Outer attributes are already parsed and will be
1445        // added to the return value after the fact.
1446
1447        let restrictions = self.restrictions;
1448        self.with_res(restrictions - Restrictions::ALLOW_LET, |this| {
1449            // Note: adding new syntax here? Don't forget to adjust `TokenKind::can_begin_expr()`.
1450            let lo = this.token.span;
1451            if let token::Literal(_) = this.token.kind {
1452                // This match arm is a special-case of the `_` match arm below and
1453                // could be removed without changing functionality, but it's faster
1454                // to have it here, especially for programs with large constants.
1455                this.parse_expr_lit()
1456            } else if this.check(exp!(OpenParen)) {
1457                this.parse_expr_tuple_parens(restrictions)
1458            } else if this.check(exp!(OpenBrace)) {
1459                this.parse_expr_block(None, lo, BlockCheckMode::Default)
1460            } else if this.check(exp!(Or)) || this.check(exp!(OrOr)) {
1461                this.parse_expr_closure().map_err(|mut err| {
1462                    // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1463                    // then suggest parens around the lhs.
1464                    if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
1465                        err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
1466                    }
1467                    err
1468                })
1469            } else if this.check(exp!(OpenBracket)) {
1470                this.parse_expr_array_or_repeat(exp!(CloseBracket))
1471            } else if this.is_builtin() {
1472                this.parse_expr_builtin()
1473            } else if this.check_path() {
1474                this.parse_expr_path_start()
1475            } else if this.check_keyword(exp!(Move))
1476                || this.check_keyword(exp!(Use))
1477                || this.check_keyword(exp!(Static))
1478                || this.check_const_closure()
1479            {
1480                this.parse_expr_closure()
1481            } else if this.eat_keyword(exp!(If)) {
1482                this.parse_expr_if()
1483            } else if this.check_keyword(exp!(For)) {
1484                if this.choose_generics_over_qpath(1) {
1485                    this.parse_expr_closure()
1486                } else {
1487                    assert!(this.eat_keyword(exp!(For)));
1488                    this.parse_expr_for(None, lo)
1489                }
1490            } else if this.eat_keyword(exp!(While)) {
1491                this.parse_expr_while(None, lo)
1492            } else if let Some(label) = this.eat_label() {
1493                this.parse_expr_labeled(label, true)
1494            } else if this.eat_keyword(exp!(Loop)) {
1495                this.parse_expr_loop(None, lo).map_err(|mut err| {
1496                    err.span_label(lo, "while parsing this `loop` expression");
1497                    err
1498                })
1499            } else if this.eat_keyword(exp!(Match)) {
1500                this.parse_expr_match().map_err(|mut err| {
1501                    err.span_label(lo, "while parsing this `match` expression");
1502                    err
1503                })
1504            } else if this.eat_keyword(exp!(Unsafe)) {
1505                this.parse_expr_block(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err(
1506                    |mut err| {
1507                        err.span_label(lo, "while parsing this `unsafe` expression");
1508                        err
1509                    },
1510                )
1511            } else if this.check_inline_const(0) {
1512                this.parse_const_block(lo, false)
1513            } else if this.may_recover() && this.is_do_catch_block() {
1514                this.recover_do_catch()
1515            } else if this.is_try_block() {
1516                this.expect_keyword(exp!(Try))?;
1517                this.parse_try_block(lo)
1518            } else if this.eat_keyword(exp!(Return)) {
1519                this.parse_expr_return()
1520            } else if this.eat_keyword(exp!(Continue)) {
1521                this.parse_expr_continue(lo)
1522            } else if this.eat_keyword(exp!(Break)) {
1523                this.parse_expr_break()
1524            } else if this.eat_keyword(exp!(Yield)) {
1525                this.parse_expr_yield()
1526            } else if this.is_do_yeet() {
1527                this.parse_expr_yeet()
1528            } else if this.eat_keyword(exp!(Become)) {
1529                this.parse_expr_become()
1530            } else if this.check_keyword(exp!(Let)) {
1531                this.parse_expr_let(restrictions)
1532            } else if this.eat_keyword(exp!(Underscore)) {
1533                Ok(this.mk_expr(this.prev_token.span, ExprKind::Underscore))
1534            } else if this.token_uninterpolated_span().at_least_rust_2018() {
1535                // `Span::at_least_rust_2018()` is somewhat expensive; don't get it repeatedly.
1536                let at_async = this.check_keyword(exp!(Async));
1537                // check for `gen {}` and `gen move {}`
1538                // or `async gen {}` and `async gen move {}`
1539                // FIXME: (async) gen closures aren't yet parsed.
1540                // FIXME(gen_blocks): Parse `gen async` and suggest swap
1541                if this.token_uninterpolated_span().at_least_rust_2024()
1542                    && this.is_gen_block(kw::Gen, at_async as usize)
1543                {
1544                    this.parse_gen_block()
1545                // Check for `async {` and `async move {`,
1546                } else if this.is_gen_block(kw::Async, 0) {
1547                    this.parse_gen_block()
1548                } else if at_async {
1549                    this.parse_expr_closure()
1550                } else if this.eat_keyword_noexpect(kw::Await) {
1551                    this.recover_incorrect_await_syntax(lo)
1552                } else {
1553                    this.parse_expr_lit()
1554                }
1555            } else {
1556                this.parse_expr_lit()
1557            }
1558        })
1559    }
1560
1561    fn parse_expr_lit(&mut self) -> PResult<'a, Box<Expr>> {
1562        let lo = self.token.span;
1563        match self.parse_opt_token_lit() {
1564            Some((token_lit, _)) => {
1565                let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit));
1566                self.maybe_recover_from_bad_qpath(expr)
1567            }
1568            None => self.try_macro_suggestion(),
1569        }
1570    }
1571
1572    fn parse_expr_tuple_parens(&mut self, restrictions: Restrictions) -> PResult<'a, Box<Expr>> {
1573        let lo = self.token.span;
1574        self.expect(exp!(OpenParen))?;
1575        let (es, trailing_comma) = match self.parse_seq_to_end(
1576            exp!(CloseParen),
1577            SeqSep::trailing_allowed(exp!(Comma)),
1578            |p| p.parse_expr_catch_underscore(restrictions.intersection(Restrictions::ALLOW_LET)),
1579        ) {
1580            Ok(x) => x,
1581            Err(err) => {
1582                return Ok(self.recover_seq_parse_error(
1583                    exp!(OpenParen),
1584                    exp!(CloseParen),
1585                    lo,
1586                    err,
1587                ));
1588            }
1589        };
1590        let kind = if es.len() == 1 && matches!(trailing_comma, Trailing::No) {
1591            // `(e)` is parenthesized `e`.
1592            ExprKind::Paren(es.into_iter().next().unwrap())
1593        } else {
1594            // `(e,)` is a tuple with only one field, `e`.
1595            ExprKind::Tup(es)
1596        };
1597        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1598        self.maybe_recover_from_bad_qpath(expr)
1599    }
1600
1601    fn parse_expr_array_or_repeat(&mut self, close: ExpTokenPair) -> PResult<'a, Box<Expr>> {
1602        let lo = self.token.span;
1603        self.bump(); // `[` or other open delim
1604
1605        let kind = if self.eat(close) {
1606            // Empty vector
1607            ExprKind::Array(ThinVec::new())
1608        } else {
1609            // Non-empty vector
1610            let first_expr = self.parse_expr()?;
1611            if self.eat(exp!(Semi)) {
1612                // Repeating array syntax: `[ 0; 512 ]`
1613                let count = self.parse_expr_anon_const()?;
1614                self.expect(close)?;
1615                ExprKind::Repeat(first_expr, count)
1616            } else if self.eat(exp!(Comma)) {
1617                // Vector with two or more elements.
1618                let sep = SeqSep::trailing_allowed(exp!(Comma));
1619                let (mut exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1620                exprs.insert(0, first_expr);
1621                ExprKind::Array(exprs)
1622            } else {
1623                // Vector with one element
1624                self.expect(close)?;
1625                ExprKind::Array(thin_vec![first_expr])
1626            }
1627        };
1628        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1629        self.maybe_recover_from_bad_qpath(expr)
1630    }
1631
1632    fn parse_expr_path_start(&mut self) -> PResult<'a, Box<Expr>> {
1633        let maybe_eq_tok = self.prev_token;
1634        let (qself, path) = if self.eat_lt() {
1635            let lt_span = self.prev_token.span;
1636            let (qself, path) = self.parse_qpath(PathStyle::Expr).map_err(|mut err| {
1637                // Suggests using '<=' if there is an error parsing qpath when the previous token
1638                // is an '=' token. Only emits suggestion if the '<' token and '=' token are
1639                // directly adjacent (i.e. '=<')
1640                if maybe_eq_tok == TokenKind::Eq && maybe_eq_tok.span.hi() == lt_span.lo() {
1641                    let eq_lt = maybe_eq_tok.span.to(lt_span);
1642                    err.span_suggestion(eq_lt, "did you mean", "<=", Applicability::Unspecified);
1643                }
1644                err
1645            })?;
1646            (Some(qself), path)
1647        } else {
1648            (None, self.parse_path(PathStyle::Expr)?)
1649        };
1650
1651        // `!`, as an operator, is prefix, so we know this isn't that.
1652        let (span, kind) = if self.eat(exp!(Bang)) {
1653            // MACRO INVOCATION expression
1654            if qself.is_some() {
1655                self.dcx().emit_err(errors::MacroInvocationWithQualifiedPath(path.span));
1656            }
1657            let lo = path.span;
1658            let mac = Box::new(MacCall { path, args: self.parse_delim_args()? });
1659            (lo.to(self.prev_token.span), ExprKind::MacCall(mac))
1660        } else if self.check(exp!(OpenBrace))
1661            && let Some(expr) = self.maybe_parse_struct_expr(&qself, &path)
1662        {
1663            if qself.is_some() {
1664                self.psess.gated_spans.gate(sym::more_qualified_paths, path.span);
1665            }
1666            return expr;
1667        } else {
1668            (path.span, ExprKind::Path(qself, path))
1669        };
1670
1671        let expr = self.mk_expr(span, kind);
1672        self.maybe_recover_from_bad_qpath(expr)
1673    }
1674
1675    /// Parse `'label: $expr`. The label is already parsed.
1676    pub(super) fn parse_expr_labeled(
1677        &mut self,
1678        label_: Label,
1679        mut consume_colon: bool,
1680    ) -> PResult<'a, Box<Expr>> {
1681        let lo = label_.ident.span;
1682        let label = Some(label_);
1683        let ate_colon = self.eat(exp!(Colon));
1684        let tok_sp = self.token.span;
1685        let expr = if self.eat_keyword(exp!(While)) {
1686            self.parse_expr_while(label, lo)
1687        } else if self.eat_keyword(exp!(For)) {
1688            self.parse_expr_for(label, lo)
1689        } else if self.eat_keyword(exp!(Loop)) {
1690            self.parse_expr_loop(label, lo)
1691        } else if self.check_noexpect(&token::OpenBrace) || self.token.is_metavar_block() {
1692            self.parse_expr_block(label, lo, BlockCheckMode::Default)
1693        } else if !ate_colon
1694            && self.may_recover()
1695            && (self.token.kind.close_delim().is_some() || self.token.is_punct())
1696            && could_be_unclosed_char_literal(label_.ident)
1697        {
1698            let (lit, _) =
1699                self.recover_unclosed_char(label_.ident, Parser::mk_token_lit_char, |self_| {
1700                    self_.dcx().create_err(errors::UnexpectedTokenAfterLabel {
1701                        span: self_.token.span,
1702                        remove_label: None,
1703                        enclose_in_block: None,
1704                    })
1705                });
1706            consume_colon = false;
1707            Ok(self.mk_expr(lo, ExprKind::Lit(lit)))
1708        } else if !ate_colon
1709            && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1710        {
1711            // We're probably inside of a `Path<'a>` that needs a turbofish
1712            let guar = self.dcx().emit_err(errors::UnexpectedTokenAfterLabel {
1713                span: self.token.span,
1714                remove_label: None,
1715                enclose_in_block: None,
1716            });
1717            consume_colon = false;
1718            Ok(self.mk_expr_err(lo, guar))
1719        } else {
1720            let mut err = errors::UnexpectedTokenAfterLabel {
1721                span: self.token.span,
1722                remove_label: None,
1723                enclose_in_block: None,
1724            };
1725
1726            // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1727            let expr = self.parse_expr().map(|expr| {
1728                let span = expr.span;
1729
1730                let found_labeled_breaks = {
1731                    struct FindLabeledBreaksVisitor;
1732
1733                    impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1734                        type Result = ControlFlow<()>;
1735                        fn visit_expr(&mut self, ex: &'ast Expr) -> ControlFlow<()> {
1736                            if let ExprKind::Break(Some(_label), _) = ex.kind {
1737                                ControlFlow::Break(())
1738                            } else {
1739                                walk_expr(self, ex)
1740                            }
1741                        }
1742                    }
1743
1744                    FindLabeledBreaksVisitor.visit_expr(&expr).is_break()
1745                };
1746
1747                // Suggestion involves adding a labeled block.
1748                //
1749                // If there are no breaks that may use this label, suggest removing the label and
1750                // recover to the unmodified expression.
1751                if !found_labeled_breaks {
1752                    err.remove_label = Some(lo.until(span));
1753
1754                    return expr;
1755                }
1756
1757                err.enclose_in_block = Some(errors::UnexpectedTokenAfterLabelSugg {
1758                    left: span.shrink_to_lo(),
1759                    right: span.shrink_to_hi(),
1760                });
1761
1762                // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to suppress future errors about `break 'label`.
1763                let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1764                let blk = self.mk_block(thin_vec![stmt], BlockCheckMode::Default, span);
1765                self.mk_expr(span, ExprKind::Block(blk, label))
1766            });
1767
1768            self.dcx().emit_err(err);
1769            expr
1770        }?;
1771
1772        if !ate_colon && consume_colon {
1773            self.dcx().emit_err(errors::RequireColonAfterLabeledExpression {
1774                span: expr.span,
1775                label: lo,
1776                label_end: lo.between(tok_sp),
1777            });
1778        }
1779
1780        Ok(expr)
1781    }
1782
1783    /// Emit an error when a char is parsed as a lifetime or label because of a missing quote.
