rustc_privacy/
lib.rs

1// tidy-alphabetical-start
2#![allow(internal_features)]
3#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
4#![doc(rust_logo)]
5#![feature(associated_type_defaults)]
6#![feature(rustdoc_internals)]
7#![feature(try_blocks)]
8// tidy-alphabetical-end
9
10mod errors;
11
12use std::fmt;
13use std::marker::PhantomData;
14use std::ops::ControlFlow;
15
16use errors::{
17    FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface,
18    ItemIsPrivate, PrivateInterfacesOrBoundsLint, ReportEffectiveVisibility, UnnameableTypesLint,
19    UnnamedItemIsPrivate,
20};
21use rustc_ast::MacroDef;
22use rustc_ast::visit::{VisitorResult, try_visit};
23use rustc_data_structures::fx::FxHashSet;
24use rustc_data_structures::intern::Interned;
25use rustc_errors::{MultiSpan, listify};
26use rustc_hir as hir;
27use rustc_hir::attrs::AttributeKind;
28use rustc_hir::def::{DefKind, Res};
29use rustc_hir::def_id::{DefId, LocalDefId, LocalModDefId};
30use rustc_hir::intravisit::{self, InferKind, Visitor};
31use rustc_hir::{AmbigArg, ForeignItemId, ItemId, OwnerId, PatKind, find_attr};
32use rustc_middle::middle::privacy::{EffectiveVisibilities, EffectiveVisibility, Level};
33use rustc_middle::query::Providers;
34use rustc_middle::ty::print::PrintTraitRefExt as _;
35use rustc_middle::ty::{
36    self, Const, GenericParamDefKind, TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable,
37    TypeVisitor,
38};
39use rustc_middle::{bug, span_bug};
40use rustc_session::lint;
41use rustc_span::hygiene::Transparency;
42use rustc_span::{Ident, Span, Symbol, sym};
43use tracing::debug;
44
45rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
46
47////////////////////////////////////////////////////////////////////////////////
48/// Generic infrastructure used to implement specific visitors below.
49////////////////////////////////////////////////////////////////////////////////
50
51struct LazyDefPathStr<'tcx> {
52    def_id: DefId,
53    tcx: TyCtxt<'tcx>,
54}
55
56impl<'tcx> fmt::Display for LazyDefPathStr<'tcx> {
57    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
58        write!(f, "{}", self.tcx.def_path_str(self.def_id))
59    }
60}
61
62/// Implemented to visit all `DefId`s in a type.
63/// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
64/// The idea is to visit "all components of a type", as documented in
65/// <https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type>.
66/// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
67/// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
68/// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
69/// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
70pub trait DefIdVisitor<'tcx> {
71    type Result: VisitorResult = ();
72    const SHALLOW: bool = false;
73    fn skip_assoc_tys(&self) -> bool {
74        false
75    }
76
77    fn tcx(&self) -> TyCtxt<'tcx>;
78    fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display)
79    -> Self::Result;
80
81    /// Not overridden, but used to actually visit types and traits.
82    fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
83        DefIdVisitorSkeleton {
84            def_id_visitor: self,
85            visited_opaque_tys: Default::default(),
86            dummy: Default::default(),
87        }
88    }
89    fn visit(&mut self, ty_fragment: impl TypeVisitable<TyCtxt<'tcx>>) -> Self::Result {
90        ty_fragment.visit_with(&mut self.skeleton())
91    }
92    fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> Self::Result {
93        self.skeleton().visit_trait(trait_ref)
94    }
95    fn visit_predicates(&mut self, predicates: ty::GenericPredicates<'tcx>) -> Self::Result {
96        self.skeleton().visit_clauses(predicates.predicates)
97    }
98    fn visit_clauses(&mut self, clauses: &[(ty::Clause<'tcx>, Span)]) -> Self::Result {
99        self.skeleton().visit_clauses(clauses)
100    }
101}
102
103pub struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> {
104    def_id_visitor: &'v mut V,
105    visited_opaque_tys: FxHashSet<DefId>,
106    dummy: PhantomData<TyCtxt<'tcx>>,
107}
108
109impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
110where
111    V: DefIdVisitor<'tcx> + ?Sized,
112{
113    fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> V::Result {
114        let TraitRef { def_id, args, .. } = trait_ref;
115        try_visit!(self.def_id_visitor.visit_def_id(
116            def_id,
117            "trait",
118            &trait_ref.print_only_trait_path()
119        ));
120        if V::SHALLOW { V::Result::output() } else { args.visit_with(self) }
121    }
122
123    fn visit_projection_term(&mut self, projection: ty::AliasTerm<'tcx>) -> V::Result {
124        let tcx = self.def_id_visitor.tcx();
125        let (trait_ref, assoc_args) = projection.trait_ref_and_own_args(tcx);
126        try_visit!(self.visit_trait(trait_ref));
127        if V::SHALLOW {
128            V::Result::output()
129        } else {
130            V::Result::from_branch(
131                assoc_args.iter().try_for_each(|arg| arg.visit_with(self).branch()),
132            )
133        }
134    }
135
136    fn visit_clause(&mut self, clause: ty::Clause<'tcx>) -> V::Result {
137        match clause.kind().skip_binder() {
138            ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, polarity: _ }) => {
139                self.visit_trait(trait_ref)
140            }
141            ty::ClauseKind::HostEffect(pred) => {
142                try_visit!(self.visit_trait(pred.trait_ref));
143                pred.constness.visit_with(self)
144            }
145            ty::ClauseKind::Projection(ty::ProjectionPredicate {
146                projection_term: projection_ty,
147                term,
148            }) => {
149                try_visit!(term.visit_with(self));
150                self.visit_projection_term(projection_ty)
151            }
152            ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _region)) => ty.visit_with(self),
153            ty::ClauseKind::RegionOutlives(..) => V::Result::output(),
154            ty::ClauseKind::ConstArgHasType(ct, ty) => {
155                try_visit!(ct.visit_with(self));
156                ty.visit_with(self)
157            }
158            ty::ClauseKind::ConstEvaluatable(ct) => ct.visit_with(self),
159            ty::ClauseKind::WellFormed(term) => term.visit_with(self),
160            ty::ClauseKind::UnstableFeature(_) => V::Result::output(),
161        }
162    }
163
164    fn visit_clauses(&mut self, clauses: &[(ty::Clause<'tcx>, Span)]) -> V::Result {
165        for &(clause, _) in clauses {
166            try_visit!(self.visit_clause(clause));
167        }
168        V::Result::output()
169    }
170}
171
172impl<'tcx, V> TypeVisitor<TyCtxt<'tcx>> for DefIdVisitorSkeleton<'_, 'tcx, V>
173where
174    V: DefIdVisitor<'tcx> + ?Sized,
175{
176    type Result = V::Result;
177
178    fn visit_predicate(&mut self, p: ty::Predicate<'tcx>) -> Self::Result {
179        self.visit_clause(p.as_clause().unwrap())
180    }
181
182    fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
183        let tcx = self.def_id_visitor.tcx();
184        // GenericArgs are not visited here because they are visited below
185        // in `super_visit_with`.
186        match *ty.kind() {
187            ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..)
188            | ty::Foreign(def_id)
189            | ty::FnDef(def_id, ..)
190            | ty::Closure(def_id, ..)
191            | ty::CoroutineClosure(def_id, ..)
192            | ty::Coroutine(def_id, ..) => {
193                try_visit!(self.def_id_visitor.visit_def_id(def_id, "type", &ty));
194                if V::SHALLOW {
195                    return V::Result::output();
196                }
197                // Default type visitor doesn't visit signatures of fn types.
198                // Something like `fn() -> Priv {my_func}` is considered a private type even if
199                // `my_func` is public, so we need to visit signatures.
200                if let ty::FnDef(..) = ty.kind() {
201                    // FIXME: this should probably use `args` from `FnDef`
202                    try_visit!(tcx.fn_sig(def_id).instantiate_identity().visit_with(self));
203                }
204                // Inherent static methods don't have self type in args.
205                // Something like `fn() {my_method}` type of the method
206                // `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
207                // so we need to visit the self type additionally.
208                if let Some(assoc_item) = tcx.opt_associated_item(def_id)
209                    && let Some(impl_def_id) = assoc_item.impl_container(tcx)
210                {
211                    try_visit!(tcx.type_of(impl_def_id).instantiate_identity().visit_with(self));
212                }
213            }
214            ty::Alias(kind @ (ty::Inherent | ty::Free | ty::Projection), data) => {
215                if self.def_id_visitor.skip_assoc_tys() {
216                    // Visitors searching for minimal visibility/reachability want to
217                    // conservatively approximate associated types like `Type::Alias`
218                    // as visible/reachable even if `Type` is private.
219                    // Ideally, associated types should be instantiated in the same way as
220                    // free type aliases, but this isn't done yet.
221                    return V::Result::output();
222                }
223
224                try_visit!(self.def_id_visitor.visit_def_id(
225                    data.def_id,
226                    match kind {
227                        ty::Inherent | ty::Projection => "associated type",
228                        ty::Free => "type alias",
229                        ty::Opaque => unreachable!(),
230                    },
231                    &LazyDefPathStr { def_id: data.def_id, tcx },
232                ));
233
234                // This will also visit args if necessary, so we don't need to recurse.