1784    pub(super) fn recover_unclosed_char<L>(
1785        &self,
1786        ident: Ident,
1787        mk_lit_char: impl FnOnce(Symbol, Span) -> L,
1788        err: impl FnOnce(&Self) -> Diag<'a>,
1789    ) -> L {
1790        assert!(could_be_unclosed_char_literal(ident));
1791        self.dcx()
1792            .try_steal_modify_and_emit_err(ident.span, StashKey::LifetimeIsChar, |err| {
1793                err.span_suggestion_verbose(
1794                    ident.span.shrink_to_hi(),
1795                    "add `'` to close the char literal",
1796                    "'",
1797                    Applicability::MaybeIncorrect,
1798                );
1799            })
1800            .unwrap_or_else(|| {
1801                err(self)
1802                    .with_span_suggestion_verbose(
1803                        ident.span.shrink_to_hi(),
1804                        "add `'` to close the char literal",
1805                        "'",
1806                        Applicability::MaybeIncorrect,
1807                    )
1808                    .emit()
1809            });
1810        let name = ident.without_first_quote().name;
1811        mk_lit_char(name, ident.span)
1812    }
1813
1814    /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1815    fn recover_do_catch(&mut self) -> PResult<'a, Box<Expr>> {
1816        let lo = self.token.span;
1817
1818        self.bump(); // `do`
1819        self.bump(); // `catch`
1820
1821        let span = lo.to(self.prev_token.span);
1822        self.dcx().emit_err(errors::DoCatchSyntaxRemoved { span });
1823
1824        self.parse_try_block(lo)
1825    }
1826
1827    /// Parse an expression if the token can begin one.
1828    fn parse_expr_opt(&mut self) -> PResult<'a, Option<Box<Expr>>> {
1829        Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1830    }
1831
1832    /// Parse `"return" expr?`.
1833    fn parse_expr_return(&mut self) -> PResult<'a, Box<Expr>> {
1834        let lo = self.prev_token.span;
1835        let kind = ExprKind::Ret(self.parse_expr_opt()?);
1836        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1837        self.maybe_recover_from_bad_qpath(expr)
1838    }
1839
1840    /// Parse `"do" "yeet" expr?`.
1841    fn parse_expr_yeet(&mut self) -> PResult<'a, Box<Expr>> {
1842        let lo = self.token.span;
1843
1844        self.bump(); // `do`
1845        self.bump(); // `yeet`
1846
1847        let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1848
1849        let span = lo.to(self.prev_token.span);
1850        self.psess.gated_spans.gate(sym::yeet_expr, span);
1851        let expr = self.mk_expr(span, kind);
1852        self.maybe_recover_from_bad_qpath(expr)
1853    }
1854
1855    /// Parse `"become" expr`, with `"become"` token already eaten.
1856    fn parse_expr_become(&mut self) -> PResult<'a, Box<Expr>> {
1857        let lo = self.prev_token.span;
1858        let kind = ExprKind::Become(self.parse_expr()?);
1859        let span = lo.to(self.prev_token.span);
1860        self.psess.gated_spans.gate(sym::explicit_tail_calls, span);
1861        let expr = self.mk_expr(span, kind);
1862        self.maybe_recover_from_bad_qpath(expr)
1863    }
1864
1865    /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1866    /// If the label is followed immediately by a `:` token, the label and `:` are
1867    /// parsed as part of the expression (i.e. a labeled loop). The language team has
1868    /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1869    /// the break expression of an unlabeled break is a labeled loop (as in
1870    /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1871    /// expression only gets a warning for compatibility reasons; and a labeled break
1872    /// with a labeled loop does not even get a warning because there is no ambiguity.
1873    fn parse_expr_break(&mut self) -> PResult<'a, Box<Expr>> {
1874        let lo = self.prev_token.span;
1875        let mut label = self.eat_label();
1876        let kind = if self.token == token::Colon
1877            && let Some(label) = label.take()
1878        {
1879            // The value expression can be a labeled loop, see issue #86948, e.g.:
1880            // `loop { break 'label: loop { break 'label 42; }; }`
1881            let lexpr = self.parse_expr_labeled(label, true)?;
1882            self.dcx().emit_err(errors::LabeledLoopInBreak {
1883                span: lexpr.span,
1884                sub: errors::WrapInParentheses::Expression {
1885                    left: lexpr.span.shrink_to_lo(),
1886                    right: lexpr.span.shrink_to_hi(),
1887                },
1888            });
1889            Some(lexpr)
1890        } else if self.token != token::OpenBrace
1891            || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1892        {
1893            let mut expr = self.parse_expr_opt()?;
1894            if let Some(expr) = &mut expr {
1895                if label.is_some()
1896                    && match &expr.kind {
1897                        ExprKind::While(_, _, None)
1898                        | ExprKind::ForLoop { label: None, .. }
1899                        | ExprKind::Loop(_, None, _) => true,
1900                        ExprKind::Block(block, None) => {
1901                            matches!(block.rules, BlockCheckMode::Default)
1902                        }
1903                        _ => false,
1904                    }
1905                {
1906                    self.psess.buffer_lint(
1907                        BREAK_WITH_LABEL_AND_LOOP,
1908                        lo.to(expr.span),
1909                        ast::CRATE_NODE_ID,
1910                        BuiltinLintDiag::BreakWithLabelAndLoop(expr.span),
1911                    );
1912                }
1913
1914                // Recover `break label aaaaa`
1915                if self.may_recover()
1916                    && let ExprKind::Path(None, p) = &expr.kind
1917                    && let [segment] = &*p.segments
1918                    && let &ast::PathSegment { ident, args: None, .. } = segment
1919                    && let Some(next) = self.parse_expr_opt()?
1920                {
1921                    label = Some(self.recover_ident_into_label(ident));
1922                    *expr = next;
1923                }
1924            }
1925
1926            expr
1927        } else {
1928            None
1929        };
1930        let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind));
1931        self.maybe_recover_from_bad_qpath(expr)
1932    }
1933
1934    /// Parse `"continue" label?`.
1935    fn parse_expr_continue(&mut self, lo: Span) -> PResult<'a, Box<Expr>> {
1936        let mut label = self.eat_label();
1937
1938        // Recover `continue label` -> `continue 'label`
1939        if self.may_recover()
1940            && label.is_none()
1941            && let Some((ident, _)) = self.token.ident()
1942        {
1943            self.bump();
1944            label = Some(self.recover_ident_into_label(ident));
1945        }
1946
1947        let kind = ExprKind::Continue(label);
1948        Ok(self.mk_expr(lo.to(self.prev_token.span), kind))
1949    }
1950
1951    /// Parse `"yield" expr?`.
1952    fn parse_expr_yield(&mut self) -> PResult<'a, Box<Expr>> {
1953        let lo = self.prev_token.span;
1954        let kind = ExprKind::Yield(YieldKind::Prefix(self.parse_expr_opt()?));
1955        let span = lo.to(self.prev_token.span);
1956        self.psess.gated_spans.gate(sym::yield_expr, span);
1957        let expr = self.mk_expr(span, kind);
1958        self.maybe_recover_from_bad_qpath(expr)
1959    }
1960
1961    /// Parse `builtin # ident(args,*)`.
1962    fn parse_expr_builtin(&mut self) -> PResult<'a, Box<Expr>> {
1963        self.parse_builtin(|this, lo, ident| {
1964            Ok(match ident.name {
1965                sym::offset_of => Some(this.parse_expr_offset_of(lo)?),
1966                sym::type_ascribe => Some(this.parse_expr_type_ascribe(lo)?),
1967                sym::wrap_binder => {
1968                    Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Wrap)?)
1969                }
1970                sym::unwrap_binder => {
1971                    Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Unwrap)?)
1972                }
1973                _ => None,
1974            })
1975        })
1976    }
1977
1978    pub(crate) fn parse_builtin<T>(
1979        &mut self,
1980        parse: impl FnOnce(&mut Parser<'a>, Span, Ident) -> PResult<'a, Option<T>>,
1981    ) -> PResult<'a, T> {
1982        let lo = self.token.span;
1983
1984        self.bump(); // `builtin`
1985        self.bump(); // `#`
1986
1987        let Some((ident, IdentIsRaw::No)) = self.token.ident() else {
1988            let err = self.dcx().create_err(errors::ExpectedBuiltinIdent { span: self.token.span });
1989            return Err(err);
1990        };
1991        self.psess.gated_spans.gate(sym::builtin_syntax, ident.span);
1992        self.bump();
1993
1994        self.expect(exp!(OpenParen))?;
1995        let ret = if let Some(res) = parse(self, lo, ident)? {
1996            Ok(res)
1997        } else {
1998            let err = self.dcx().create_err(errors::UnknownBuiltinConstruct {
1999                span: lo.to(ident.span),
2000                name: ident,
2001            });
2002            return Err(err);
2003        };
2004        self.expect(exp!(CloseParen))?;
2005
2006        ret
2007    }
2008
2009    /// Built-in macro for `offset_of!` expressions.
2010    pub(crate) fn parse_expr_offset_of(&mut self, lo: Span) -> PResult<'a, Box<Expr>> {
2011        let container = self.parse_ty()?;
2012        self.expect(exp!(Comma))?;
2013
2014        let fields = self.parse_floating_field_access()?;
2015        let trailing_comma = self.eat_noexpect(&TokenKind::Comma);
2016
2017        if let Err(mut e) = self.expect_one_of(&[], &[exp!(CloseParen)]) {
2018            if trailing_comma {
2019                e.note("unexpected third argument to offset_of");
2020            } else {
2021                e.note("offset_of expects dot-separated field and variant names");
2022            }
2023            e.emit();
2024        }
2025
2026        // Eat tokens until the macro call ends.
2027        if self.may_recover() {
2028            while !self.token.kind.is_close_delim_or_eof() {
2029                self.bump();
2030            }
2031        }
2032
2033        let span = lo.to(self.token.span);
2034        Ok(self.mk_expr(span, ExprKind::OffsetOf(container, fields)))
2035    }
2036
2037    /// Built-in macro for type ascription expressions.
2038    pub(crate) fn parse_expr_type_ascribe(&mut self, lo: Span) -> PResult<'a, Box<Expr>> {
2039        let expr = self.parse_expr()?;
2040        self.expect(exp!(Comma))?;
2041        let ty = self.parse_ty()?;
2042        let span = lo.to(self.token.span);
2043        Ok(self.mk_expr(span, ExprKind::Type(expr, ty)))
2044    }
2045
2046    pub(crate) fn parse_expr_unsafe_binder_cast(
2047        &mut self,
2048        lo: Span,
2049        kind: UnsafeBinderCastKind,
2050    ) -> PResult<'a, Box<Expr>> {
2051        let expr = self.parse_expr()?;
2052        let ty = if self.eat(exp!(Comma)) { Some(self.parse_ty()?) } else { None };
2053        let span = lo.to(self.token.span);
2054        Ok(self.mk_expr(span, ExprKind::UnsafeBinderCast(kind, expr, ty)))
2055    }
2056
2057    /// Returns a string literal if the next token is a string literal.
2058    /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
2059    /// and returns `None` if the next token is not literal at all.
2060    pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> {
2061        match self.parse_opt_meta_item_lit() {
2062            Some(lit) => match lit.kind {
2063                ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
2064                    style,
2065                    symbol: lit.symbol,
2066                    suffix: lit.suffix,
2067                    span: lit.span,
2068                    symbol_unescaped,
2069                }),
2070                _ => Err(Some(lit)),
2071            },
2072            None => Err(None),
2073        }
2074    }
2075
2076    pub(crate) fn mk_token_lit_char(name: Symbol, span: Span) -> (token::Lit, Span) {
2077        (token::Lit { symbol: name, suffix: None, kind: token::Char }, span)
2078    }
2079
2080    fn mk_meta_item_lit_char(name: Symbol, span: Span) -> MetaItemLit {
2081        ast::MetaItemLit {
2082            symbol: name,
2083            suffix: None,
2084            kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')),
2085            span,
2086        }
2087    }
2088
2089    fn handle_missing_lit<L>(
2090        &mut self,
2091        mk_lit_char: impl FnOnce(Symbol, Span) -> L,
2092    ) -> PResult<'a, L> {
2093        let token = self.token;
2094        let err = |self_: &Self| {
2095            let msg = format!("unexpected token: {}", super::token_descr(&token));
2096            self_.dcx().struct_span_err(token.span, msg)
2097        };
2098        // On an error path, eagerly consider a lifetime to be an unclosed character lit, if that
2099        // makes sense.
2100        if let Some((ident, IdentIsRaw::No)) = self.token.lifetime()
2101            && could_be_unclosed_char_literal(ident)
2102        {
2103            let lt = self.expect_lifetime();
2104            Ok(self.recover_unclosed_char(lt.ident, mk_lit_char, err))
2105        } else {
2106            Err(err(self))
2107        }
2108    }
2109
2110    pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> {
2111        self.parse_opt_token_lit()
2112            .ok_or(())
2113            .or_else(|()| self.handle_missing_lit(Parser::mk_token_lit_char))
2114    }
2115
2116    pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> {
2117        self.parse_opt_meta_item_lit()
2118            .ok_or(())
2119            .or_else(|()| self.handle_missing_lit(Parser::mk_meta_item_lit_char))
2120    }
2121
2122    fn recover_after_dot(&mut self) {
2123        if self.token == token::Dot {
2124            // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
2125            // dot would follow an optional literal, so we do this unconditionally.
2126            let recovered = self.look_ahead(1, |next_token| {
2127                // If it's an integer that looks like a float, then recover as such.
2128                //
2129                // We will never encounter the exponent part of a floating
2130                // point literal here, since there's no use of the exponent
2131                // syntax that also constitutes a valid integer, so we need
2132                // not check for that.