235                return if V::SHALLOW {
236                    V::Result::output()
237                } else if kind == ty::Projection {
238                    self.visit_projection_term(data.into())
239                } else {
240                    V::Result::from_branch(
241                        data.args.iter().try_for_each(|arg| arg.visit_with(self).branch()),
242                    )
243                };
244            }
245            ty::Dynamic(predicates, ..) => {
246                // All traits in the list are considered the "primary" part of the type
247                // and are visited by shallow visitors.
248                for predicate in predicates {
249                    let trait_ref = match predicate.skip_binder() {
250                        ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
251                        ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
252                        ty::ExistentialPredicate::AutoTrait(def_id) => {
253                            ty::ExistentialTraitRef::new(tcx, def_id, ty::GenericArgs::empty())
254                        }
255                    };
256                    let ty::ExistentialTraitRef { def_id, .. } = trait_ref;
257                    try_visit!(self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref));
258                }
259            }
260            ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => {
261                // Skip repeated `Opaque`s to avoid infinite recursion.
262                if self.visited_opaque_tys.insert(def_id) {
263                    // The intent is to treat `impl Trait1 + Trait2` identically to
264                    // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
265                    // (it either has no visibility, or its visibility is insignificant, like
266                    // visibilities of type aliases) and recurse into bounds instead to go
267                    // through the trait list (default type visitor doesn't visit those traits).
268                    // All traits in the list are considered the "primary" part of the type
269                    // and are visited by shallow visitors.
270                    try_visit!(self.visit_clauses(tcx.explicit_item_bounds(def_id).skip_binder()));
271                }
272            }
273            // These types don't have their own def-ids (but may have subcomponents
274            // with def-ids that should be visited recursively).
275            ty::Bool
276            | ty::Char
277            | ty::Int(..)
278            | ty::Uint(..)
279            | ty::Float(..)
280            | ty::Str
281            | ty::Never
282            | ty::Array(..)
283            | ty::Slice(..)
284            | ty::Tuple(..)
285            | ty::RawPtr(..)
286            | ty::Ref(..)
287            | ty::Pat(..)
288            | ty::FnPtr(..)
289            | ty::UnsafeBinder(_)
290            | ty::Param(..)
291            | ty::Bound(..)
292            | ty::Error(_)
293            | ty::CoroutineWitness(..) => {}
294            ty::Placeholder(..) | ty::Infer(..) => {
295                bug!("unexpected type: {:?}", ty)
296            }
297        }
298
299        if V::SHALLOW { V::Result::output() } else { ty.super_visit_with(self) }
300    }
301
302    fn visit_const(&mut self, c: Const<'tcx>) -> Self::Result {
303        let tcx = self.def_id_visitor.tcx();
304        tcx.expand_abstract_consts(c).super_visit_with(self)
305    }
306}
307
308fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
309    if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
310}
311
312////////////////////////////////////////////////////////////////////////////////
313/// Visitor used to determine impl visibility and reachability.
314////////////////////////////////////////////////////////////////////////////////
315
316struct FindMin<'a, 'tcx, VL: VisibilityLike, const SHALLOW: bool> {
317    tcx: TyCtxt<'tcx>,
318    effective_visibilities: &'a EffectiveVisibilities,
319    min: VL,
320}
321
322impl<'a, 'tcx, VL: VisibilityLike, const SHALLOW: bool> DefIdVisitor<'tcx>
323    for FindMin<'a, 'tcx, VL, SHALLOW>
324{
325    const SHALLOW: bool = SHALLOW;
326    fn skip_assoc_tys(&self) -> bool {
327        true
328    }
329    fn tcx(&self) -> TyCtxt<'tcx> {
330        self.tcx
331    }
332    fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) {
333        if let Some(def_id) = def_id.as_local() {
334            self.min = VL::new_min(self, def_id);
335        }
336    }
337}
338
339trait VisibilityLike: Sized {
340    const MAX: Self;
341    fn new_min<const SHALLOW: bool>(
342        find: &FindMin<'_, '_, Self, SHALLOW>,
343        def_id: LocalDefId,
344    ) -> Self;
345
346    // Returns an over-approximation (`skip_assoc_tys()` = true) of visibility due to
347    // associated types for which we can't determine visibility precisely.
348    fn of_impl<const SHALLOW: bool>(
349        def_id: LocalDefId,
350        tcx: TyCtxt<'_>,
351        effective_visibilities: &EffectiveVisibilities,
352    ) -> Self {
353        let mut find = FindMin::<_, SHALLOW> { tcx, effective_visibilities, min: Self::MAX };
354        find.visit(tcx.type_of(def_id).instantiate_identity());
355        if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
356            find.visit_trait(trait_ref.instantiate_identity());
357        }
358        find.min
359    }
360}
361
362impl VisibilityLike for ty::Visibility {
363    const MAX: Self = ty::Visibility::Public;
364    fn new_min<const SHALLOW: bool>(
365        find: &FindMin<'_, '_, Self, SHALLOW>,
366        def_id: LocalDefId,
367    ) -> Self {
368        min(find.tcx.local_visibility(def_id), find.min, find.tcx)
369    }
370}
371
372impl VisibilityLike for EffectiveVisibility {
373    const MAX: Self = EffectiveVisibility::from_vis(ty::Visibility::Public);
374    fn new_min<const SHALLOW: bool>(
375        find: &FindMin<'_, '_, Self, SHALLOW>,
376        def_id: LocalDefId,
377    ) -> Self {
378        let effective_vis =
379            find.effective_visibilities.effective_vis(def_id).copied().unwrap_or_else(|| {
380                let private_vis = ty::Visibility::Restricted(
381                    find.tcx.parent_module_from_def_id(def_id).to_local_def_id(),
382                );
383                EffectiveVisibility::from_vis(private_vis)
384            });
385
386        effective_vis.min(find.min, find.tcx)
387    }
388}
389
390////////////////////////////////////////////////////////////////////////////////
391/// The embargo visitor, used to determine the exports of the AST.
392////////////////////////////////////////////////////////////////////////////////
393
394struct EmbargoVisitor<'tcx> {
395    tcx: TyCtxt<'tcx>,
396
397    /// Effective visibilities for reachable nodes.
398    effective_visibilities: EffectiveVisibilities,
399    /// A set of pairs corresponding to modules, where the first module is
400    /// reachable via a macro that's defined in the second module. This cannot
401    /// be represented as reachable because it can't handle the following case:
402    ///
403    /// pub mod n {                         // Should be `Public`
404    ///     pub(crate) mod p {              // Should *not* be accessible
405    ///         pub fn f() -> i32 { 12 }    // Must be `Reachable`
406    ///     }
407    /// }
408    /// pub macro m() {
409    ///     n::p::f()
410    /// }
411    macro_reachable: FxHashSet<(LocalModDefId, LocalModDefId)>,
412    /// Has something changed in the level map?
413    changed: bool,
414}
415
416struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
417    effective_vis: EffectiveVisibility,
418    item_def_id: LocalDefId,
419    ev: &'a mut EmbargoVisitor<'tcx>,
420    level: Level,
421}
422
423impl<'tcx> EmbargoVisitor<'tcx> {
424    fn get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility> {
425        self.effective_visibilities.effective_vis(def_id).copied()
426    }
427
428    // Updates node effective visibility.
429    fn update(
430        &mut self,
431        def_id: LocalDefId,
432        inherited_effective_vis: EffectiveVisibility,
433        level: Level,
434    ) {
435        let nominal_vis = self.tcx.local_visibility(def_id);
436        self.update_eff_vis(def_id, inherited_effective_vis, Some(nominal_vis), level);
437    }
438
439    fn update_eff_vis(
440        &mut self,
441        def_id: LocalDefId,
442        inherited_effective_vis: EffectiveVisibility,
443        max_vis: Option<ty::Visibility>,
444        level: Level,
445    ) {
446        // FIXME(typed_def_id): Make `Visibility::Restricted` use a `LocalModDefId` by default.
447        let private_vis =
448            ty::Visibility::Restricted(self.tcx.parent_module_from_def_id(def_id).into());
449        if max_vis != Some(private_vis) {
450            self.changed |= self.effective_visibilities.update(
451                def_id,
452                max_vis,
453                || private_vis,
454                inherited_effective_vis,
455                level,
456                self.tcx,
457            );
458        }
459    }
460
461    fn reach(
462        &mut self,
463        def_id: LocalDefId,
464        effective_vis: EffectiveVisibility,
465    ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
466        ReachEverythingInTheInterfaceVisitor {
467            effective_vis,
468            item_def_id: def_id,
469            ev: self,
470            level: Level::Reachable,
471        }
472    }
473
474    fn reach_through_impl_trait(
475        &mut self,
476        def_id: LocalDefId,
477        effective_vis: EffectiveVisibility,
478    ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
479        ReachEverythingInTheInterfaceVisitor {
480            effective_vis,
481            item_def_id: def_id,
482            ev: self,
483            level: Level::ReachableThroughImplTrait,
484        }
485    }
486
487    // We have to make sure that the items that macros might reference
488    // are reachable, since they might be exported transitively.