2133                if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
2134                    next_token.kind
2135                    && suffix.is_none_or(|s| s == sym::f32 || s == sym::f64)
2136                    && symbol.as_str().chars().all(|c| c.is_numeric() || c == '_')
2137                    && self.token.span.hi() == next_token.span.lo()
2138                {
2139                    let s = String::from("0.") + symbol.as_str();
2140                    let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
2141                    Some(Token::new(kind, self.token.span.to(next_token.span)))
2142                } else {
2143                    None
2144                }
2145            });
2146            if let Some(recovered) = recovered {
2147                self.dcx().emit_err(errors::FloatLiteralRequiresIntegerPart {
2148                    span: recovered.span,
2149                    suggestion: recovered.span.shrink_to_lo(),
2150                });
2151                self.bump();
2152                self.token = recovered;
2153            }
2154        }
2155    }
2156
2157    /// Keep this in sync with `Token::can_begin_literal_maybe_minus` and
2158    /// `Lit::from_token` (excluding unary negation).
2159    pub fn eat_token_lit(&mut self) -> Option<token::Lit> {
2160        let check_expr = |expr: Box<Expr>| {
2161            if let ast::ExprKind::Lit(token_lit) = expr.kind {
2162                Some(token_lit)
2163            } else if let ast::ExprKind::Unary(UnOp::Neg, inner) = &expr.kind
2164                && let ast::Expr { kind: ast::ExprKind::Lit(_), .. } = **inner
2165            {
2166                None
2167            } else {
2168                panic!("unexpected reparsed expr/literal: {:?}", expr.kind);
2169            }
2170        };
2171        match self.token.uninterpolate().kind {
2172            token::Ident(name, IdentIsRaw::No) if name.is_bool_lit() => {
2173                self.bump();
2174                Some(token::Lit::new(token::Bool, name, None))
2175            }
2176            token::Literal(token_lit) => {
2177                self.bump();
2178                Some(token_lit)
2179            }
2180            token::OpenInvisible(InvisibleOrigin::MetaVar(MetaVarKind::Literal)) => {
2181                let lit = self
2182                    .eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
2183                    .expect("metavar seq literal");
2184                check_expr(lit)
2185            }
2186            token::OpenInvisible(InvisibleOrigin::MetaVar(
2187                mv_kind @ MetaVarKind::Expr { can_begin_literal_maybe_minus: true, .. },
2188            )) => {
2189                let expr = self
2190                    .eat_metavar_seq(mv_kind, |this| this.parse_expr())
2191                    .expect("metavar seq expr");
2192                check_expr(expr)
2193            }
2194            _ => None,
2195        }
2196    }
2197
2198    /// Matches `lit = true | false | token_lit`.
2199    /// Returns `None` if the next token is not a literal.
2200    fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> {
2201        self.recover_after_dot();
2202        let span = self.token.span;
2203        self.eat_token_lit().map(|token_lit| (token_lit, span))
2204    }
2205
2206    /// Matches `lit = true | false | token_lit`.
2207    /// Returns `None` if the next token is not a literal.
2208    fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> {
2209        self.recover_after_dot();
2210        let span = self.token.span;
2211        let uninterpolated_span = self.token_uninterpolated_span();
2212        self.eat_token_lit().map(|token_lit| {
2213            match MetaItemLit::from_token_lit(token_lit, span) {
2214                Ok(lit) => lit,
2215                Err(err) => {
2216                    let guar = report_lit_error(&self.psess, err, token_lit, uninterpolated_span);
2217                    // Pack possible quotes and prefixes from the original literal into
2218                    // the error literal's symbol so they can be pretty-printed faithfully.
2219                    let suffixless_lit = token::Lit::new(token_lit.kind, token_lit.symbol, None);
2220                    let symbol = Symbol::intern(&suffixless_lit.to_string());
2221                    let token_lit = token::Lit::new(token::Err(guar), symbol, token_lit.suffix);
2222                    MetaItemLit::from_token_lit(token_lit, uninterpolated_span).unwrap()
2223                }
2224            }
2225        })
2226    }
2227
2228    pub(super) fn expect_no_tuple_index_suffix(&self, span: Span, suffix: Symbol) {
2229        if [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suffix) {
2230            // #59553: warn instead of reject out of hand to allow the fix to percolate
2231            // through the ecosystem when people fix their macros
2232            self.dcx().emit_warn(errors::InvalidLiteralSuffixOnTupleIndex {
2233                span,
2234                suffix,
2235                exception: true,
2236            });
2237        } else {
2238            self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
2239                span,
2240                suffix,
2241                exception: false,
2242            });
2243        }
2244    }
2245
2246    /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
2247    /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
2248    pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, Box<Expr>> {
2249        if let Some(expr) = self.eat_metavar_seq_with_matcher(
2250            |mv_kind| matches!(mv_kind, MetaVarKind::Expr { .. }),
2251            |this| {
2252                // FIXME(nnethercote) The `expr` case should only match if
2253                // `e` is an `ExprKind::Lit` or an `ExprKind::Unary` containing
2254                // an `UnOp::Neg` and an `ExprKind::Lit`, like how
2255                // `can_begin_literal_maybe_minus` works. But this method has
2256                // been over-accepting for a long time, and to make that change
2257                // here requires also changing some `parse_literal_maybe_minus`
2258                // call sites to accept additional expression kinds. E.g.
2259                // `ExprKind::Path` must be accepted when parsing range
2260                // patterns. That requires some care. So for now, we continue
2261                // being less strict here than we should be.
2262                this.parse_expr()
2263            },
2264        ) {
2265            return Ok(expr);
2266        } else if let Some(lit) =
2267            self.eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
2268        {
2269            return Ok(lit);
2270        }
2271
2272        let lo = self.token.span;
2273        let minus_present = self.eat(exp!(Minus));
2274        let (token_lit, span) = self.parse_token_lit()?;
2275        let expr = self.mk_expr(span, ExprKind::Lit(token_lit));
2276
2277        if minus_present {
2278            Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr)))
2279        } else {
2280            Ok(expr)
2281        }
2282    }
2283
2284    fn is_array_like_block(&mut self) -> bool {
2285        self.token.kind == TokenKind::OpenBrace
2286            && self
2287                .look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
2288            && self.look_ahead(2, |t| t == &token::Comma)
2289            && self.look_ahead(3, |t| t.can_begin_expr())
2290    }
2291
2292    /// Emits a suggestion if it looks like the user meant an array but
2293    /// accidentally used braces, causing the code to be interpreted as a block
2294    /// expression.
2295    fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<Box<Expr>> {
2296        let mut snapshot = self.create_snapshot_for_diagnostic();
2297        match snapshot.parse_expr_array_or_repeat(exp!(CloseBrace)) {
2298            Ok(arr) => {
2299                let guar = self.dcx().emit_err(errors::ArrayBracketsInsteadOfBraces {
2300                    span: arr.span,
2301                    sub: errors::ArrayBracketsInsteadOfBracesSugg {
2302                        left: lo,
2303                        right: snapshot.prev_token.span,
2304                    },
2305                });
2306
2307                self.restore_snapshot(snapshot);
2308                Some(self.mk_expr_err(arr.span, guar))
2309            }
2310            Err(e) => {
2311                e.cancel();
2312                None
2313            }
2314        }
2315    }
2316
2317    fn suggest_missing_semicolon_before_array(
2318        &self,
2319        prev_span: Span,
2320        open_delim_span: Span,
2321    ) -> PResult<'a, ()> {
2322        if !self.may_recover() {
2323            return Ok(());
2324        }
2325
2326        if self.token == token::Comma {
2327            if !self.psess.source_map().is_multiline(prev_span.until(self.token.span)) {
2328                return Ok(());
2329            }
2330            let mut snapshot = self.create_snapshot_for_diagnostic();
2331            snapshot.bump();
2332            match snapshot.parse_seq_to_before_end(
2333                exp!(CloseBracket),
2334                SeqSep::trailing_allowed(exp!(Comma)),
2335                |p| p.parse_expr(),
2336            ) {
2337                Ok(_)
2338                    // When the close delim is `)`, `token.kind` is expected to be `token::CloseParen`,
2339                    // but the actual `token.kind` is `token::CloseBracket`.
2340                    // This is because the `token.kind` of the close delim is treated as the same as
2341                    // that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different.
2342                    // Therefore, `token.kind` should not be compared here.
2343                    if snapshot
2344                        .span_to_snippet(snapshot.token.span)
2345                        .is_ok_and(|snippet| snippet == "]") =>
2346                {
2347                    return Err(self.dcx().create_err(errors::MissingSemicolonBeforeArray {
2348                        open_delim: open_delim_span,
2349                        semicolon: prev_span.shrink_to_hi(),
2350                    }));
2351                }
2352                Ok(_) => (),
2353                Err(err) => err.cancel(),
2354            }
2355        }
2356        Ok(())
2357    }
2358
2359    /// Parses a block or unsafe block.
2360    pub(super) fn parse_expr_block(
2361        &mut self,
2362        opt_label: Option<Label>,
2363        lo: Span,
2364        blk_mode: BlockCheckMode,
2365    ) -> PResult<'a, Box<Expr>> {
2366        if self.may_recover() && self.is_array_like_block() {
2367            if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) {
2368                return Ok(arr);
2369            }
2370        }
2371
2372        if self.token.is_metavar_block() {
2373            self.dcx().emit_err(errors::InvalidBlockMacroSegment {
2374                span: self.token.span,
2375                context: lo.to(self.token.span),
2376                wrap: errors::WrapInExplicitBlock {
2377                    lo: self.token.span.shrink_to_lo(),
2378                    hi: self.token.span.shrink_to_hi(),
2379                },
2380            });
2381        }
2382
2383        let (attrs, blk) = self.parse_block_common(lo, blk_mode, None)?;
2384        Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs))
2385    }
2386
2387    /// Parse a block which takes no attributes and has no label
2388    fn parse_simple_block(&mut self) -> PResult<'a, Box<Expr>> {
2389        let blk = self.parse_block()?;
2390        Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None)))
2391    }
2392
2393    /// Parses a closure expression (e.g., `move |args| expr`).
2394    fn parse_expr_closure(&mut self) -> PResult<'a, Box<Expr>> {
2395        let lo = self.token.span;
2396
2397        let before = self.prev_token;
2398        let binder = if self.check_keyword(exp!(For)) {
2399            let lo = self.token.span;
2400            let (bound_vars, _) = self.parse_higher_ranked_binder()?;
2401            let span = lo.to(self.prev_token.span);
2402
2403            self.psess.gated_spans.gate(sym::closure_lifetime_binder, span);
2404
2405            ClosureBinder::For { span, generic_params: bound_vars }
2406        } else {
2407            ClosureBinder::NotPresent
2408        };
2409
2410        let constness = self.parse_closure_constness();
2411
2412        let movability = if self.eat_keyword(exp!(Static)) {
2413            self.psess.gated_spans.gate(sym::coroutines, self.prev_token.span);
2414            Movability::Static
2415        } else {
2416            Movability::Movable
2417        };
2418
2419        let coroutine_kind = if self.token_uninterpolated_span().at_least_rust_2018() {
2420            self.parse_coroutine_kind(Case::Sensitive)
2421        } else {
2422            None
2423        };
2424
2425        if let ClosureBinder::NotPresent = binder
2426            && coroutine_kind.is_some()
2427        {
2428            // coroutine closures and generators can have the same qualifiers, so we might end up
2429            // in here if there is a missing `|` but also no `{`. Adjust the expectations in that case.
2430            self.expected_token_types.insert(TokenType::OpenBrace);
2431        }
2432
2433        let capture_clause = self.parse_capture_clause()?;
2434        let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?;
2435        let decl_hi = self.prev_token.span;
2436        let mut body = match &fn_decl.output {
2437            // No return type.
2438            FnRetTy::Default(_) => {
2439                let restrictions =
2440                    self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
2441                let prev = self.prev_token;
2442                let token = self.token;
2443                let attrs = self.parse_outer_attributes()?;
2444                match self.parse_expr_res(restrictions, attrs) {
2445                    Ok((expr, _)) => expr,
2446                    Err(err) => self.recover_closure_body(err, before, prev, token, lo, decl_hi)?,
2447                }
2448            }
2449            // Explicit return type (`->`) needs block `-> T { }`.
2450            FnRetTy::Ty(ty) => self.parse_closure_block_body(ty.span)?,
2451        };
2452
2453        match coroutine_kind {
2454            Some(CoroutineKind::Async { .. }) => {}
2455            Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => {
2456                // Feature-gate `gen ||` and `async gen ||` closures.
2457                // FIXME(gen_blocks): This perhaps should be a different gate.
2458                self.psess.gated_spans.gate(sym::gen_blocks, span);
2459            }
2460            None => {}
2461        }
2462
2463        if self.token == TokenKind::Semi
2464            && let Some(last) = self.token_cursor.stack.last()
2465            && let Some(TokenTree::Delimited(_, _, Delimiter::Parenthesis, _)) = last.curr()
2466            && self.may_recover()
2467        {
2468            // It is likely that the closure body is a block but where the
2469            // braces have been removed. We will recover and eat the next
2470            // statements later in the parsing process.
2471            body = self.mk_expr_err(
2472                body.span,
2473                self.dcx().span_delayed_bug(body.span, "recovered a closure body as a block"),
2474            );
2475        }
2476
2477        let body_span = body.span;
2478
2479        let closure = self.mk_expr(
2480            lo.to(body.span),
2481            ExprKind::Closure(Box::new(ast::Closure {
2482                binder,
2483                capture_clause,
2484                constness,
2485                coroutine_kind,
2486                movability,
2487                fn_decl,
2488                body,
2489                fn_decl_span: lo.to(decl_hi),
2490                fn_arg_span,
2491            })),
2492        );
2493
2494        // Disable recovery for closure body
2495        let spans =
2496            ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2497        self.current_closure = Some(spans);
2498
2499        Ok(closure)
2500    }
2501
2502    /// If an explicit return type is given, require a block to appear (RFC 968).
2503    fn parse_closure_block_body(&mut self, ret_span: Span) -> PResult<'a, Box<Expr>> {
2504        if self.may_recover()
2505            && self.token.can_begin_expr()
2506            && self.token.kind != TokenKind::OpenBrace
2507            && !self.token.is_metavar_block()
2508        {
2509            let snapshot = self.create_snapshot_for_diagnostic();
2510            let restrictions =
2511                self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
2512            let tok = self.token.clone();
2513            match self.parse_expr_res(restrictions, AttrWrapper::empty()) {
2514                Ok((expr, _)) => {
2515                    let descr = super::token_descr(&tok);
2516                    let mut diag = self
2517                        .dcx()
2518                        .struct_span_err(tok.span, format!("expected `{{`, found {descr}"));
2519                    diag.span_label(
2520                        ret_span,
2521                        "explicit return type requires closure body to be enclosed in braces",
2522                    );
2523                    diag.multipart_suggestion_verbose(
2524                        "wrap the expression in curly braces",
2525                        vec![
2526                            (expr.span.shrink_to_lo(), "{ ".to_string()),
2527                            (expr.span.shrink_to_hi(), " }".to_string()),
2528                        ],
2529                        Applicability::MachineApplicable,
2530                    );
2531                    diag.emit();
2532                    return Ok(expr);
2533                }
2534                Err(diag) => {
2535                    diag.cancel();
2536                    self.restore_snapshot(snapshot);
2537                }
2538            }
2539        }
2540
2541        let body_lo = self.token.span;
2542        self.parse_expr_block(None, body_lo, BlockCheckMode::Default)
2543    }
2544
2545    /// Parses an optional `move` or `use` prefix to a closure-like construct.
2546    fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2547        if self.eat_keyword(exp!(Move)) {
2548            let move_kw_span = self.prev_token.span;
2549            // Check for `move async` and recover
2550            if self.check_keyword(exp!(Async)) {
2551                let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2552                Err(self
2553                    .dcx()
2554                    .create_err(errors::AsyncMoveOrderIncorrect { span: move_async_span }))
2555            } else {
2556                Ok(CaptureBy::Value { move_kw: move_kw_span })
2557            }
2558        } else if self.eat_keyword(exp!(Use)) {
2559            let use_kw_span = self.prev_token.span;
2560            self.psess.gated_spans.gate(sym::ergonomic_clones, use_kw_span);
2561            // Check for `use async` and recover
2562            if self.check_keyword(exp!(Async)) {
2563                let use_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2564                Err(self.dcx().create_err(errors::AsyncUseOrderIncorrect { span: use_async_span }))
2565            } else {
2566                Ok(CaptureBy::Use { use_kw: use_kw_span })
2567            }
2568        } else {
2569            Ok(CaptureBy::Ref)
2570        }
2571    }
2572
2573    /// Parses the `|arg, arg|` header of a closure.
2574    fn parse_fn_block_decl(&mut self) -> PResult<'a, (Box<FnDecl>, Span)> {
2575        let arg_start = self.token.span.lo();
2576
2577        let inputs = if self.eat(exp!(OrOr)) {
2578            ThinVec::new()
2579        } else {
2580            self.expect(exp!(Or))?;
2581            let args = self
2582                .parse_seq_to_before_tokens(
2583                    &[exp!(Or)],
2584                    &[&token::OrOr],
2585                    SeqSep::trailing_allowed(exp!(Comma)),
2586                    |p| p.parse_fn_block_param(),
2587                )?
2588                .0;
2589            self.expect_or()?;
2590            args
2591        };
2592        let arg_span = self.prev_token.span.with_lo(arg_start);
2593        let output =
2594            self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2595
2596        Ok((Box::new(FnDecl { inputs, output }), arg_span))
2597    }
2598
2599    /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2600    fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2601        let lo = self.token.span;
2602        let attrs = self.parse_outer_attributes()?;
2603        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
2604            let pat = this.parse_pat_no_top_alt(Some(Expected::ParameterName), None)?;
2605            let ty = if this.eat(exp!(Colon)) {
2606                this.parse_ty()?
2607            } else {
2608                this.mk_ty(pat.span, TyKind::Infer)
2609            };
2610
2611            Ok((
2612                Param {
2613                    attrs,
2614                    ty,
2615                    pat,
2616                    span: lo.to(this.prev_token.span),
2617                    id: DUMMY_NODE_ID,
2618                    is_placeholder: false,
2619                },
2620                Trailing::from(this.token == token::Comma),
2621                UsePreAttrPos::No,
2622            ))
2623        })
2624    }
2625
2626    /// Parses an `if` expression (`if` token already eaten).
2627    fn parse_expr_if(&mut self) -> PResult<'a, Box<Expr>> {
2628        let lo = self.prev_token.span;
2629        // Scoping code checks the top level edition of the `if`; let's match it here.
2630        // The `CondChecker` also checks the edition of the `let` itself, just to make sure.
2631        let let_chains_policy = LetChainsPolicy::EditionDependent { current_edition: lo.edition() };
2632        let cond = self.parse_expr_cond(let_chains_policy)?;
2633        self.parse_if_after_cond(lo, cond)
2634    }
2635
2636    fn parse_if_after_cond(&mut self, lo: Span, mut cond: Box<Expr>) -> PResult<'a, Box<Expr>> {
2637        let cond_span = cond.span;
2638        // Tries to interpret `cond` as either a missing expression if it's a block,
2639        // or as an unfinished expression if it's a binop and the RHS is a block.
2640        // We could probably add more recoveries here too...
2641        let mut recover_block_from_condition = |this: &mut Self| {
2642            let block = match &mut cond.kind {
2643                ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2644                    if let ExprKind::Block(_, None) = right.kind =>
2645                {
2646                    let guar = this.dcx().emit_err(errors::IfExpressionMissingThenBlock {
2647                        if_span: lo,
2648                        missing_then_block_sub:
2649                            errors::IfExpressionMissingThenBlockSub::UnfinishedCondition(
2650                                cond_span.shrink_to_lo().to(*binop_span),
2651                            ),
2652                        let_else_sub: None,
2653                    });
2654                    std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi(), guar))
2655                }
2656                ExprKind::Block(_, None) => {
2657                    let guar = this.dcx().emit_err(errors::IfExpressionMissingCondition {
2658                        if_span: lo.with_neighbor(cond.span).shrink_to_hi(),
2659                        block_span: self.psess.source_map().start_point(cond_span),
2660                    });
2661                    std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi(), guar))
2662                }
2663                _ => {
2664                    return None;
2665                }
2666            };
2667            if let ExprKind::Block(block, _) = &block.kind {
2668                Some(block.clone())
2669            } else {
2670                unreachable!()
2671            }
2672        };
2673        // Parse then block
2674        let thn = if self.token.is_keyword(kw::Else) {
2675            if let Some(block) = recover_block_from_condition(self) {
2676                block
2677            } else {
2678                let let_else_sub = matches!(cond.kind, ExprKind::Let(..))
2679                    .then(|| errors::IfExpressionLetSomeSub { if_span: lo.until(cond_span) });
2680
2681                let guar = self.dcx().emit_err(errors::IfExpressionMissingThenBlock {
2682                    if_span: lo,
2683                    missing_then_block_sub: errors::IfExpressionMissingThenBlockSub::AddThenBlock(
2684                        cond_span.shrink_to_hi(),
2685                    ),
2686                    let_else_sub,
2687                });
2688                self.mk_block_err(cond_span.shrink_to_hi(), guar)
2689            }
2690        } else {
2691            let attrs = self.parse_outer_attributes()?; // For recovery.
2692            let maybe_fatarrow = self.token;
2693            let block = if self.check(exp!(OpenBrace)) {
2694                self.parse_block()?
2695            } else if let Some(block) = recover_block_from_condition(self) {
2696                block
2697            } else {
2698                self.error_on_extra_if(&cond)?;
2699                // Parse block, which will always fail, but we can add a nice note to the error
2700                self.parse_block().map_err(|mut err| {
2701                        if self.prev_token == token::Semi
2702                            && self.token == token::AndAnd
2703                            && let maybe_let = self.look_ahead(1, |t| t.clone())
2704                            && maybe_let.is_keyword(kw::Let)
2705                        {
2706                            err.span_suggestion(
2707                                self.prev_token.span,
2708                                "consider removing this semicolon to parse the `let` as part of the same chain",
2709                                "",
2710                                Applicability::MachineApplicable,
2711                            ).span_note(
2712                                self.token.span.to(maybe_let.span),
2713                                "you likely meant to continue parsing the let-chain starting here",
2714                            );
2715                        } else {
2716                            // Look for usages of '=>' where '>=' might be intended
2717                            if maybe_fatarrow == token::FatArrow {
2718                                err.span_suggestion(
2719                                    maybe_fatarrow.span,
2720                                    "you might have meant to write a \"greater than or equal to\" comparison",
2721                                    ">=",
2722                                    Applicability::MaybeIncorrect,
2723                                );
2724                            }
2725                            err.span_note(
2726                                cond_span,
2727                                "the `if` expression is missing a block after this condition",
2728                            );
2729                        }
2730                        err
2731                    })?
2732            };
2733            self.error_on_if_block_attrs(lo, false, block.span, attrs);
2734            block
2735        };
2736        let els = if self.eat_keyword(exp!(Else)) { Some(self.parse_expr_else()?) } else { None };
2737        Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els)))
2738    }
2739
2740    /// Parses the condition of a `if` or `while` expression.
2741    ///
2742    /// The specified `edition` in `let_chains_policy` should be that of the whole `if` construct,
2743    /// i.e. the same span we use to later decide whether the drop behaviour should be that of
2744    /// edition `..=2021` or that of `2024..`.
2745    // Public to use it for custom `if` expressions in rustfmt forks like https://github.com/tucant/rustfmt
2746    pub fn parse_expr_cond(
2747        &mut self,
2748        let_chains_policy: LetChainsPolicy,
2749    ) -> PResult<'a, Box<Expr>> {
2750        let attrs = self.parse_outer_attributes()?;
2751        let (mut cond, _) =
2752            self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, attrs)?;
2753
2754        CondChecker::new(self, let_chains_policy).visit_expr(&mut cond);
2755
2756        Ok(cond)
2757    }
2758
2759    /// Parses a `let $pat = $expr` pseudo-expression.
2760    fn parse_expr_let(&mut self, restrictions: Restrictions) -> PResult<'a, Box<Expr>> {
2761        let recovered = if !restrictions.contains(Restrictions::ALLOW_LET) {
2762            let err = errors::ExpectedExpressionFoundLet {
2763                span: self.token.span,
2764                reason: ForbiddenLetReason::OtherForbidden,
2765                missing_let: None,
2766                comparison: None,
2767            };
2768            if self.prev_token == token::Or {
2769                // This was part of a closure, the that part of the parser recover.
2770                return Err(self.dcx().create_err(err));
2771            } else {
2772                Recovered::Yes(self.dcx().emit_err(err))
2773            }
2774        } else {
2775            Recovered::No
2776        };
2777        self.bump(); // Eat `let` token
2778        let lo = self.prev_token.span;
2779        let pat = self.parse_pat_no_top_guard(
2780            None,
2781            RecoverComma::Yes,
2782            RecoverColon::Yes,
2783            CommaRecoveryMode::LikelyTuple,
2784        )?;
2785        if self.token == token::EqEq {
2786            self.dcx().emit_err(errors::ExpectedEqForLetExpr {
2787                span: self.token.span,
2788                sugg_span: self.token.span,
2789            });
2790            self.bump();
2791        } else {
2792            self.expect(exp!(Eq))?;
2793        }
2794        let attrs = self.parse_outer_attributes()?;
2795        let (expr, _) =
2796            self.parse_expr_assoc_with(Bound::Excluded(prec_let_scrutinee_needs_par()), attrs)?;
2797        let span = lo.to(expr.span);
2798        Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span, recovered)))
2799    }
2800
2801    /// Parses an `else { ... }` expression (`else` token already eaten).
2802    fn parse_expr_else(&mut self) -> PResult<'a, Box<Expr>> {
2803        let else_span = self.prev_token.span; // `else`
2804        let attrs = self.parse_outer_attributes()?; // For recovery.
2805        let expr = if self.eat_keyword(exp!(If)) {
2806            ensure_sufficient_stack(|| self.parse_expr_if())?
2807        } else if self.check(exp!(OpenBrace)) {
2808            self.parse_simple_block()?
2809        } else {
2810            let snapshot = self.create_snapshot_for_diagnostic();
2811            let first_tok = super::token_descr(&self.token);
2812            let first_tok_span = self.token.span;
2813            match self.parse_expr() {
2814                Ok(cond)
2815                // Try to guess the difference between a "condition-like" vs
2816                // "statement-like" expression.
2817                //
2818                // We are seeing the following code, in which $cond is neither
2819                // ExprKind::Block nor ExprKind::If (the 2 cases wherein this
2820                // would be valid syntax).
2821                //
2822                //     if ... {
2823                //     } else $cond
2824                //
2825                // If $cond is "condition-like" such as ExprKind::Binary, we
2826                // want to suggest inserting `if`.
2827                //
2828                //     if ... {
2829                //     } else if a == b {
2830                //            ^^
2831                //     }
2832                //
2833                // We account for macro calls that were meant as conditions as well.
2834                //
2835                //     if ... {
2836                //     } else if macro! { foo bar } {
2837                //            ^^
2838                //     }
2839                //
2840                // If $cond is "statement-like" such as ExprKind::While then we
2841                // want to suggest wrapping in braces.
2842                //
2843                //     if ... {
2844                //     } else {
2845                //            ^
2846                //         while true {}
2847                //     }
2848                //     ^
2849                    if self.check(exp!(OpenBrace))
2850                        && (classify::expr_requires_semi_to_be_stmt(&cond)
2851                            || matches!(cond.kind, ExprKind::MacCall(..)))