489    fn update_reachability_from_macro(
490        &mut self,
491        local_def_id: LocalDefId,
492        md: &MacroDef,
493        macro_ev: EffectiveVisibility,
494    ) {
495        // Non-opaque macros cannot make other items more accessible than they already are.
496        let hir_id = self.tcx.local_def_id_to_hir_id(local_def_id);
497        let attrs = self.tcx.hir_attrs(hir_id);
498
499        if find_attr!(attrs, AttributeKind::MacroTransparency(x) => *x)
500            .unwrap_or(Transparency::fallback(md.macro_rules))
501            != Transparency::Opaque
502        {
503            return;
504        }
505
506        let macro_module_def_id = self.tcx.local_parent(local_def_id);
507        if self.tcx.def_kind(macro_module_def_id) != DefKind::Mod {
508            // The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252).
509            return;
510        }
511        // FIXME(typed_def_id): Introduce checked constructors that check def_kind.
512        let macro_module_def_id = LocalModDefId::new_unchecked(macro_module_def_id);
513
514        if self.effective_visibilities.public_at_level(local_def_id).is_none() {
515            return;
516        }
517
518        // Since we are starting from an externally visible module,
519        // all the parents in the loop below are also guaranteed to be modules.
520        let mut module_def_id = macro_module_def_id;
521        loop {
522            let changed_reachability =
523                self.update_macro_reachable(module_def_id, macro_module_def_id, macro_ev);
524            if changed_reachability || module_def_id == LocalModDefId::CRATE_DEF_ID {
525                break;
526            }
527            module_def_id = LocalModDefId::new_unchecked(self.tcx.local_parent(module_def_id));
528        }
529    }
530
531    /// Updates the item as being reachable through a macro defined in the given
532    /// module. Returns `true` if the level has changed.
533    fn update_macro_reachable(
534        &mut self,
535        module_def_id: LocalModDefId,
536        defining_mod: LocalModDefId,
537        macro_ev: EffectiveVisibility,
538    ) -> bool {
539        if self.macro_reachable.insert((module_def_id, defining_mod)) {
540            for child in self.tcx.module_children_local(module_def_id.to_local_def_id()) {
541                if let Res::Def(def_kind, def_id) = child.res
542                    && let Some(def_id) = def_id.as_local()
543                    && child.vis.is_accessible_from(defining_mod, self.tcx)
544                {
545                    let vis = self.tcx.local_visibility(def_id);
546                    self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod, macro_ev);
547                }
548            }
549            true
550        } else {
551            false
552        }
553    }
554
555    fn update_macro_reachable_def(
556        &mut self,
557        def_id: LocalDefId,
558        def_kind: DefKind,
559        vis: ty::Visibility,
560        module: LocalModDefId,
561        macro_ev: EffectiveVisibility,
562    ) {
563        self.update(def_id, macro_ev, Level::Reachable);
564        match def_kind {
565            // No type privacy, so can be directly marked as reachable.
566            DefKind::Const | DefKind::Static { .. } | DefKind::TraitAlias | DefKind::TyAlias => {
567                if vis.is_accessible_from(module, self.tcx) {
568                    self.update(def_id, macro_ev, Level::Reachable);
569                }
570            }
571
572            // Hygiene isn't really implemented for `macro_rules!` macros at the
573            // moment. Accordingly, marking them as reachable is unwise. `macro` macros
574            // have normal hygiene, so we can treat them like other items without type
575            // privacy and mark them reachable.
576            DefKind::Macro(_) => {
577                let item = self.tcx.hir_expect_item(def_id);
578                if let hir::ItemKind::Macro(_, MacroDef { macro_rules: false, .. }, _) = item.kind {
579                    if vis.is_accessible_from(module, self.tcx) {
580                        self.update(def_id, macro_ev, Level::Reachable);
581                    }
582                }
583            }
584
585            // We can't use a module name as the final segment of a path, except
586            // in use statements. Since re-export checking doesn't consider
587            // hygiene these don't need to be marked reachable. The contents of
588            // the module, however may be reachable.
589            DefKind::Mod => {
590                if vis.is_accessible_from(module, self.tcx) {
591                    self.update_macro_reachable(
592                        LocalModDefId::new_unchecked(def_id),
593                        module,
594                        macro_ev,
595                    );
596                }
597            }
598
599            DefKind::Struct | DefKind::Union => {
600                // While structs and unions have type privacy, their fields do not.
601                let struct_def = self.tcx.adt_def(def_id);
602                for field in &struct_def.non_enum_variant().fields {
603                    let def_id = field.did.expect_local();
604                    let field_vis = self.tcx.local_visibility(def_id);
605                    if field_vis.is_accessible_from(module, self.tcx) {
606                        self.reach(def_id, macro_ev).ty();
607                    }
608                }
609            }
610
611            // These have type privacy, so are not reachable unless they're
612            // public, or are not namespaced at all.
613            DefKind::AssocConst
614            | DefKind::AssocTy
615            | DefKind::ConstParam
616            | DefKind::Ctor(_, _)
617            | DefKind::Enum
618            | DefKind::ForeignTy
619            | DefKind::Fn
620            | DefKind::OpaqueTy
621            | DefKind::AssocFn
622            | DefKind::Trait
623            | DefKind::TyParam
624            | DefKind::Variant
625            | DefKind::LifetimeParam
626            | DefKind::ExternCrate
627            | DefKind::Use
628            | DefKind::ForeignMod
629            | DefKind::AnonConst
630            | DefKind::InlineConst
631            | DefKind::Field
632            | DefKind::GlobalAsm
633            | DefKind::Impl { .. }
634            | DefKind::Closure
635            | DefKind::SyntheticCoroutineBody => (),
636        }
637    }
638}
639
640impl<'tcx> EmbargoVisitor<'tcx> {
641    fn check_def_id(&mut self, owner_id: OwnerId) {
642        // Update levels of nested things and mark all items
643        // in interfaces of reachable items as reachable.
644        let item_ev = self.get(owner_id.def_id);
645        match self.tcx.def_kind(owner_id) {
646            // The interface is empty, and no nested items.
647            DefKind::Use | DefKind::ExternCrate | DefKind::GlobalAsm => {}
648            // The interface is empty, and all nested items are processed by `check_def_id`.
649            DefKind::Mod => {}
650            DefKind::Macro { .. } => {
651                if let Some(item_ev) = item_ev {
652                    let (_, macro_def, _) =
653                        self.tcx.hir_expect_item(owner_id.def_id).expect_macro();
654                    self.update_reachability_from_macro(owner_id.def_id, macro_def, item_ev);
655                }
656            }
657            DefKind::ForeignTy
658            | DefKind::Const
659            | DefKind::Static { .. }
660            | DefKind::Fn
661            | DefKind::TyAlias => {
662                if let Some(item_ev) = item_ev {
663                    self.reach(owner_id.def_id, item_ev).generics().predicates().ty();
664                }
665            }
666            DefKind::Trait => {
667                if let Some(item_ev) = item_ev {
668                    self.reach(owner_id.def_id, item_ev).generics().predicates();
669
670                    for assoc_item in self.tcx.associated_items(owner_id).in_definition_order() {
671                        if assoc_item.is_impl_trait_in_trait() {
672                            continue;
673                        }
674
675                        let def_id = assoc_item.def_id.expect_local();
676                        self.update(def_id, item_ev, Level::Reachable);
677
678                        let tcx = self.tcx;
679                        let mut reach = self.reach(def_id, item_ev);
680                        reach.generics().predicates();
681
682                        if assoc_item.is_type() && !assoc_item.defaultness(tcx).has_value() {
683                            // No type to visit.
684                        } else {
685                            reach.ty();
686                        }
687                    }
688                }
689            }
690            DefKind::TraitAlias => {
691                if let Some(item_ev) = item_ev {
692                    self.reach(owner_id.def_id, item_ev).generics().predicates();
693                }
694            }
695            DefKind::Impl { of_trait } => {
696                // Type inference is very smart sometimes. It can make an impl reachable even some
697                // components of its type or trait are unreachable. E.g. methods of
698                // `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
699                // can be usable from other crates (#57264). So we skip args when calculating
700                // reachability and consider an impl reachable if its "shallow" type and trait are
701                // reachable.
702                //
703                // The assumption we make here is that type-inference won't let you use an impl
704                // without knowing both "shallow" version of its self type and "shallow" version of
705                // its trait if it exists (which require reaching the `DefId`s in them).