2852                    =>
2853                {
2854                    self.dcx().emit_err(errors::ExpectedElseBlock {
2855                        first_tok_span,
2856                        first_tok,
2857                        else_span,
2858                        condition_start: cond.span.shrink_to_lo(),
2859                    });
2860                    self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)?
2861                }
2862                Err(e) => {
2863                    e.cancel();
2864                    self.restore_snapshot(snapshot);
2865                    self.parse_simple_block()?
2866                },
2867                Ok(_) => {
2868                    self.restore_snapshot(snapshot);
2869                    self.parse_simple_block()?
2870                },
2871            }
2872        };
2873        self.error_on_if_block_attrs(else_span, true, expr.span, attrs);
2874        Ok(expr)
2875    }
2876
2877    fn error_on_if_block_attrs(
2878        &self,
2879        ctx_span: Span,
2880        is_ctx_else: bool,
2881        branch_span: Span,
2882        attrs: AttrWrapper,
2883    ) {
2884        if !attrs.is_empty()
2885            && let [x0 @ xn] | [x0, .., xn] = &*attrs.take_for_recovery(self.psess)
2886        {
2887            let attributes = x0.span.until(branch_span);
2888            let last = xn.span;
2889            let ctx = if is_ctx_else { "else" } else { "if" };
2890            self.dcx().emit_err(errors::OuterAttributeNotAllowedOnIfElse {
2891                last,
2892                branch_span,
2893                ctx_span,
2894                ctx: ctx.to_string(),
2895                attributes,
2896            });
2897        }
2898    }
2899
2900    fn error_on_extra_if(&mut self, cond: &Box<Expr>) -> PResult<'a, ()> {
2901        if let ExprKind::Binary(Spanned { span: binop_span, node: binop }, _, right) = &cond.kind
2902            && let BinOpKind::And = binop
2903            && let ExprKind::If(cond, ..) = &right.kind
2904        {
2905            Err(self.dcx().create_err(errors::UnexpectedIfWithIf(
2906                binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()),
2907            )))
2908        } else {
2909            Ok(())
2910        }
2911    }
2912
2913    // Public to use it for custom `for` expressions in rustfmt forks like https://github.com/tucant/rustfmt
2914    pub fn parse_for_head(&mut self) -> PResult<'a, (Box<Pat>, Box<Expr>)> {
2915        let begin_paren = if self.token == token::OpenParen {
2916            // Record whether we are about to parse `for (`.
2917            // This is used below for recovery in case of `for ( $stuff ) $block`
2918            // in which case we will suggest `for $stuff $block`.
2919            let start_span = self.token.span;
2920            let left = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
2921            Some((start_span, left))
2922        } else {
2923            None
2924        };
2925        // Try to parse the pattern `for ($PAT) in $EXPR`.
2926        let pat = match (
2927            self.parse_pat_allow_top_guard(
2928                None,
2929                RecoverComma::Yes,
2930                RecoverColon::Yes,
2931                CommaRecoveryMode::LikelyTuple,
2932            ),
2933            begin_paren,
2934        ) {
2935            (Ok(pat), _) => pat, // Happy path.
2936            (Err(err), Some((start_span, left))) if self.eat_keyword(exp!(In)) => {
2937                // We know for sure we have seen `for ($SOMETHING in`. In the happy path this would
2938                // happen right before the return of this method.
2939                let attrs = self.parse_outer_attributes()?;
2940                let (expr, _) = match self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs) {
2941                    Ok(expr) => expr,
2942                    Err(expr_err) => {
2943                        // We don't know what followed the `in`, so cancel and bubble up the
2944                        // original error.
2945                        expr_err.cancel();
2946                        return Err(err);
2947                    }
2948                };
2949                return if self.token == token::CloseParen {
2950                    // We know for sure we have seen `for ($SOMETHING in $EXPR)`, so we recover the
2951                    // parser state and emit a targeted suggestion.
2952                    let span = vec![start_span, self.token.span];
2953                    let right = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
2954                    self.bump(); // )
2955                    err.cancel();
2956                    self.dcx().emit_err(errors::ParenthesesInForHead {
2957                        span,
2958                        // With e.g. `for (x) in y)` this would replace `(x) in y)`
2959                        // with `x) in y)` which is syntactically invalid.
2960                        // However, this is prevented before we get here.
2961                        sugg: errors::ParenthesesInForHeadSugg { left, right },
2962                    });
2963                    Ok((self.mk_pat(start_span.to(right), ast::PatKind::Wild), expr))
2964                } else {
2965                    Err(err) // Some other error, bubble up.
2966                };
2967            }
2968            (Err(err), _) => return Err(err), // Some other error, bubble up.
2969        };
2970        if !self.eat_keyword(exp!(In)) {
2971            self.error_missing_in_for_loop();
2972        }
2973        self.check_for_for_in_in_typo(self.prev_token.span);
2974        let attrs = self.parse_outer_attributes()?;
2975        let (expr, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?;
2976        Ok((pat, expr))
2977    }
2978
2979    /// Parses `for await? <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2980    fn parse_expr_for(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, Box<Expr>> {
2981        let is_await =
2982            self.token_uninterpolated_span().at_least_rust_2018() && self.eat_keyword(exp!(Await));
2983
2984        if is_await {
2985            self.psess.gated_spans.gate(sym::async_for_loop, self.prev_token.span);
2986        }
2987
2988        let kind = if is_await { ForLoopKind::ForAwait } else { ForLoopKind::For };
2989
2990        let (pat, expr) = self.parse_for_head()?;
2991        // Recover from missing expression in `for` loop
2992        if matches!(expr.kind, ExprKind::Block(..))
2993            && self.token.kind != token::OpenBrace
2994            && self.may_recover()
2995        {
2996            let guar = self
2997                .dcx()
2998                .emit_err(errors::MissingExpressionInForLoop { span: expr.span.shrink_to_lo() });
2999            let err_expr = self.mk_expr(expr.span, ExprKind::Err(guar));
3000            let block = self.mk_block(thin_vec![], BlockCheckMode::Default, self.prev_token.span);
3001            return Ok(self.mk_expr(
3002                lo.to(self.prev_token.span),
3003                ExprKind::ForLoop { pat, iter: err_expr, body: block, label: opt_label, kind },
3004            ));
3005        }
3006
3007        let (attrs, loop_block) = self.parse_inner_attrs_and_block(
3008            // Only suggest moving erroneous block label to the loop header
3009            // if there is not already a label there
3010            opt_label.is_none().then_some(lo),
3011        )?;
3012
3013        let kind = ExprKind::ForLoop { pat, iter: expr, body: loop_block, label: opt_label, kind };
3014
3015        self.recover_loop_else("for", lo)?;
3016
3017        Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
3018    }
3019
3020    /// Recovers from an `else` clause after a loop (`for...else`, `while...else`)
3021    fn recover_loop_else(&mut self, loop_kind: &'static str, loop_kw: Span) -> PResult<'a, ()> {
3022        if self.token.is_keyword(kw::Else) && self.may_recover() {
3023            let else_span = self.token.span;
3024            self.bump();
3025            let else_clause = self.parse_expr_else()?;
3026            self.dcx().emit_err(errors::LoopElseNotSupported {
3027                span: else_span.to(else_clause.span),
3028                loop_kind,
3029                loop_kw,
3030            });
3031        }
3032        Ok(())
3033    }
3034
3035    fn error_missing_in_for_loop(&mut self) {
3036        let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) {
3037            // Possibly using JS syntax (#75311).
3038            let span = self.token.span;
3039            self.bump();
3040            (span, errors::MissingInInForLoopSub::InNotOf)
3041        } else if self.eat(exp!(Eq)) {
3042            (self.prev_token.span, errors::MissingInInForLoopSub::InNotEq)
3043        } else {
3044            (self.prev_token.span.between(self.token.span), errors::MissingInInForLoopSub::AddIn)
3045        };
3046
3047        self.dcx().emit_err(errors::MissingInInForLoop { span, sub: sub(span) });
3048    }
3049
3050    /// Parses a `while` or `while let` expression (`while` token already eaten).
3051    fn parse_expr_while(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, Box<Expr>> {
3052        let policy = LetChainsPolicy::EditionDependent { current_edition: lo.edition() };
3053        let cond = self.parse_expr_cond(policy).map_err(|mut err| {
3054            err.span_label(lo, "while parsing the condition of this `while` expression");
3055            err
3056        })?;
3057        let (attrs, body) = self
3058            .parse_inner_attrs_and_block(
3059                // Only suggest moving erroneous block label to the loop header
3060                // if there is not already a label there
3061                opt_label.is_none().then_some(lo),
3062            )
3063            .map_err(|mut err| {
3064                err.span_label(lo, "while parsing the body of this `while` expression");
3065                err.span_label(cond.span, "this `while` condition successfully parsed");
3066                err
3067            })?;
3068
3069        self.recover_loop_else("while", lo)?;
3070
3071        Ok(self.mk_expr_with_attrs(
3072            lo.to(self.prev_token.span),
3073            ExprKind::While(cond, body, opt_label),
3074            attrs,
3075        ))
3076    }
3077
3078    /// Parses `loop { ... }` (`loop` token already eaten).
3079    fn parse_expr_loop(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, Box<Expr>> {
3080        let loop_span = self.prev_token.span;
3081        let (attrs, body) = self.parse_inner_attrs_and_block(
3082            // Only suggest moving erroneous block label to the loop header
3083            // if there is not already a label there
3084            opt_label.is_none().then_some(lo),
3085        )?;
3086        self.recover_loop_else("loop", lo)?;
3087        Ok(self.mk_expr_with_attrs(
3088            lo.to(self.prev_token.span),
3089            ExprKind::Loop(body, opt_label, loop_span),
3090            attrs,
3091        ))
3092    }
3093
3094    pub(crate) fn eat_label(&mut self) -> Option<Label> {
3095        if let Some((ident, is_raw)) = self.token.lifetime() {
3096            // Disallow `'fn`, but with a better error message than `expect_lifetime`.
3097            if matches!(is_raw, IdentIsRaw::No) && ident.without_first_quote().is_reserved() {
3098                self.dcx().emit_err(errors::KeywordLabel { span: ident.span });
3099            }
3100
3101            self.bump();
3102            Some(Label { ident })
3103        } else {
3104            None
3105        }
3106    }
3107
3108    /// Parses a `match ... { ... }` expression (`match` token already eaten).
3109    fn parse_expr_match(&mut self) -> PResult<'a, Box<Expr>> {
3110        let match_span = self.prev_token.span;
3111        let attrs = self.parse_outer_attributes()?;
3112        let (scrutinee, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?;
3113
3114        self.parse_match_block(match_span, match_span, scrutinee, MatchKind::Prefix)
3115    }
3116
3117    /// Parses the block of a `match expr { ... }` or a `expr.match { ... }`
3118    /// expression. This is after the match token and scrutinee are eaten
3119    fn parse_match_block(
3120        &mut self,
3121        lo: Span,
3122        match_span: Span,
3123        scrutinee: Box<Expr>,
3124        match_kind: MatchKind,
3125    ) -> PResult<'a, Box<Expr>> {
3126        if let Err(mut e) = self.expect(exp!(OpenBrace)) {
3127            if self.token == token::Semi {
3128                e.span_suggestion_short(
3129                    match_span,
3130                    "try removing this `match`",
3131                    "",
3132                    Applicability::MaybeIncorrect, // speculative
3133                );
3134            }
3135            if self.maybe_recover_unexpected_block_label(None) {
3136                e.cancel();
3137                self.bump();
3138            } else {
3139                return Err(e);
3140            }
3141        }
3142        let attrs = self.parse_inner_attributes()?;
3143
3144        let mut arms = ThinVec::new();
3145        while self.token != token::CloseBrace {
3146            match self.parse_arm() {
3147                Ok(arm) => arms.push(arm),
3148                Err(e) => {
3149                    // Recover by skipping to the end of the block.
3150                    let guar = e.emit();
3151                    self.recover_stmt();
3152                    let span = lo.to(self.token.span);
3153                    if self.token == token::CloseBrace {
3154                        self.bump();
3155                    }
3156                    // Always push at least one arm to make the match non-empty
3157                    arms.push(Arm {
3158                        attrs: Default::default(),
3159                        pat: self.mk_pat(span, ast::PatKind::Err(guar)),
3160                        guard: None,
3161                        body: Some(self.mk_expr_err(span, guar)),
3162                        span,
3163                        id: DUMMY_NODE_ID,
3164                        is_placeholder: false,
3165                    });
3166                    return Ok(self.mk_expr_with_attrs(
3167                        span,
3168                        ExprKind::Match(scrutinee, arms, match_kind),
3169                        attrs,
3170                    ));
3171                }
3172            }
3173        }
3174        let hi = self.token.span;
3175        self.bump();
3176        Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms, match_kind), attrs))
3177    }
3178
3179    /// Attempt to recover from match arm body with statements and no surrounding braces.
3180    fn parse_arm_body_missing_braces(
3181        &mut self,
3182        first_expr: &Box<Expr>,
3183        arrow_span: Span,
3184    ) -> Option<(Span, ErrorGuaranteed)> {
3185        if self.token != token::Semi {
3186            return None;
3187        }
3188        let start_snapshot = self.create_snapshot_for_diagnostic();
3189        let semi_sp = self.token.span;
3190        self.bump(); // `;`
3191        let mut stmts =
3192            vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
3193        let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| {
3194            let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
3195
3196            let guar = this.dcx().emit_err(errors::MatchArmBodyWithoutBraces {
3197                statements: span,
3198                arrow: arrow_span,
3199                num_statements: stmts.len(),
3200                sub: if stmts.len() > 1 {
3201                    errors::MatchArmBodyWithoutBracesSugg::AddBraces {
3202                        left: span.shrink_to_lo(),
3203                        right: span.shrink_to_hi(),
3204                    }
3205                } else {
3206                    errors::MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp }
3207                },
3208            });
3209            (span, guar)
3210        };
3211        // We might have either a `,` -> `;` typo, or a block without braces. We need
3212        // a more subtle parsing strategy.
3213        loop {
3214            if self.token == token::CloseBrace {
3215                // We have reached the closing brace of the `match` expression.
3216                return Some(err(self, stmts));
3217            }
3218            if self.token == token::Comma {
3219                self.restore_snapshot(start_snapshot);
3220                return None;
3221            }
3222            let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
3223            match self.parse_pat_no_top_alt(None, None) {
3224                Ok(_pat) => {
3225                    if self.token == token::FatArrow {
3226                        // Reached arm end.
3227                        self.restore_snapshot(pre_pat_snapshot);
3228                        return Some(err(self, stmts));
3229                    }
3230                }
3231                Err(err) => {
3232                    err.cancel();
3233                }
3234            }
3235
3236            self.restore_snapshot(pre_pat_snapshot);
3237            match self.parse_stmt_without_recovery(true, ForceCollect::No, false) {
3238                // Consume statements for as long as possible.
3239                Ok(Some(stmt)) => {
3240                    stmts.push(stmt);
3241                }
3242                Ok(None) => {
3243                    self.restore_snapshot(start_snapshot);
3244                    break;
3245                }
3246                // We couldn't parse either yet another statement missing it's
3247                // enclosing block nor the next arm's pattern or closing brace.
3248                Err(stmt_err) => {
3249                    stmt_err.cancel();
3250                    self.restore_snapshot(start_snapshot);
3251                    break;
3252                }
3253            }
3254        }
3255        None
3256    }
3257
3258    pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
3259        let attrs = self.parse_outer_attributes()?;
3260        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
3261            let lo = this.token.span;
3262            let (pat, guard) = this.parse_match_arm_pat_and_guard()?;
3263
3264            let span_before_body = this.prev_token.span;
3265            let arm_body;
3266            let is_fat_arrow = this.check(exp!(FatArrow));
3267            let is_almost_fat_arrow =
3268                TokenKind::FatArrow.similar_tokens().contains(&this.token.kind);
3269
3270            // this avoids the compiler saying that a `,` or `}` was expected even though
3271            // the pattern isn't a never pattern (and thus an arm body is required)
3272            let armless = (!is_fat_arrow && !is_almost_fat_arrow && pat.could_be_never_pattern())
3273                || matches!(this.token.kind, token::Comma | token::CloseBrace);
3274
3275            let mut result = if armless {
3276                // A pattern without a body, allowed for never patterns.
3277                arm_body = None;
3278                let span = lo.to(this.prev_token.span);
3279                this.expect_one_of(&[exp!(Comma)], &[exp!(CloseBrace)]).map(|x| {
3280                    // Don't gate twice
3281                    if !pat.contains_never_pattern() {
3282                        this.psess.gated_spans.gate(sym::never_patterns, span);
3283                    }
3284                    x
3285                })
3286            } else {
3287                if let Err(mut err) = this.expect(exp!(FatArrow)) {
3288                    // We might have a `=>` -> `=` or `->` typo (issue #89396).
3289                    if is_almost_fat_arrow {
3290                        err.span_suggestion(
3291                            this.token.span,
3292                            "use a fat arrow to start a match arm",
3293                            "=>",
3294                            Applicability::MachineApplicable,
3295                        );
3296                        if matches!(
3297                            (&this.prev_token.kind, &this.token.kind),
3298                            (token::DotDotEq, token::Gt)
3299                        ) {
3300                            // `error_inclusive_range_match_arrow` handles cases like `0..=> {}`,
3301                            // so we suppress the error here
3302                            err.delay_as_bug();
3303                        } else {
3304                            err.emit();
3305                        }
3306                        this.bump();
3307                    } else {
3308                        return Err(err);
3309                    }
3310                }
3311                let arrow_span = this.prev_token.span;
3312                let arm_start_span = this.token.span;
3313
3314                let attrs = this.parse_outer_attributes()?;
3315                let (expr, _) =
3316                    this.parse_expr_res(Restrictions::STMT_EXPR, attrs).map_err(|mut err| {
3317                        err.span_label(arrow_span, "while parsing the `match` arm starting here");
3318                        err
3319                    })?;
3320
3321                let require_comma =
3322                    !classify::expr_is_complete(&expr) && this.token != token::CloseBrace;
3323
3324                if !require_comma {
3325                    arm_body = Some(expr);
3326                    // Eat a comma if it exists, though.
3327                    let _ = this.eat(exp!(Comma));
3328                    Ok(Recovered::No)
3329                } else if let Some((span, guar)) =
3330                    this.parse_arm_body_missing_braces(&expr, arrow_span)
3331                {
3332                    let body = this.mk_expr_err(span, guar);
3333                    arm_body = Some(body);
3334                    Ok(Recovered::Yes(guar))
3335                } else {
3336                    let expr_span = expr.span;
3337                    arm_body = Some(expr);
3338                    this.expect_one_of(&[exp!(Comma)], &[exp!(CloseBrace)]).map_err(|mut err| {
3339                        if this.token == token::FatArrow {
3340                            let sm = this.psess.source_map();
3341                            if let Ok(expr_lines) = sm.span_to_lines(expr_span)
3342                                && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
3343                                && expr_lines.lines.len() == 2
3344                            {
3345                                if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col {
3346                                    // We check whether there's any trailing code in the parse span,
3347                                    // if there isn't, we very likely have the following:
3348                                    //
3349                                    // X |     &Y => "y"
3350                                    //   |        --    - missing comma
3351                                    //   |        |
3352                                    //   |        arrow_span
3353                                    // X |     &X => "x"
3354                                    //   |      - ^^ self.token.span
3355                                    //   |      |
3356                                    //   |      parsed until here as `"y" & X`
3357                                    err.span_suggestion_short(
3358                                        arm_start_span.shrink_to_hi(),
3359                                        "missing a comma here to end this `match` arm",
3360                                        ",",
3361                                        Applicability::MachineApplicable,
3362                                    );
3363                                } else if arm_start_lines.lines[0].end_col + rustc_span::CharPos(1)
3364                                    == expr_lines.lines[0].end_col
3365                                {
3366                                    // similar to the above, but we may typo a `.` or `/` at the end of the line
3367                                    let comma_span = arm_start_span
3368                                        .shrink_to_hi()
3369                                        .with_hi(arm_start_span.hi() + rustc_span::BytePos(1));
3370                                    if let Ok(res) = sm.span_to_snippet(comma_span)
3371                                        && (res == "." || res == "/")
3372                                    {
3373                                        err.span_suggestion_short(
3374                                            comma_span,
3375                                            "you might have meant to write a `,` to end this `match` arm",
3376                                            ",",
3377                                            Applicability::MachineApplicable,
3378                                        );
3379                                    }
3380                                }
3381                            }
3382                        } else {
3383                            err.span_label(
3384                                arrow_span,
3385                                "while parsing the `match` arm starting here",
3386                            );
3387                        }
3388                        err
3389                    })
3390                }
3391            };
3392
3393            let hi_span = arm_body.as_ref().map_or(span_before_body, |body| body.span);
3394            let arm_span = lo.to(hi_span);
3395
3396            // We want to recover:
3397            // X |     Some(_) => foo()
3398            //   |                     - missing comma
3399            // X |     None => "x"
3400            //   |     ^^^^ self.token.span
3401            // as well as:
3402            // X |     Some(!)
3403            //   |            - missing comma
3404            // X |     None => "x"
3405            //   |     ^^^^ self.token.span
3406            // But we musn't recover
3407            // X |     pat[0] => {}
3408            //   |        ^ self.token.span
3409            let recover_missing_comma = arm_body.is_some() || pat.could_be_never_pattern();
3410            if recover_missing_comma {
3411                result = result.or_else(|err| {
3412                    // FIXME(compiler-errors): We could also recover `; PAT =>` here
3413
3414                    // Try to parse a following `PAT =>`, if successful
3415                    // then we should recover.
3416                    let mut snapshot = this.create_snapshot_for_diagnostic();
3417                    let pattern_follows = snapshot
3418                        .parse_pat_no_top_guard(
3419                            None,
3420                            RecoverComma::Yes,
3421                            RecoverColon::Yes,
3422                            CommaRecoveryMode::EitherTupleOrPipe,
3423                        )
3424                        .map_err(|err| err.cancel())
3425                        .is_ok();
3426                    if pattern_follows && snapshot.check(exp!(FatArrow)) {
3427                        err.cancel();
3428                        let guar = this.dcx().emit_err(errors::MissingCommaAfterMatchArm {
3429                            span: arm_span.shrink_to_hi(),
3430                        });
3431                        return Ok(Recovered::Yes(guar));
3432                    }
3433                    Err(err)
3434                });
3435            }
3436            result?;
3437
3438            Ok((
3439                ast::Arm {
3440                    attrs,
3441                    pat,
3442                    guard,
3443                    body: arm_body,
3444                    span: arm_span,
3445                    id: DUMMY_NODE_ID,
3446                    is_placeholder: false,
3447                },
3448                Trailing::No,
3449                UsePreAttrPos::No,
3450            ))
3451        })
3452    }
3453
3454    fn parse_match_arm_guard(&mut self) -> PResult<'a, Option<Box<Expr>>> {
3455        // Used to check the `if_let_guard` feature mostly by scanning
3456        // `&&` tokens.
3457        fn has_let_expr(expr: &Expr) -> bool {
3458            match &expr.kind {
3459                ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => {
3460                    let lhs_rslt = has_let_expr(lhs);
3461                    let rhs_rslt = has_let_expr(rhs);
3462                    lhs_rslt || rhs_rslt
3463                }
3464                ExprKind::Let(..) => true,
3465                _ => false,
3466            }
3467        }
3468        if !self.eat_keyword(exp!(If)) {
3469            // No match arm guard present.
3470            return Ok(None);
3471        }
3472
3473        let if_span = self.prev_token.span;
3474        let mut cond = self.parse_match_guard_condition()?;
3475
3476        CondChecker::new(self, LetChainsPolicy::AlwaysAllowed).visit_expr(&mut cond);
3477
3478        if has_let_expr(&cond) {
3479            let span = if_span.to(cond.span);
3480            self.psess.gated_spans.gate(sym::if_let_guard, span);
3481        }
3482        Ok(Some(cond))
3483    }
3484
3485    fn parse_match_arm_pat_and_guard(&mut self) -> PResult<'a, (Box<Pat>, Option<Box<Expr>>)> {
3486        if self.token == token::OpenParen {
3487            let left = self.token.span;
3488            let pat = self.parse_pat_no_top_guard(
3489                None,
3490                RecoverComma::Yes,
3491                RecoverColon::Yes,
3492                CommaRecoveryMode::EitherTupleOrPipe,
3493            )?;
3494            if let ast::PatKind::Paren(subpat) = &pat.kind
3495                && let ast::PatKind::Guard(..) = &subpat.kind
3496            {
3497                // Detect and recover from `($pat if $cond) => $arm`.
3498                // FIXME(guard_patterns): convert this to a normal guard instead
3499                let span = pat.span;
3500                let ast::PatKind::Paren(subpat) = pat.kind else { unreachable!() };
3501                let ast::PatKind::Guard(_, mut cond) = subpat.kind else { unreachable!() };
3502                self.psess.gated_spans.ungate_last(sym::guard_patterns, cond.span);
3503                CondChecker::new(self, LetChainsPolicy::AlwaysAllowed).visit_expr(&mut cond);
3504                let right = self.prev_token.span;
3505                self.dcx().emit_err(errors::ParenthesesInMatchPat {
3506                    span: vec![left, right],
3507                    sugg: errors::ParenthesesInMatchPatSugg { left, right },
3508                });
3509                Ok((self.mk_pat(span, ast::PatKind::Wild), Some(cond)))
3510            } else {
3511                Ok((pat, self.parse_match_arm_guard()?))
3512            }
3513        } else {
3514            // Regular parser flow:
3515            let pat = self.parse_pat_no_top_guard(
3516                None,
3517                RecoverComma::Yes,
3518                RecoverColon::Yes,
3519                CommaRecoveryMode::EitherTupleOrPipe,
3520            )?;
3521            Ok((pat, self.parse_match_arm_guard()?))
3522        }
3523    }
3524
3525    fn parse_match_guard_condition(&mut self) -> PResult<'a, Box<Expr>> {
3526        let attrs = self.parse_outer_attributes()?;
3527        match self.parse_expr_res(Restrictions::ALLOW_LET | Restrictions::IN_IF_GUARD, attrs) {
3528            Ok((expr, _)) => Ok(expr),
3529            Err(mut err) => {
3530                if self.prev_token == token::OpenBrace {
3531                    let sugg_sp = self.prev_token.span.shrink_to_lo();
3532                    // Consume everything within the braces, let's avoid further parse
3533                    // errors.
3534                    self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore);
3535                    let msg = "you might have meant to start a match arm after the match guard";
3536                    if self.eat(exp!(CloseBrace)) {
3537                        let applicability = if self.token != token::FatArrow {
3538                            // We have high confidence that we indeed didn't have a struct
3539                            // literal in the match guard, but rather we had some operation
3540                            // that ended in a path, immediately followed by a block that was
3541                            // meant to be the match arm.
3542                            Applicability::MachineApplicable
3543                        } else {
3544                            Applicability::MaybeIncorrect
3545                        };
3546                        err.span_suggestion_verbose(sugg_sp, msg, "=> ", applicability);
3547                    }
3548                }
3549                Err(err)
3550            }
3551        }
3552    }
3553
3554    pub(crate) fn is_builtin(&self) -> bool {
3555        self.token.is_keyword(kw::Builtin) && self.look_ahead(1, |t| *t == token::Pound)
3556    }
3557
3558    /// Parses a `try {...}` expression (`try` token already eaten).