706                let item_ev = EffectiveVisibility::of_impl::<true>(
707                    owner_id.def_id,
708                    self.tcx,
709                    &self.effective_visibilities,
710                );
711
712                self.update_eff_vis(owner_id.def_id, item_ev, None, Level::Direct);
713
714                self.reach(owner_id.def_id, item_ev).generics().predicates().ty().trait_ref();
715
716                for assoc_item in self.tcx.associated_items(owner_id).in_definition_order() {
717                    if assoc_item.is_impl_trait_in_trait() {
718                        continue;
719                    }
720
721                    let def_id = assoc_item.def_id.expect_local();
722                    let max_vis =
723                        if of_trait { None } else { Some(self.tcx.local_visibility(def_id)) };
724                    self.update_eff_vis(def_id, item_ev, max_vis, Level::Direct);
725
726                    if let Some(impl_item_ev) = self.get(def_id) {
727                        self.reach(def_id, impl_item_ev).generics().predicates().ty();
728                    }
729                }
730            }
731            DefKind::Enum => {
732                if let Some(item_ev) = item_ev {
733                    self.reach(owner_id.def_id, item_ev).generics().predicates();
734                }
735                let def = self.tcx.adt_def(owner_id);
736                for variant in def.variants() {
737                    if let Some(item_ev) = item_ev {
738                        self.update(variant.def_id.expect_local(), item_ev, Level::Reachable);
739                    }
740
741                    if let Some(variant_ev) = self.get(variant.def_id.expect_local()) {
742                        if let Some(ctor_def_id) = variant.ctor_def_id() {
743                            self.update(ctor_def_id.expect_local(), variant_ev, Level::Reachable);
744                        }
745
746                        for field in &variant.fields {
747                            let field = field.did.expect_local();
748                            self.update(field, variant_ev, Level::Reachable);
749                            self.reach(field, variant_ev).ty();
750                        }
751                        // Corner case: if the variant is reachable, but its
752                        // enum is not, make the enum reachable as well.
753                        self.reach(owner_id.def_id, variant_ev).ty();
754                    }
755                    if let Some(ctor_def_id) = variant.ctor_def_id() {
756                        if let Some(ctor_ev) = self.get(ctor_def_id.expect_local()) {
757                            self.reach(owner_id.def_id, ctor_ev).ty();
758                        }
759                    }
760                }
761            }
762            DefKind::Struct | DefKind::Union => {
763                let def = self.tcx.adt_def(owner_id).non_enum_variant();
764                if let Some(item_ev) = item_ev {
765                    self.reach(owner_id.def_id, item_ev).generics().predicates();
766                    for field in &def.fields {
767                        let field = field.did.expect_local();
768                        self.update(field, item_ev, Level::Reachable);
769                        if let Some(field_ev) = self.get(field) {
770                            self.reach(field, field_ev).ty();
771                        }
772                    }
773                }
774                if let Some(ctor_def_id) = def.ctor_def_id() {
775                    if let Some(item_ev) = item_ev {
776                        self.update(ctor_def_id.expect_local(), item_ev, Level::Reachable);
777                    }
778                    if let Some(ctor_ev) = self.get(ctor_def_id.expect_local()) {
779                        self.reach(owner_id.def_id, ctor_ev).ty();
780                    }
781                }
782            }
783            // Contents are checked directly.
784            DefKind::ForeignMod => {}
785            DefKind::Field
786            | DefKind::Variant
787            | DefKind::AssocFn
788            | DefKind::AssocTy
789            | DefKind::AssocConst
790            | DefKind::TyParam
791            | DefKind::AnonConst
792            | DefKind::InlineConst
793            | DefKind::OpaqueTy
794            | DefKind::Closure
795            | DefKind::SyntheticCoroutineBody
796            | DefKind::ConstParam
797            | DefKind::LifetimeParam
798            | DefKind::Ctor(..) => {
799                bug!("should be checked while checking parent")
800            }
801        }
802    }
803}
804
805impl ReachEverythingInTheInterfaceVisitor<'_, '_> {
806    fn generics(&mut self) -> &mut Self {
807        for param in &self.ev.tcx.generics_of(self.item_def_id).own_params {
808            if let GenericParamDefKind::Const { .. } = param.kind {
809                self.visit(self.ev.tcx.type_of(param.def_id).instantiate_identity());
810            }
811            if let Some(default) = param.default_value(self.ev.tcx) {
812                self.visit(default.instantiate_identity());
813            }
814        }
815        self
816    }
817
818    fn predicates(&mut self) -> &mut Self {
819        self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
820        self
821    }
822
823    fn ty(&mut self) -> &mut Self {
824        self.visit(self.ev.tcx.type_of(self.item_def_id).instantiate_identity());
825        self
826    }
827
828    fn trait_ref(&mut self) -> &mut Self {
829        if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
830            self.visit_trait(trait_ref.instantiate_identity());
831        }
832        self
833    }
834}
835
836impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
837    fn tcx(&self) -> TyCtxt<'tcx> {
838        self.ev.tcx
839    }
840    fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) {
841        if let Some(def_id) = def_id.as_local() {
842            // All effective visibilities except `reachable_through_impl_trait` are limited to
843            // nominal visibility. If any type or trait is leaked farther than that, it will
844            // produce type privacy errors on any use, so we don't consider it leaked.
845            let max_vis = (self.level != Level::ReachableThroughImplTrait)
846                .then(|| self.ev.tcx.local_visibility(def_id));
847            self.ev.update_eff_vis(def_id, self.effective_vis, max_vis, self.level);
848        }
849    }
850}
851
852////////////////////////////////////////////////////////////////////////////////
853/// Visitor, used for EffectiveVisibilities table checking
854////////////////////////////////////////////////////////////////////////////////
855pub struct TestReachabilityVisitor<'a, 'tcx> {
856    tcx: TyCtxt<'tcx>,
857    effective_visibilities: &'a EffectiveVisibilities,
858}
859
860impl<'a, 'tcx> TestReachabilityVisitor<'a, 'tcx> {
861    fn effective_visibility_diagnostic(&self, def_id: LocalDefId) {
862        if self.tcx.has_attr(def_id, sym::rustc_effective_visibility) {
863            let mut error_msg = String::new();
864            let span = self.tcx.def_span(def_id.to_def_id());
865            if let Some(effective_vis) = self.effective_visibilities.effective_vis(def_id) {
866                for level in Level::all_levels() {
867                    let vis_str = effective_vis.at_level(level).to_string(def_id, self.tcx);
868                    if level != Level::Direct {
869                        error_msg.push_str(", ");
870                    }
871                    error_msg.push_str(&format!("{level:?}: {vis_str}"));
872                }
873            } else {
874                error_msg.push_str("not in the table");
875            }
876            self.tcx.dcx().emit_err(ReportEffectiveVisibility { span, descr: error_msg });
877        }
878    }
879}
880
881impl<'a, 'tcx> TestReachabilityVisitor<'a, 'tcx> {
882    fn check_def_id(&self, owner_id: OwnerId) {
883        self.effective_visibility_diagnostic(owner_id.def_id);
884
885        match self.tcx.def_kind(owner_id) {
886            DefKind::Enum => {
887                let def = self.tcx.adt_def(owner_id.def_id);
888                for variant in def.variants() {
889                    self.effective_visibility_diagnostic(variant.def_id.expect_local());
890                    if let Some(ctor_def_id) = variant.ctor_def_id() {
891                        self.effective_visibility_diagnostic(ctor_def_id.expect_local());
892                    }
893                    for field in &variant.fields {
894                        self.effective_visibility_diagnostic(field.did.expect_local());
895                    }
896                }
897            }
898            DefKind::Struct | DefKind::Union => {
899                let def = self.tcx.adt_def(owner_id.def_id).non_enum_variant();
900                if let Some(ctor_def_id) = def.ctor_def_id() {
901                    self.effective_visibility_diagnostic(ctor_def_id.expect_local());
902                }
903                for field in &def.fields {
904                    self.effective_visibility_diagnostic(field.did.expect_local());
905                }
906            }
907            _ => {}
908        }
909    }
910}
911
912//////////////////////////////////////////////////////////////////////////////////////
913/// Name privacy visitor, checks privacy and reports violations.
914/// Most of name privacy checks are performed during the main resolution phase,
915/// or later in type checking when field accesses and associated items are resolved.
916/// This pass performs remaining checks for fields in struct expressions and patterns.
917//////////////////////////////////////////////////////////////////////////////////////
918
919struct NamePrivacyVisitor<'tcx> {
920    tcx: TyCtxt<'tcx>,
921    maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
922}
923
924impl<'tcx> NamePrivacyVisitor<'tcx> {
925    /// Gets the type-checking results for the current body.
926    /// As this will ICE if called outside bodies, only call when working with
927    /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
928    #[track_caller]
929    fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
930        self.maybe_typeck_results
931            .expect("`NamePrivacyVisitor::typeck_results` called outside of body")
932    }
933
934    // Checks that a field in a struct constructor (expression or pattern) is accessible.
935    fn check_field(
936        &mut self,
937        hir_id: hir::HirId,    // ID of the field use
938        use_ctxt: Span,        // syntax context of the field name at the use site
939        def: ty::AdtDef<'tcx>, // definition of the struct or enum
940        field: &'tcx ty::FieldDef,
941    ) -> bool {
942        if def.is_enum() {
943            return true;
944        }
945
946        // definition of the field
947        let ident = Ident::new(sym::dummy, use_ctxt);
948        let (_, def_id) = self.tcx.adjust_ident_and_get_scope(ident, def.did(), hir_id);
949        !field.vis.is_accessible_from(def_id, self.tcx)
950    }
951
952    // Checks that a field in a struct constructor (expression or pattern) is accessible.
953    fn emit_unreachable_field_error(
954        &mut self,
955        fields: Vec<(Symbol, Span, bool /* field is present */)>,
956        def: ty::AdtDef<'tcx>, // definition of the struct or enum
957        update_syntax: Option<Span>,
958        struct_span: Span,
959    ) {
960        if def.is_enum() || fields.is_empty() {
961            return;
962        }
963
964        //   error[E0451]: fields `beta` and `gamma` of struct `Alpha` are private
965        //   --> $DIR/visibility.rs:18:13
966        //    |
967        // LL |     let _x = Alpha {
968        //    |              ----- in this type      # from `def`
969        // LL |         beta: 0,
970        //    |         ^^^^^^^ private field        # `fields.2` is `true`
971        // LL |         ..
972        //    |         ^^ field `gamma` is private  # `fields.2` is `false`
973
974        // Get the list of all private fields for the main message.
975        let Some(field_names) = listify(&fields[..], |(n, _, _)| format!("`{n}`")) else { return };
976        let span: MultiSpan = fields.iter().map(|(_, span, _)| *span).collect::<Vec<Span>>().into();
977
978        // Get the list of all private fields when pointing at the `..rest`.
979        let rest_field_names: Vec<_> =
980            fields.iter().filter(|(_, _, is_present)| !is_present).map(|(n, _, _)| n).collect();
981        let rest_len = rest_field_names.len();
982        let rest_field_names =
983            listify(&rest_field_names[..], |n| format!("`{n}`")).unwrap_or_default();
984        // Get all the labels for each field or `..rest` in the primary MultiSpan.
985        let labels = fields
986            .iter()
987            .filter(|(_, _, is_present)| *is_present)
988            .map(|(_, span, _)| FieldIsPrivateLabel::Other { span: *span })
989            .chain(update_syntax.iter().map(|span| FieldIsPrivateLabel::IsUpdateSyntax {
990                span: *span,
991                rest_field_names: rest_field_names.clone(),
992                rest_len,
993            }))
994            .collect();
995
996        self.tcx.dcx().emit_err(FieldIsPrivate {
997            span,
998            struct_span: if self
999                .tcx
1000                .sess
1001                .source_map()
1002                .is_multiline(fields[0].1.between(struct_span))
1003            {
1004                Some(struct_span)
1005            } else {
1006                None
1007            },
1008            field_names,
1009            variant_descr: def.variant_descr(),
1010            def_path_str: self.tcx.def_path_str(def.did()),
1011            labels,
1012            len: fields.len(),
1013        });
1014    }
1015
1016    fn check_expanded_fields(
1017        &mut self,
1018        adt: ty::AdtDef<'tcx>,
1019        variant: &'tcx ty::VariantDef,
1020        fields: &[hir::ExprField<'tcx>],
1021        hir_id: hir::HirId,
1022        span: Span,
1023        struct_span: Span,
1024    ) {
1025        let mut failed_fields = vec![];
1026        for (vf_index, variant_field) in variant.fields.iter_enumerated() {
1027            let field =
1028                fields.iter().find(|f| self.typeck_results().field_index(f.hir_id) == vf_index);
1029            let (hir_id, use_ctxt, span) = match field {
1030                Some(field) => (field.hir_id, field.ident.span, field.span),
1031                None => (hir_id, span, span),
1032            };
1033            if self.check_field(hir_id, use_ctxt, adt, variant_field) {
1034                let name = match field {
1035                    Some(field) => field.ident.name,
1036                    None => variant_field.name,
1037                };
1038                failed_fields.push((name, span, field.is_some()));
1039            }
1040        }
1041        self.emit_unreachable_field_error(failed_fields, adt, Some(span), struct_span);
1042    }
1043}
1044
1045impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> {
1046    fn visit_nested_body(&mut self, body_id: hir::BodyId) {
1047        let new_typeck_results = self.tcx.typeck_body(body_id);
1048        // Do not try reporting privacy violations if we failed to infer types.
1049        if new_typeck_results.tainted_by_errors.is_some() {
1050            return;
1051        }
1052        let old_maybe_typeck_results = self.maybe_typeck_results.replace(new_typeck_results);
1053        self.visit_body(self.tcx.hir_body(body_id));
1054        self.maybe_typeck_results = old_maybe_typeck_results;
1055    }
1056
1057    fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
1058        if let hir::ExprKind::Struct(qpath, fields, ref base) = expr.kind {
1059            let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
1060            let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap();
1061            let variant = adt.variant_of_res(res);
1062            match *base {
1063                hir::StructTailExpr::Base(base) => {
1064                    // If the expression uses FRU we need to make sure all the unmentioned fields
1065                    // are checked for privacy (RFC 736). Rather than computing the set of
1066                    // unmentioned fields, just check them all.
1067                    self.check_expanded_fields(
1068                        adt,
1069                        variant,
1070                        fields,
1071                        base.hir_id,
1072                        base.span,
1073                        qpath.span(),
1074                    );
1075                }
1076                hir::StructTailExpr::DefaultFields(span) => {
1077                    self.check_expanded_fields(
1078                        adt,
1079                        variant,
1080                        fields,
1081                        expr.hir_id,
1082                        span,
1083                        qpath.span(),
1084                    );
1085                }
1086                hir::StructTailExpr::None => {
1087                    let mut failed_fields = vec![];
1088                    for field in fields {
1089                        let (hir_id, use_ctxt) = (field.hir_id, field.ident.span);
1090                        let index = self.typeck_results().field_index(field.hir_id);
1091                        if self.check_field(hir_id, use_ctxt, adt, &variant.fields[index]) {
1092                            failed_fields.push((field.ident.name, field.ident.span, true));
1093                        }
1094                    }
1095                    self.emit_unreachable_field_error(failed_fields, adt, None, qpath.span());
1096                }
1097            }
1098        }
1099
1100        intravisit::walk_expr(self, expr);
1101    }
1102
1103    fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) {
1104        if let PatKind::Struct(ref qpath, fields, _) = pat.kind {
1105            let res = self.typeck_results().qpath_res(qpath, pat.hir_id);
1106            let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap();
1107            let variant = adt.variant_of_res(res);
1108            let mut failed_fields = vec![];
1109            for field in fields {
1110                let (hir_id, use_ctxt) = (field.hir_id, field.ident.span);
1111                let index = self.typeck_results().field_index(field.hir_id);
1112                if self.check_field(hir_id, use_ctxt, adt, &variant.fields[index]) {
1113                    failed_fields.push((field.ident.name, field.ident.span, true));
1114                }
1115            }
1116            self.emit_unreachable_field_error(failed_fields, adt, None, qpath.span());
1117        }
1118
1119        intravisit::walk_pat(self, pat);
1120    }
1121}
1122
1123////////////////////////////////////////////////////////////////////////////////////////////
1124/// Type privacy visitor, checks types for privacy and reports violations.
1125/// Both explicitly written types and inferred types of expressions and patterns are checked.
1126/// Checks are performed on "semantic" types regardless of names and their hygiene.
1127////////////////////////////////////////////////////////////////////////////////////////////
1128
1129struct TypePrivacyVisitor<'tcx> {
1130    tcx: TyCtxt<'tcx>,
1131    module_def_id: LocalModDefId,
1132    maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
1133    span: Span,
1134}
1135
1136impl<'tcx> TypePrivacyVisitor<'tcx> {
1137    fn item_is_accessible(&self, did: DefId) -> bool {
1138        self.tcx.visibility(did).is_accessible_from(self.module_def_id, self.tcx)
1139    }
1140
1141    // Take node-id of an expression or pattern and check its type for privacy.
1142    fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
1143        self.span = span;
1144        let typeck_results = self
1145            .maybe_typeck_results
1146            .unwrap_or_else(|| span_bug!(span, "`hir::Expr` or `hir::Pat` outside of a body"));
1147        let result: ControlFlow<()> = try {
1148            self.visit(typeck_results.node_type(id))?;
1149            self.visit(typeck_results.node_args(id))?;
1150            if let Some(adjustments) = typeck_results.adjustments().get(id) {
1151                adjustments.iter().try_for_each(|adjustment| self.visit(adjustment.target))?;
1152            }
1153        };
1154        result.is_break()
1155    }
1156
1157    fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1158        let is_error = !self.item_is_accessible(def_id);
1159        if is_error {
1160            self.tcx.dcx().emit_err(ItemIsPrivate { span: self.span, kind, descr: descr.into() });
1161        }
1162        is_error
1163    }
1164}
1165
1166impl<'tcx> rustc_ty_utils::sig_types::SpannedTypeVisitor<'tcx> for TypePrivacyVisitor<'tcx> {
1167    type Result = ControlFlow<()>;
1168    fn visit(&mut self, span: Span, value: impl TypeVisitable<TyCtxt<'tcx>>) -> Self::Result {
1169        self.span = span;
1170        value.visit_with(&mut self.skeleton())
1171    }
1172}
1173
1174impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> {
1175    fn visit_nested_body(&mut self, body_id: hir::BodyId) {
1176        let old_maybe_typeck_results =
1177            self.maybe_typeck_results.replace(self.tcx.typeck_body(body_id));
1178        self.visit_body(self.tcx.hir_body(body_id));
1179        self.maybe_typeck_results = old_maybe_typeck_results;
1180    }
1181
1182    fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx, AmbigArg>) {
1183        self.span = hir_ty.span;
1184        if self
1185            .visit(
1186                self.maybe_typeck_results
1187                    .unwrap_or_else(|| span_bug!(hir_ty.span, "`hir::Ty` outside of a body"))
1188                    .node_type(hir_ty.hir_id),
1189            )
1190            .is_break()
1191        {
1192            return;
1193        }
1194
1195        intravisit::walk_ty(self, hir_ty);
1196    }
1197
1198    fn visit_infer(
1199        &mut self,
1200        inf_id: rustc_hir::HirId,
1201        inf_span: Span,
1202        _kind: InferKind<'tcx>,
1203    ) -> Self::Result {
1204        self.span = inf_span;
1205        if let Some(ty) = self
1206            .maybe_typeck_results
1207            .unwrap_or_else(|| span_bug!(inf_span, "Inference variable outside of a body"))
1208            .node_type_opt(inf_id)
1209        {
1210            if self.visit(ty).is_break() {
1211                return;
1212            }
1213        } else {
1214            // FIXME: check types of const infers here.