3559    fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, Box<Expr>> {
3560        let (attrs, body) = self.parse_inner_attrs_and_block(None)?;
3561        if self.eat_keyword(exp!(Catch)) {
3562            Err(self.dcx().create_err(errors::CatchAfterTry { span: self.prev_token.span }))
3563        } else {
3564            let span = span_lo.to(body.span);
3565            self.psess.gated_spans.gate(sym::try_blocks, span);
3566            Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs))
3567        }
3568    }
3569
3570    fn is_do_catch_block(&self) -> bool {
3571        self.token.is_keyword(kw::Do)
3572            && self.is_keyword_ahead(1, &[kw::Catch])
3573            && self.look_ahead(2, |t| *t == token::OpenBrace || t.is_metavar_block())
3574            && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
3575    }
3576
3577    fn is_do_yeet(&self) -> bool {
3578        self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
3579    }
3580
3581    fn is_try_block(&self) -> bool {
3582        self.token.is_keyword(kw::Try)
3583            && self.look_ahead(1, |t| *t == token::OpenBrace || t.is_metavar_block())
3584            && self.token_uninterpolated_span().at_least_rust_2018()
3585    }
3586
3587    /// Parses an `async move? {...}` or `gen move? {...}` expression.
3588    fn parse_gen_block(&mut self) -> PResult<'a, Box<Expr>> {
3589        let lo = self.token.span;
3590        let kind = if self.eat_keyword(exp!(Async)) {
3591            if self.eat_keyword(exp!(Gen)) { GenBlockKind::AsyncGen } else { GenBlockKind::Async }
3592        } else {
3593            assert!(self.eat_keyword(exp!(Gen)));
3594            GenBlockKind::Gen
3595        };
3596        match kind {
3597            GenBlockKind::Async => {
3598                // `async` blocks are stable
3599            }
3600            GenBlockKind::Gen | GenBlockKind::AsyncGen => {
3601                self.psess.gated_spans.gate(sym::gen_blocks, lo.to(self.prev_token.span));
3602            }
3603        }
3604        let capture_clause = self.parse_capture_clause()?;
3605        let decl_span = lo.to(self.prev_token.span);
3606        let (attrs, body) = self.parse_inner_attrs_and_block(None)?;
3607        let kind = ExprKind::Gen(capture_clause, body, kind, decl_span);
3608        Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
3609    }
3610
3611    fn is_gen_block(&self, kw: Symbol, lookahead: usize) -> bool {
3612        self.is_keyword_ahead(lookahead, &[kw])
3613            && ((
3614                // `async move {`
3615                self.is_keyword_ahead(lookahead + 1, &[kw::Move, kw::Use])
3616                    && self.look_ahead(lookahead + 2, |t| {
3617                        *t == token::OpenBrace || t.is_metavar_block()
3618                    })
3619            ) || (
3620                // `async {`
3621                self.look_ahead(lookahead + 1, |t| *t == token::OpenBrace || t.is_metavar_block())
3622            ))
3623    }
3624
3625    pub(super) fn is_async_gen_block(&self) -> bool {
3626        self.token.is_keyword(kw::Async) && self.is_gen_block(kw::Gen, 1)
3627    }
3628
3629    fn is_certainly_not_a_block(&self) -> bool {
3630        // `{ ident, ` and `{ ident: ` cannot start a block.
3631        self.look_ahead(1, |t| t.is_ident())
3632            && self.look_ahead(2, |t| t == &token::Comma || t == &token::Colon)
3633    }
3634
3635    fn maybe_parse_struct_expr(
3636        &mut self,
3637        qself: &Option<Box<ast::QSelf>>,
3638        path: &ast::Path,
3639    ) -> Option<PResult<'a, Box<Expr>>> {
3640        let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
3641        if struct_allowed || self.is_certainly_not_a_block() {
3642            if let Err(err) = self.expect(exp!(OpenBrace)) {
3643                return Some(Err(err));
3644            }
3645            let expr = self.parse_expr_struct(qself.clone(), path.clone(), true);
3646            if let (Ok(expr), false) = (&expr, struct_allowed) {
3647                // This is a struct literal, but we don't can't accept them here.
3648                self.dcx().emit_err(errors::StructLiteralNotAllowedHere {
3649                    span: expr.span,
3650                    sub: errors::StructLiteralNotAllowedHereSugg {
3651                        left: path.span.shrink_to_lo(),
3652                        right: expr.span.shrink_to_hi(),
3653                    },
3654                });
3655            }
3656            return Some(expr);
3657        }
3658        None
3659    }
3660
3661    pub(super) fn parse_struct_fields(
3662        &mut self,
3663        pth: ast::Path,
3664        recover: bool,
3665        close: ExpTokenPair,
3666    ) -> PResult<
3667        'a,
3668        (
3669            ThinVec<ExprField>,
3670            ast::StructRest,
3671            Option<ErrorGuaranteed>, /* async blocks are forbidden in Rust 2015 */
3672        ),
3673    > {
3674        let mut fields = ThinVec::new();
3675        let mut base = ast::StructRest::None;
3676        let mut recovered_async = None;
3677        let in_if_guard = self.restrictions.contains(Restrictions::IN_IF_GUARD);
3678
3679        let async_block_err = |e: &mut Diag<'_>, span: Span| {
3680            errors::AsyncBlockIn2015 { span }.add_to_diag(e);
3681            errors::HelpUseLatestEdition::new().add_to_diag(e);
3682        };
3683
3684        while self.token != close.tok {
3685            if self.eat(exp!(DotDot)) || self.recover_struct_field_dots(&close.tok) {
3686                let exp_span = self.prev_token.span;
3687                // We permit `.. }` on the left-hand side of a destructuring assignment.
3688                if self.check(close) {
3689                    base = ast::StructRest::Rest(self.prev_token.span);
3690                    break;
3691                }
3692                match self.parse_expr() {
3693                    Ok(e) => base = ast::StructRest::Base(e),
3694                    Err(e) if recover => {
3695                        e.emit();
3696                        self.recover_stmt();
3697                    }
3698                    Err(e) => return Err(e),
3699                }
3700                self.recover_struct_comma_after_dotdot(exp_span);
3701                break;
3702            }
3703
3704            // Peek the field's ident before parsing its expr in order to emit better diagnostics.
3705            let peek = self
3706                .token
3707                .ident()
3708                .filter(|(ident, is_raw)| {
3709                    (!ident.is_reserved() || matches!(is_raw, IdentIsRaw::Yes))
3710                        && self.look_ahead(1, |tok| *tok == token::Colon)
3711                })
3712                .map(|(ident, _)| ident);
3713
3714            // We still want a field even if its expr didn't parse.
3715            let field_ident = |this: &Self, guar: ErrorGuaranteed| {
3716                peek.map(|ident| {
3717                    let span = ident.span;
3718                    ExprField {
3719                        ident,
3720                        span,
3721                        expr: this.mk_expr_err(span, guar),
3722                        is_shorthand: false,
3723                        attrs: AttrVec::new(),
3724                        id: DUMMY_NODE_ID,
3725                        is_placeholder: false,
3726                    }
3727                })
3728            };
3729
3730            let parsed_field = match self.parse_expr_field() {
3731                Ok(f) => Ok(f),
3732                Err(mut e) => {
3733                    if pth == kw::Async {
3734                        async_block_err(&mut e, pth.span);
3735                    } else {
3736                        e.span_label(pth.span, "while parsing this struct");
3737                    }
3738
3739                    if let Some((ident, _)) = self.token.ident()
3740                        && !self.token.is_reserved_ident()
3741                        && self.look_ahead(1, |t| {
3742                            AssocOp::from_token(t).is_some()
3743                                || matches!(
3744                                    t.kind,
3745                                    token::OpenParen | token::OpenBracket | token::OpenBrace
3746                                )
3747                                || *t == token::Dot
3748                        })
3749                    {
3750                        // Looks like they tried to write a shorthand, complex expression,
3751                        // E.g.: `n + m`, `f(a)`, `a[i]`, `S { x: 3 }`, or `x.y`.
3752                        e.span_suggestion_verbose(
3753                            self.token.span.shrink_to_lo(),
3754                            "try naming a field",
3755                            &format!("{ident}: ",),
3756                            Applicability::MaybeIncorrect,
3757                        );
3758                    }
3759                    if in_if_guard && close.token_type == TokenType::CloseBrace {
3760                        return Err(e);
3761                    }
3762
3763                    if !recover {
3764                        return Err(e);
3765                    }
3766
3767                    let guar = e.emit();
3768                    if pth == kw::Async {
3769                        recovered_async = Some(guar);
3770                    }
3771
3772                    // If the next token is a comma, then try to parse
3773                    // what comes next as additional fields, rather than
3774                    // bailing out until next `}`.
3775                    if self.token != token::Comma {
3776                        self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3777                        if self.token != token::Comma {
3778                            break;
3779                        }
3780                    }
3781
3782                    Err(guar)
3783                }
3784            };
3785
3786            let is_shorthand = parsed_field.as_ref().is_ok_and(|f| f.is_shorthand);
3787            // A shorthand field can be turned into a full field with `:`.
3788            // We should point this out.
3789            self.check_or_expected(!is_shorthand, TokenType::Colon);
3790
3791            match self.expect_one_of(&[exp!(Comma)], &[close]) {
3792                Ok(_) => {
3793                    if let Ok(f) = parsed_field.or_else(|guar| field_ident(self, guar).ok_or(guar))
3794                    {
3795                        // Only include the field if there's no parse error for the field name.
3796                        fields.push(f);
3797                    }
3798                }
3799                Err(mut e) => {
3800                    if pth == kw::Async {
3801                        async_block_err(&mut e, pth.span);
3802                    } else {
3803                        e.span_label(pth.span, "while parsing this struct");
3804                        if peek.is_some() {
3805                            e.span_suggestion(
3806                                self.prev_token.span.shrink_to_hi(),
3807                                "try adding a comma",
3808                                ",",
3809                                Applicability::MachineApplicable,
3810                            );
3811                        }
3812                    }
3813                    if !recover {
3814                        return Err(e);
3815                    }
3816                    let guar = e.emit();
3817                    if pth == kw::Async {
3818                        recovered_async = Some(guar);
3819                    } else if let Some(f) = field_ident(self, guar) {
3820                        fields.push(f);
3821                    }
3822                    self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3823                    let _ = self.eat(exp!(Comma));
3824                }
3825            }
3826        }
3827        Ok((fields, base, recovered_async))
3828    }
3829
3830    /// Precondition: already parsed the '{'.
3831    pub(super) fn parse_expr_struct(
3832        &mut self,
3833        qself: Option<Box<ast::QSelf>>,
3834        pth: ast::Path,
3835        recover: bool,
3836    ) -> PResult<'a, Box<Expr>> {
3837        let lo = pth.span;
3838        let (fields, base, recovered_async) =
3839            self.parse_struct_fields(pth.clone(), recover, exp!(CloseBrace))?;
3840        let span = lo.to(self.token.span);
3841        self.expect(exp!(CloseBrace))?;
3842        let expr = if let Some(guar) = recovered_async {
3843            ExprKind::Err(guar)
3844        } else {
3845            ExprKind::Struct(Box::new(ast::StructExpr { qself, path: pth, fields, rest: base }))
3846        };
3847        Ok(self.mk_expr(span, expr))
3848    }
3849
3850    fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
3851        if self.token != token::Comma {
3852            return;
3853        }
3854        self.dcx().emit_err(errors::CommaAfterBaseStruct {
3855            span: span.to(self.prev_token.span),
3856            comma: self.token.span,
3857        });
3858        self.recover_stmt();
3859    }
3860
3861    fn recover_struct_field_dots(&mut self, close: &TokenKind) -> bool {
3862        if !self.look_ahead(1, |t| t == close) && self.eat(exp!(DotDotDot)) {
3863            // recover from typo of `...`, suggest `..`
3864            let span = self.prev_token.span;
3865            self.dcx().emit_err(errors::MissingDotDot { token_span: span, sugg_span: span });
3866            return true;
3867        }
3868        false
3869    }
3870
3871    /// Converts an ident into 'label and emits an "expected a label, found an identifier" error.
3872    fn recover_ident_into_label(&mut self, ident: Ident) -> Label {
3873        // Convert `label` -> `'label`,
3874        // so that nameres doesn't complain about non-existing label
3875        let label = format!("'{}", ident.name);
3876        let ident = Ident::new(Symbol::intern(&label), ident.span);
3877
3878        self.dcx().emit_err(errors::ExpectedLabelFoundIdent {
3879            span: ident.span,
3880            start: ident.span.shrink_to_lo(),
3881        });
3882
3883        Label { ident }
3884    }
3885
3886    /// Parses `ident (COLON expr)?`.
3887    fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3888        let attrs = self.parse_outer_attributes()?;
3889        self.recover_vcs_conflict_marker();
3890        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
3891            let lo = this.token.span;
3892
3893            // Check if a colon exists one ahead. This means we're parsing a fieldname.
3894            let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3895            // Proactively check whether parsing the field will be incorrect.
3896            let is_wrong = this.token.is_non_reserved_ident()
3897                && !this.look_ahead(1, |t| {
3898                    t == &token::Colon
3899                        || t == &token::Eq
3900                        || t == &token::Comma
3901                        || t == &token::CloseBrace
3902                        || t == &token::CloseParen
3903                });
3904            if is_wrong {
3905                return Err(this.dcx().create_err(errors::ExpectedStructField {
3906                    span: this.look_ahead(1, |t| t.span),
3907                    ident_span: this.token.span,
3908                    token: this.look_ahead(1, |t| *t),
3909                }));
3910            }
3911            let (ident, expr) = if is_shorthand {
3912                // Mimic `x: x` for the `x` field shorthand.
3913                let ident = this.parse_ident_common(false)?;
3914                let path = ast::Path::from_ident(ident);
3915                (ident, this.mk_expr(ident.span, ExprKind::Path(None, path)))
3916            } else {
3917                let ident = this.parse_field_name()?;
3918                this.error_on_eq_field_init(ident);
3919                this.bump(); // `:`
3920                (ident, this.parse_expr()?)