1215        }
1216
1217        self.visit_id(inf_id)
1218    }
1219
1220    // Check types of expressions
1221    fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
1222        if self.check_expr_pat_type(expr.hir_id, expr.span) {
1223            // Do not check nested expressions if the error already happened.
1224            return;
1225        }
1226        match expr.kind {
1227            hir::ExprKind::Assign(_, rhs, _) | hir::ExprKind::Match(rhs, ..) => {
1228                // Do not report duplicate errors for `x = y` and `match x { ... }`.
1229                if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
1230                    return;
1231                }
1232            }
1233            hir::ExprKind::MethodCall(segment, ..) => {
1234                // Method calls have to be checked specially.
1235                self.span = segment.ident.span;
1236                let typeck_results = self
1237                    .maybe_typeck_results
1238                    .unwrap_or_else(|| span_bug!(self.span, "`hir::Expr` outside of a body"));
1239                if let Some(def_id) = typeck_results.type_dependent_def_id(expr.hir_id) {
1240                    if self.visit(self.tcx.type_of(def_id).instantiate_identity()).is_break() {
1241                        return;
1242                    }
1243                } else {
1244                    self.tcx
1245                        .dcx()
1246                        .span_delayed_bug(expr.span, "no type-dependent def for method call");
1247                }
1248            }
1249            _ => {}
1250        }
1251
1252        intravisit::walk_expr(self, expr);
1253    }
1254
1255    // Prohibit access to associated items with insufficient nominal visibility.
1256    //
1257    // Additionally, until better reachability analysis for macros 2.0 is available,
1258    // we prohibit access to private statics from other crates, this allows to give
1259    // more code internal visibility at link time. (Access to private functions
1260    // is already prohibited by type privacy for function types.)
1261    fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) {
1262        let def = match qpath {
1263            hir::QPath::Resolved(_, path) => match path.res {
1264                Res::Def(kind, def_id) => Some((kind, def_id)),
1265                _ => None,
1266            },
1267            hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => {
1268                match self.maybe_typeck_results {
1269                    Some(typeck_results) => typeck_results.type_dependent_def(id),
1270                    // FIXME: Check type-relative associated types in signatures.
1271                    None => None,
1272                }
1273            }
1274        };
1275        let def = def.filter(|(kind, _)| {
1276            matches!(
1277                kind,
1278                DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static { .. }
1279            )
1280        });
1281        if let Some((kind, def_id)) = def {
1282            let is_local_static =
1283                if let DefKind::Static { .. } = kind { def_id.is_local() } else { false };
1284            if !self.item_is_accessible(def_id) && !is_local_static {
1285                let name = match *qpath {
1286                    hir::QPath::LangItem(it, ..) => {
1287                        self.tcx.lang_items().get(it).map(|did| self.tcx.def_path_str(did))
1288                    }
1289                    hir::QPath::Resolved(_, path) => Some(self.tcx.def_path_str(path.res.def_id())),
1290                    hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()),
1291                };
1292                let kind = self.tcx.def_descr(def_id);
1293                let sess = self.tcx.sess;
1294                let _ = match name {
1295                    Some(name) => {
1296                        sess.dcx().emit_err(ItemIsPrivate { span, kind, descr: (&name).into() })
1297                    }
1298                    None => sess.dcx().emit_err(UnnamedItemIsPrivate { span, kind }),
1299                };
1300                return;
1301            }
1302        }
1303
1304        intravisit::walk_qpath(self, qpath, id);
1305    }
1306
1307    // Check types of patterns.
1308    fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) {
1309        if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
1310            // Do not check nested patterns if the error already happened.
1311            return;
1312        }
1313
1314        intravisit::walk_pat(self, pattern);
1315    }
1316
1317    fn visit_local(&mut self, local: &'tcx hir::LetStmt<'tcx>) {
1318        if let Some(init) = local.init {
1319            if self.check_expr_pat_type(init.hir_id, init.span) {
1320                // Do not report duplicate errors for `let x = y`.
1321                return;
1322            }
1323        }
1324
1325        intravisit::walk_local(self, local);
1326    }
1327}
1328
1329impl<'tcx> DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> {
1330    type Result = ControlFlow<()>;
1331    fn tcx(&self) -> TyCtxt<'tcx> {
1332        self.tcx
1333    }
1334    fn visit_def_id(
1335        &mut self,
1336        def_id: DefId,
1337        kind: &str,
1338        descr: &dyn fmt::Display,
1339    ) -> Self::Result {
1340        if self.check_def_id(def_id, kind, descr) {
1341            ControlFlow::Break(())
1342        } else {
1343            ControlFlow::Continue(())
1344        }
1345    }
1346}
1347
1348///////////////////////////////////////////////////////////////////////////////
1349/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
1350/// finds any private components in it.
1351/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
1352/// and traits in public interfaces.
1353///////////////////////////////////////////////////////////////////////////////
1354
1355struct SearchInterfaceForPrivateItemsVisitor<'tcx> {
1356    tcx: TyCtxt<'tcx>,
1357    item_def_id: LocalDefId,
1358    /// The visitor checks that each component type is at least this visible.
1359    required_visibility: ty::Visibility,
1360    required_effective_vis: Option<EffectiveVisibility>,
1361    in_assoc_ty: bool,
1362    in_primary_interface: bool,
1363    skip_assoc_tys: bool,
1364}
1365
1366impl SearchInterfaceForPrivateItemsVisitor<'_> {
1367    fn generics(&mut self) -> &mut Self {
1368        self.in_primary_interface = true;
1369        for param in &self.tcx.generics_of(self.item_def_id).own_params {
1370            match param.kind {
1371                GenericParamDefKind::Lifetime => {}
1372                GenericParamDefKind::Type { has_default, .. } => {
1373                    if has_default {
1374                        let _ = self.visit(self.tcx.type_of(param.def_id).instantiate_identity());
1375                    }
1376                }
1377                // FIXME(generic_const_exprs): May want to look inside const here
1378                GenericParamDefKind::Const { .. } => {
1379                    let _ = self.visit(self.tcx.type_of(param.def_id).instantiate_identity());
1380                }
1381            }
1382        }
1383        self
1384    }
1385
1386    fn predicates(&mut self) -> &mut Self {
1387        self.in_primary_interface = false;
1388        // N.B., we use `explicit_predicates_of` and not `predicates_of`
1389        // because we don't want to report privacy errors due to where
1390        // clauses that the compiler inferred. We only want to
1391        // consider the ones that the user wrote. This is important
1392        // for the inferred outlives rules; see
1393        // `tests/ui/rfc-2093-infer-outlives/privacy.rs`.
1394        let _ = self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id));
1395        self
1396    }
1397
1398    fn bounds(&mut self) -> &mut Self {
1399        self.in_primary_interface = false;
1400        let _ = self.visit_clauses(self.tcx.explicit_item_bounds(self.item_def_id).skip_binder());
1401        self
1402    }
1403
1404    fn ty(&mut self) -> &mut Self {
1405        self.in_primary_interface = true;
1406        let _ = self.visit(self.tcx.type_of(self.item_def_id).instantiate_identity());
1407        self
1408    }
1409
1410    fn trait_ref(&mut self) -> &mut Self {
1411        self.in_primary_interface = true;
1412        if let Some(trait_ref) = self.tcx.impl_trait_ref(self.item_def_id) {
1413            let _ = self.visit_trait(trait_ref.instantiate_identity());
1414        }
1415        self
1416    }
1417
1418    fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1419        if self.leaks_private_dep(def_id) {
1420            self.tcx.emit_node_span_lint(
1421                lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES,
1422                self.tcx.local_def_id_to_hir_id(self.item_def_id),
1423                self.tcx.def_span(self.item_def_id.to_def_id()),
1424                FromPrivateDependencyInPublicInterface {
1425                    kind,
1426                    descr: descr.into(),
1427                    krate: self.tcx.crate_name(def_id.krate),
1428                },
1429            );
1430        }
1431
1432        let Some(local_def_id) = def_id.as_local() else {
1433            return false;
1434        };
1435
1436        let vis = self.tcx.local_visibility(local_def_id);
1437        if self.in_assoc_ty && !vis.is_at_least(self.required_visibility, self.tcx) {
1438            let vis_descr = match vis {
1439                ty::Visibility::Public => "public",
1440                ty::Visibility::Restricted(vis_def_id) => {
1441                    if vis_def_id
1442                        == self.tcx.parent_module_from_def_id(local_def_id).to_local_def_id()
1443                    {
1444                        "private"
1445                    } else if vis_def_id.is_top_level_module() {
1446                        "crate-private"
1447                    } else {
1448                        "restricted"
1449                    }
1450                }
1451            };
1452
1453            let span = self.tcx.def_span(self.item_def_id.to_def_id());
1454            let vis_span = self.tcx.def_span(def_id);
1455            self.tcx.dcx().emit_err(InPublicInterface {
1456                span,
1457                vis_descr,
1458                kind,
1459                descr: descr.into(),
1460                vis_span,
1461            });
1462            return false;
1463        }
1464
1465        let Some(effective_vis) = self.required_effective_vis else {
1466            return false;
1467        };
1468
1469        let reachable_at_vis = *effective_vis.at_level(Level::Reachable);
1470
1471        if !vis.is_at_least(reachable_at_vis, self.tcx) {
1472            let lint = if self.in_primary_interface {
1473                lint::builtin::PRIVATE_INTERFACES
1474            } else {
1475                lint::builtin::PRIVATE_BOUNDS
1476            };
1477            let span = self.tcx.def_span(self.item_def_id.to_def_id());
1478            let vis_span = self.tcx.def_span(def_id);
1479            self.tcx.emit_node_span_lint(
1480                lint,
1481                self.tcx.local_def_id_to_hir_id(self.item_def_id),
1482                span,
1483                PrivateInterfacesOrBoundsLint {
1484                    item_span: span,
1485                    item_kind: self.tcx.def_descr(self.item_def_id.to_def_id()),
1486                    item_descr: (&LazyDefPathStr {
1487                        def_id: self.item_def_id.to_def_id(),
1488                        tcx: self.tcx,
1489                    })
1490                        .into(),
1491                    item_vis_descr: &reachable_at_vis.to_string(self.item_def_id, self.tcx),
1492                    ty_span: vis_span,
1493                    ty_kind: kind,
1494                    ty_descr: descr.into(),
1495                    ty_vis_descr: &vis.to_string(local_def_id, self.tcx),
1496                },
1497            );
1498        }
1499
1500        false
1501    }
1502
1503    /// An item is 'leaked' from a private dependency if all
1504    /// of the following are true:
1505    /// 1. It's contained within a public type
1506    /// 2. It comes from a private crate
1507    fn leaks_private_dep(&self, item_id: DefId) -> bool {
1508        let ret = self.required_visibility.is_public() && self.tcx.is_private_dep(item_id.krate);
1509
1510        debug!("leaks_private_dep(item_id={:?})={}", item_id, ret);
1511        ret
1512    }
1513}
1514
1515impl<'tcx> DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> {
1516    type Result = ControlFlow<()>;
1517    fn skip_assoc_tys(&self) -> bool {
1518        self.skip_assoc_tys
1519    }
1520    fn tcx(&self) -> TyCtxt<'tcx> {
1521        self.tcx
1522    }
1523    fn visit_def_id(
1524        &mut self,
1525        def_id: DefId,
1526        kind: &str,
1527        descr: &dyn fmt::Display,
1528    ) -> Self::Result {
1529        if self.check_def_id(def_id, kind, descr) {
1530            ControlFlow::Break(())
1531        } else {
1532            ControlFlow::Continue(())
1533        }
1534    }
1535}
1536
1537struct PrivateItemsInPublicInterfacesChecker<'a, 'tcx> {
1538    tcx: TyCtxt<'tcx>,
1539    effective_visibilities: &'a EffectiveVisibilities,
1540}
1541
1542impl<'tcx> PrivateItemsInPublicInterfacesChecker<'_, 'tcx> {
1543    fn check(
1544        &self,
1545        def_id: LocalDefId,
1546        required_visibility: ty::Visibility,
1547        required_effective_vis: Option<EffectiveVisibility>,
1548    ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> {
1549        SearchInterfaceForPrivateItemsVisitor {
1550            tcx: self.tcx,
1551            item_def_id: def_id,
1552            required_visibility,
1553            required_effective_vis,
1554            in_assoc_ty: false,
1555            in_primary_interface: true,
1556            skip_assoc_tys: false,
1557        }
1558    }
1559
1560    fn check_unnameable(&self, def_id: LocalDefId, effective_vis: Option<EffectiveVisibility>) {
1561        let Some(effective_vis) = effective_vis else {
1562            return;
1563        };
1564
1565        let reexported_at_vis = effective_vis.at_level(Level::Reexported);
1566        let reachable_at_vis = effective_vis.at_level(Level::Reachable);
1567
1568        if reachable_at_vis.is_public() && reexported_at_vis != reachable_at_vis {
1569            let hir_id = self.tcx.local_def_id_to_hir_id(def_id);
1570            let span = self.tcx.def_span(def_id.to_def_id());
1571            self.tcx.emit_node_span_lint(
1572                lint::builtin::UNNAMEABLE_TYPES,
1573                hir_id,
1574                span,
1575                UnnameableTypesLint {
1576                    span,
1577                    kind: self.tcx.def_descr(def_id.to_def_id()),
1578                    descr: (&LazyDefPathStr { def_id: def_id.to_def_id(), tcx: self.tcx }).into(),
1579                    reachable_vis: &reachable_at_vis.to_string(def_id, self.tcx),
1580                    reexported_vis: &reexported_at_vis.to_string(def_id, self.tcx),
1581                },
1582            );
1583        }
1584    }
1585
1586    fn check_assoc_item(
1587        &self,
1588        item: &ty::AssocItem,
1589        vis: ty::Visibility,
1590        effective_vis: Option<EffectiveVisibility>,
1591    ) {
1592        let mut check = self.check(item.def_id.expect_local(), vis, effective_vis);
1593
1594        let (check_ty, is_assoc_ty) = match item.kind {
1595            ty::AssocKind::Const { .. } | ty::AssocKind::Fn { .. } => (true, false),
1596            ty::AssocKind::Type { .. } => (item.defaultness(self.tcx).has_value(), true),
1597        };
1598
1599        check.in_assoc_ty = is_assoc_ty;
1600        check.generics().predicates();
1601        if check_ty {
1602            check.ty();
1603        }
1604    }
1605
1606    fn get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility> {
1607        self.effective_visibilities.effective_vis(def_id).copied()
1608    }
1609
1610    fn check_item(&self, id: ItemId) {
1611        let tcx = self.tcx;
1612        let def_id = id.owner_id.def_id;
1613        let item_visibility = tcx.local_visibility(def_id);
1614        let effective_vis = self.get(def_id);
1615        let def_kind = tcx.def_kind(def_id);
1616
1617        match def_kind {
1618            DefKind::Const | DefKind::Static { .. } | DefKind::Fn | DefKind::TyAlias => {
1619                if let DefKind::TyAlias = def_kind {
1620                    self.check_unnameable(def_id, effective_vis);
1621                }
1622                self.check(def_id, item_visibility, effective_vis).generics().predicates().ty();
1623            }
1624            DefKind::OpaqueTy => {
1625                // `ty()` for opaque types is the underlying type,
1626                // it's not a part of interface, so we skip it.
1627                self.check(def_id, item_visibility, effective_vis).generics().bounds();
1628            }
1629            DefKind::Trait => {
1630                self.check_unnameable(def_id, effective_vis);
1631
1632                self.check(def_id, item_visibility, effective_vis).generics().predicates();
1633
1634                for assoc_item in tcx.associated_items(id.owner_id).in_definition_order() {
1635                    if assoc_item.is_impl_trait_in_trait() {
1636                        continue;
1637                    }
1638
1639                    self.check_assoc_item(assoc_item, item_visibility, effective_vis);
1640
1641                    if assoc_item.is_type() {
1642                        self.check(
1643                            assoc_item.def_id.expect_local(),
1644                            item_visibility,
1645                            effective_vis,
1646                        )
1647                        .bounds();
1648                    }
1649                }
1650            }
1651            DefKind::TraitAlias => {
1652                self.check(def_id, item_visibility, effective_vis).generics().predicates();
1653            }
1654            DefKind::Enum => {
1655                self.check_unnameable(def_id, effective_vis);
1656                self.check(def_id, item_visibility, effective_vis).generics().predicates();
1657
1658                let adt = tcx.adt_def(id.owner_id);
1659                for field in adt.all_fields() {
1660                    self.check(field.did.expect_local(), item_visibility, effective_vis).ty();
1661                }
1662            }
1663            // Subitems of structs and unions have their own publicity.