3921            };
3922
3923            Ok((
3924                ast::ExprField {
3925                    ident,
3926                    span: lo.to(expr.span),
3927                    expr,
3928                    is_shorthand,
3929                    attrs,
3930                    id: DUMMY_NODE_ID,
3931                    is_placeholder: false,
3932                },
3933                Trailing::from(this.token == token::Comma),
3934                UsePreAttrPos::No,
3935            ))
3936        })
3937    }
3938
3939    /// Check for `=`. This means the source incorrectly attempts to
3940    /// initialize a field with an eq rather than a colon.
3941    fn error_on_eq_field_init(&self, field_name: Ident) {
3942        if self.token != token::Eq {
3943            return;
3944        }
3945
3946        self.dcx().emit_err(errors::EqFieldInit {
3947            span: self.token.span,
3948            eq: field_name.span.shrink_to_hi().to(self.token.span),
3949        });
3950    }
3951
3952    fn err_dotdotdot_syntax(&self, span: Span) {
3953        self.dcx().emit_err(errors::DotDotDot { span });
3954    }
3955
3956    fn err_larrow_operator(&self, span: Span) {
3957        self.dcx().emit_err(errors::LeftArrowOperator { span });
3958    }
3959
3960    fn mk_assign_op(&self, assign_op: AssignOp, lhs: Box<Expr>, rhs: Box<Expr>) -> ExprKind {
3961        ExprKind::AssignOp(assign_op, lhs, rhs)
3962    }
3963
3964    fn mk_range(
3965        &mut self,
3966        start: Option<Box<Expr>>,
3967        end: Option<Box<Expr>>,
3968        limits: RangeLimits,
3969    ) -> ExprKind {
3970        if end.is_none() && limits == RangeLimits::Closed {
3971            let guar = self.inclusive_range_with_incorrect_end();
3972            ExprKind::Err(guar)
3973        } else {
3974            ExprKind::Range(start, end, limits)
3975        }
3976    }
3977
3978    fn mk_unary(&self, unop: UnOp, expr: Box<Expr>) -> ExprKind {
3979        ExprKind::Unary(unop, expr)
3980    }
3981
3982    fn mk_binary(&self, binop: BinOp, lhs: Box<Expr>, rhs: Box<Expr>) -> ExprKind {
3983        ExprKind::Binary(binop, lhs, rhs)
3984    }
3985
3986    fn mk_index(&self, expr: Box<Expr>, idx: Box<Expr>, brackets_span: Span) -> ExprKind {
3987        ExprKind::Index(expr, idx, brackets_span)
3988    }
3989
3990    fn mk_call(&self, f: Box<Expr>, args: ThinVec<Box<Expr>>) -> ExprKind {
3991        ExprKind::Call(f, args)
3992    }
3993
3994    fn mk_await_expr(&mut self, self_arg: Box<Expr>, lo: Span) -> Box<Expr> {
3995        let span = lo.to(self.prev_token.span);
3996        let await_expr = self.mk_expr(span, ExprKind::Await(self_arg, self.prev_token.span));
3997        self.recover_from_await_method_call();
3998        await_expr
3999    }
4000
4001    fn mk_use_expr(&mut self, self_arg: Box<Expr>, lo: Span) -> Box<Expr> {
4002        let span = lo.to(self.prev_token.span);
4003        let use_expr = self.mk_expr(span, ExprKind::Use(self_arg, self.prev_token.span));
4004        self.recover_from_use();
4005        use_expr
4006    }
4007
4008    pub(crate) fn mk_expr_with_attrs(
4009        &self,
4010        span: Span,
4011        kind: ExprKind,
4012        attrs: AttrVec,
4013    ) -> Box<Expr> {
4014        Box::new(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
4015    }
4016
4017    pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> Box<Expr> {
4018        self.mk_expr_with_attrs(span, kind, AttrVec::new())
4019    }
4020
4021    pub(super) fn mk_expr_err(&self, span: Span, guar: ErrorGuaranteed) -> Box<Expr> {
4022        self.mk_expr(span, ExprKind::Err(guar))
4023    }
4024
4025    /// Create expression span ensuring the span of the parent node
4026    /// is larger than the span of lhs and rhs, including the attributes.
4027    fn mk_expr_sp(&self, lhs: &Box<Expr>, lhs_span: Span, op_span: Span, rhs_span: Span) -> Span {
4028        lhs.attrs
4029            .iter()
4030            .find(|a| a.style == AttrStyle::Outer)
4031            .map_or(lhs_span, |a| a.span)
4032            .to(op_span)
4033            .to(rhs_span)
4034    }
4035
4036    fn collect_tokens_for_expr(
4037        &mut self,
4038        attrs: AttrWrapper,
4039        f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, Box<Expr>>,
4040    ) -> PResult<'a, Box<Expr>> {
4041        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
4042            let res = f(this, attrs)?;
4043            let trailing = Trailing::from(
4044                this.restrictions.contains(Restrictions::STMT_EXPR)
4045                     && this.token == token::Semi
4046                // FIXME: pass an additional condition through from the place
4047                // where we know we need a comma, rather than assuming that
4048                // `#[attr] expr,` always captures a trailing comma.
4049                || this.token == token::Comma,
4050            );
4051            Ok((res, trailing, UsePreAttrPos::No))
4052        })
4053    }
4054}
4055
4056/// Could this lifetime/label be an unclosed char literal? For example, `'a`
4057/// could be, but `'abc` could not.
4058pub(crate) fn could_be_unclosed_char_literal(ident: Ident) -> bool {
4059    ident.name.as_str().starts_with('\'')
4060        && unescape_char(ident.without_first_quote().name.as_str()).is_ok()
4061}
4062
4063/// Used to forbid `let` expressions in certain syntactic locations.
4064#[derive(Clone, Copy, Subdiagnostic)]
4065pub(crate) enum ForbiddenLetReason {
4066    /// `let` is not valid and the source environment is not important
4067    OtherForbidden,
4068    /// A let chain with the `||` operator
4069    #[note(parse_not_supported_or)]
4070    NotSupportedOr(#[primary_span] Span),
4071    /// A let chain with invalid parentheses
4072    ///
4073    /// For example, `let 1 = 1 && (expr && expr)` is allowed
4074    /// but `(let 1 = 1 && (let 1 = 1 && (let 1 = 1))) && let a = 1` is not
4075    #[note(parse_not_supported_parentheses)]
4076    NotSupportedParentheses(#[primary_span] Span),
4077}
4078
4079/// Whether let chains are allowed on all editions, or it's edition dependent (allowed only on
4080/// 2024 and later). In case of edition dependence, specify the currently present edition.
4081pub enum LetChainsPolicy {
4082    AlwaysAllowed,
4083    EditionDependent { current_edition: Edition },
4084}
4085
4086/// Visitor to check for invalid use of `ExprKind::Let` that can't
4087/// easily be caught in parsing. For example:
4088///
4089/// ```rust,ignore (example)
4090/// // Only know that the let isn't allowed once the `||` token is reached
4091/// if let Some(x) = y || true {}
4092/// // Only know that the let isn't allowed once the second `=` token is reached.
4093/// if let Some(x) = y && z = 1 {}
4094/// ```
4095struct CondChecker<'a> {
4096    parser: &'a Parser<'a>,
4097    let_chains_policy: LetChainsPolicy,
4098    depth: u32,
4099    forbid_let_reason: Option<ForbiddenLetReason>,
4100    missing_let: Option<errors::MaybeMissingLet>,
4101    comparison: Option<errors::MaybeComparison>,
4102}
4103
4104impl<'a> CondChecker<'a> {
4105    fn new(parser: &'a Parser<'a>, let_chains_policy: LetChainsPolicy) -> Self {
4106        CondChecker {
4107            parser,
4108            forbid_let_reason: None,
4109            missing_let: None,
4110            comparison: None,
4111            let_chains_policy,
4112            depth: 0,
4113        }
4114    }
4115}
4116
4117impl MutVisitor for CondChecker<'_> {
4118    fn visit_expr(&mut self, e: &mut Expr) {
4119        self.depth += 1;
4120        use ForbiddenLetReason::*;
4121
4122        let span = e.span;
4123        match e.kind {
4124            ExprKind::Let(_, _, _, ref mut recovered @ Recovered::No) => {
4125                if let Some(reason) = self.forbid_let_reason {
4126                    let error = match reason {
4127                        NotSupportedOr(or_span) => {
4128                            self.parser.dcx().emit_err(errors::OrInLetChain { span: or_span })
4129                        }
4130                        _ => self.parser.dcx().emit_err(errors::ExpectedExpressionFoundLet {
4131                            span,
4132                            reason,
4133                            missing_let: self.missing_let,
4134                            comparison: self.comparison,
4135                        }),
4136                    };
4137                    *recovered = Recovered::Yes(error);
4138                } else if self.depth > 1 {
4139                    // Top level `let` is always allowed; only gate chains
4140                    match self.let_chains_policy {
4141                        LetChainsPolicy::AlwaysAllowed => (),
4142                        LetChainsPolicy::EditionDependent { current_edition } => {
4143                            if !current_edition.at_least_rust_2024() || !span.at_least_rust_2024() {
4144                                self.parser.dcx().emit_err(errors::LetChainPre2024 { span });
4145                            }
4146                        }
4147                    }
4148                }
4149            }
4150            ExprKind::Binary(Spanned { node: BinOpKind::And, .. }, _, _) => {
4151                mut_visit::walk_expr(self, e);
4152            }
4153            ExprKind::Binary(Spanned { node: BinOpKind::Or, span: or_span }, _, _)
4154                if let None | Some(NotSupportedOr(_)) = self.forbid_let_reason =>
4155            {
4156                let forbid_let_reason = self.forbid_let_reason;
4157                self.forbid_let_reason = Some(NotSupportedOr(or_span));
4158                mut_visit::walk_expr(self, e);
4159                self.forbid_let_reason = forbid_let_reason;
4160            }
4161            ExprKind::Paren(ref inner)
4162                if let None | Some(NotSupportedParentheses(_)) = self.forbid_let_reason =>
4163            {
4164                let forbid_let_reason = self.forbid_let_reason;
4165                self.forbid_let_reason = Some(NotSupportedParentheses(inner.span));
4166                mut_visit::walk_expr(self, e);
4167                self.forbid_let_reason = forbid_let_reason;
4168            }
4169            ExprKind::Assign(ref lhs, _, span) => {
4170                let forbid_let_reason = self.forbid_let_reason;
4171                self.forbid_let_reason = Some(OtherForbidden);
4172                let missing_let = self.missing_let;
4173                if let ExprKind::Binary(_, _, rhs) = &lhs.kind
4174                    && let ExprKind::Path(_, _)
4175                    | ExprKind::Struct(_)
4176                    | ExprKind::Call(_, _)
4177                    | ExprKind::Array(_) = rhs.kind
4178                {
4179                    self.missing_let =
4180                        Some(errors::MaybeMissingLet { span: rhs.span.shrink_to_lo() });
4181                }
4182                let comparison = self.comparison;
4183                self.comparison = Some(errors::MaybeComparison { span: span.shrink_to_hi() });
4184                mut_visit::walk_expr(self, e);
4185                self.forbid_let_reason = forbid_let_reason;
4186                self.missing_let = missing_let;
4187                self.comparison = comparison;
4188            }
4189            ExprKind::Unary(_, _)
4190            | ExprKind::Await(_, _)
4191            | ExprKind::Use(_, _)
4192            | ExprKind::AssignOp(_, _, _)
4193            | ExprKind::Range(_, _, _)
4194            | ExprKind::Try(_)
4195            | ExprKind::AddrOf(_, _, _)
4196            | ExprKind::Binary(_, _, _)
4197            | ExprKind::Field(_, _)
4198            | ExprKind::Index(_, _, _)
4199            | ExprKind::Call(_, _)
4200            | ExprKind::MethodCall(_)
4201            | ExprKind::Tup(_)
4202            | ExprKind::Paren(_) => {
4203                let forbid_let_reason = self.forbid_let_reason;
4204                self.forbid_let_reason = Some(OtherForbidden);
4205                mut_visit::walk_expr(self, e);
4206                self.forbid_let_reason = forbid_let_reason;
4207            }
4208            ExprKind::Cast(ref mut op, _)
4209            | ExprKind::Type(ref mut op, _)
4210            | ExprKind::UnsafeBinderCast(_, ref mut op, _) => {
4211                let forbid_let_reason = self.forbid_let_reason;
4212                self.forbid_let_reason = Some(OtherForbidden);
4213                self.visit_expr(op);
4214                self.forbid_let_reason = forbid_let_reason;
4215            }
4216            ExprKind::Let(_, _, _, Recovered::Yes(_))
4217            | ExprKind::Array(_)
4218            | ExprKind::ConstBlock(_)
4219            | ExprKind::Lit(_)
4220            | ExprKind::If(_, _, _)
4221            | ExprKind::While(_, _, _)
4222            | ExprKind::ForLoop { .. }
4223            | ExprKind::Loop(_, _, _)
4224            | ExprKind::Match(_, _, _)
4225            | ExprKind::Closure(_)
4226            | ExprKind::Block(_, _)
4227            | ExprKind::Gen(_, _, _, _)
4228            | ExprKind::TryBlock(_)
4229            | ExprKind::Underscore
4230            | ExprKind::Path(_, _)
4231            | ExprKind::Break(_, _)
4232            | ExprKind::Continue(_)
4233            | ExprKind::Ret(_)
4234            | ExprKind::InlineAsm(_)
4235            | ExprKind::OffsetOf(_, _)
4236            | ExprKind::MacCall(_)
4237            | ExprKind::Struct(_)
4238            | ExprKind::Repeat(_, _)
4239            | ExprKind::Yield(_)
4240            | ExprKind::Yeet(_)
4241            | ExprKind::Become(_)
4242            | ExprKind::IncludedBytes(_)
4243            | ExprKind::FormatArgs(_)
4244            | ExprKind::Err(_)
4245            | ExprKind::Dummy => {
4246                // These would forbid any let expressions they contain already.
4247            }
4248        }
4249        self.depth -= 1;
4250    }
4251}