1664            DefKind::Struct | DefKind::Union => {
1665                self.check_unnameable(def_id, effective_vis);
1666                self.check(def_id, item_visibility, effective_vis).generics().predicates();
1667
1668                let adt = tcx.adt_def(id.owner_id);
1669                for field in adt.all_fields() {
1670                    let visibility = min(item_visibility, field.vis.expect_local(), tcx);
1671                    let field_ev = self.get(field.did.expect_local());
1672
1673                    self.check(field.did.expect_local(), visibility, field_ev).ty();
1674                }
1675            }
1676            // Subitems of foreign modules have their own publicity.
1677            DefKind::ForeignMod => {}
1678            // An inherent impl is public when its type is public
1679            // Subitems of inherent impls have their own publicity.
1680            // A trait impl is public when both its type and its trait are public
1681            // Subitems of trait impls have inherited publicity.
1682            DefKind::Impl { of_trait } => {
1683                let impl_vis = ty::Visibility::of_impl::<false>(def_id, tcx, &Default::default());
1684
1685                // We are using the non-shallow version here, unlike when building the
1686                // effective visisibilities table to avoid large number of false positives.
1687                // For example in
1688                //
1689                // impl From<Priv> for Pub {
1690                //     fn from(_: Priv) -> Pub {...}
1691                // }
1692                //
1693                // lints shouldn't be emitted even if `from` effective visibility
1694                // is larger than `Priv` nominal visibility and if `Priv` can leak
1695                // in some scenarios due to type inference.
1696                let impl_ev =
1697                    EffectiveVisibility::of_impl::<false>(def_id, tcx, self.effective_visibilities);
1698
1699                let mut check = self.check(def_id, impl_vis, Some(impl_ev));
1700
1701                // Generics and predicates of trait impls are intentionally not checked
1702                // for private components (#90586).
1703                if !of_trait {
1704                    check.generics().predicates();
1705                }
1706
1707                // Skip checking private components in associated types, due to lack of full
1708                // normalization they produce very ridiculous false positives.
1709                // FIXME: Remove this when full normalization is implemented.
1710                check.skip_assoc_tys = true;
1711                check.ty().trait_ref();
1712
1713                for assoc_item in tcx.associated_items(id.owner_id).in_definition_order() {
1714                    if assoc_item.is_impl_trait_in_trait() {
1715                        continue;
1716                    }
1717
1718                    let impl_item_vis = if !of_trait {
1719                        min(tcx.local_visibility(assoc_item.def_id.expect_local()), impl_vis, tcx)
1720                    } else {
1721                        impl_vis
1722                    };
1723
1724                    let impl_item_ev = if !of_trait {
1725                        self.get(assoc_item.def_id.expect_local())
1726                            .map(|ev| ev.min(impl_ev, self.tcx))
1727                    } else {
1728                        Some(impl_ev)
1729                    };
1730
1731                    self.check_assoc_item(assoc_item, impl_item_vis, impl_item_ev);
1732                }
1733            }
1734            _ => {}
1735        }
1736    }
1737
1738    fn check_foreign_item(&self, id: ForeignItemId) {
1739        let tcx = self.tcx;
1740        let def_id = id.owner_id.def_id;
1741        let item_visibility = tcx.local_visibility(def_id);
1742        let effective_vis = self.get(def_id);
1743
1744        if let DefKind::ForeignTy = self.tcx.def_kind(def_id) {
1745            self.check_unnameable(def_id, effective_vis);
1746        }
1747
1748        self.check(def_id, item_visibility, effective_vis).generics().predicates().ty();
1749    }
1750}
1751
1752pub fn provide(providers: &mut Providers) {
1753    *providers = Providers {
1754        effective_visibilities,
1755        check_private_in_public,
1756        check_mod_privacy,
1757        ..*providers
1758    };
1759}
1760
1761fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalModDefId) {
1762    // Check privacy of names not checked in previous compilation stages.
1763    let mut visitor = NamePrivacyVisitor { tcx, maybe_typeck_results: None };
1764    tcx.hir_visit_item_likes_in_module(module_def_id, &mut visitor);
1765
1766    // Check privacy of explicitly written types and traits as well as
1767    // inferred types of expressions and patterns.
1768    let span = tcx.def_span(module_def_id);
1769    let mut visitor = TypePrivacyVisitor { tcx, module_def_id, maybe_typeck_results: None, span };
1770
1771    let module = tcx.hir_module_items(module_def_id);
1772    for def_id in module.definitions() {
1773        let _ = rustc_ty_utils::sig_types::walk_types(tcx, def_id, &mut visitor);
1774
1775        if let Some(body_id) = tcx.hir_maybe_body_owned_by(def_id) {
1776            visitor.visit_nested_body(body_id.id());
1777        }
1778
1779        if let DefKind::Impl { of_trait: true } = tcx.def_kind(def_id) {
1780            let trait_ref = tcx.impl_trait_ref(def_id).unwrap();
1781            let trait_ref = trait_ref.instantiate_identity();
1782            visitor.span =
1783                tcx.hir_expect_item(def_id).expect_impl().of_trait.unwrap().trait_ref.path.span;
1784            let _ =
1785                visitor.visit_def_id(trait_ref.def_id, "trait", &trait_ref.print_only_trait_path());
1786        }
1787    }
1788}
1789
1790fn effective_visibilities(tcx: TyCtxt<'_>, (): ()) -> &EffectiveVisibilities {
1791    // Build up a set of all exported items in the AST. This is a set of all
1792    // items which are reachable from external crates based on visibility.
1793    let mut visitor = EmbargoVisitor {
1794        tcx,
1795        effective_visibilities: tcx.resolutions(()).effective_visibilities.clone(),
1796        macro_reachable: Default::default(),
1797        changed: false,
1798    };
1799
1800    visitor.effective_visibilities.check_invariants(tcx);
1801
1802    // HACK(jynelson): trying to infer the type of `impl Trait` breaks `async-std` (and
1803    // `pub async fn` in general). Since rustdoc never needs to do codegen and doesn't
1804    // care about link-time reachability, keep them unreachable (issue #75100).
1805    let impl_trait_pass = !tcx.sess.opts.actually_rustdoc;
1806    if impl_trait_pass {
1807        // Underlying types of `impl Trait`s are marked as reachable unconditionally,
1808        // so this pass doesn't need to be a part of the fixed point iteration below.
1809        let krate = tcx.hir_crate_items(());
1810        for id in krate.opaques() {
1811            let opaque = tcx.hir_node_by_def_id(id).expect_opaque_ty();
1812            let should_visit = match opaque.origin {
1813                hir::OpaqueTyOrigin::FnReturn {
1814                    parent,
1815                    in_trait_or_impl: Some(hir::RpitContext::Trait),
1816                }
1817                | hir::OpaqueTyOrigin::AsyncFn {
1818                    parent,
1819                    in_trait_or_impl: Some(hir::RpitContext::Trait),
1820                } => match tcx.hir_node_by_def_id(parent).expect_trait_item().expect_fn().1 {
1821                    hir::TraitFn::Required(_) => false,
1822                    hir::TraitFn::Provided(..) => true,
1823                },
1824
1825                // Always visit RPITs in functions that have definitions,
1826                // and all TAITs.
1827                hir::OpaqueTyOrigin::FnReturn {
1828                    in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
1829                    ..
1830                }
1831                | hir::OpaqueTyOrigin::AsyncFn {
1832                    in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
1833                    ..
1834                }
1835                | hir::OpaqueTyOrigin::TyAlias { .. } => true,
1836            };
1837            if should_visit {
1838                // FIXME: This is some serious pessimization intended to workaround deficiencies
1839                // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
1840                // reachable if they are returned via `impl Trait`, even from private functions.
1841                let pub_ev = EffectiveVisibility::from_vis(ty::Visibility::Public);
1842                visitor
1843                    .reach_through_impl_trait(opaque.def_id, pub_ev)
1844                    .generics()
1845                    .predicates()
1846                    .ty();
1847            }
1848        }
1849
1850        visitor.changed = false;
1851    }
1852
1853    let crate_items = tcx.hir_crate_items(());
1854    loop {
1855        for id in crate_items.free_items() {
1856            visitor.check_def_id(id.owner_id);
1857        }
1858        for id in crate_items.foreign_items() {
1859            visitor.check_def_id(id.owner_id);
1860        }
1861        if visitor.changed {
1862            visitor.changed = false;
1863        } else {
1864            break;
1865        }
1866    }
1867    visitor.effective_visibilities.check_invariants(tcx);
1868
1869    let check_visitor =
1870        TestReachabilityVisitor { tcx, effective_visibilities: &visitor.effective_visibilities };
1871    for id in crate_items.owners() {
1872        check_visitor.check_def_id(id);
1873    }
1874
1875    tcx.arena.alloc(visitor.effective_visibilities)
1876}
1877
1878fn check_private_in_public(tcx: TyCtxt<'_>, module_def_id: LocalModDefId) {
1879    let effective_visibilities = tcx.effective_visibilities(());
1880    // Check for private types in public interfaces.
1881    let checker = PrivateItemsInPublicInterfacesChecker { tcx, effective_visibilities };
1882
1883    let crate_items = tcx.hir_module_items(module_def_id);
1884    let _ = crate_items.par_items(|id| Ok(checker.check_item(id)));
1885    let _ = crate_items.par_foreign_items(|id| Ok(checker.check_foreign_item(id)));
1886}