rustc_target/callconv/
mod.rs

1use std::{fmt, iter};
2
3use rustc_abi::{
4    AddressSpace, Align, BackendRepr, CanonAbi, ExternAbi, HasDataLayout, Primitive, Reg, RegKind,
5    Scalar, Size, TyAbiInterface, TyAndLayout,
6};
7use rustc_macros::HashStable_Generic;
8
9pub use crate::spec::AbiMap;
10use crate::spec::{HasTargetSpec, HasX86AbiOpt};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win32;
35mod x86_win64;
36mod xtensa;
37
38#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
39pub enum PassMode {
40    /// Ignore the argument.
41    ///
42    /// The argument is a ZST.
43    Ignore,
44    /// Pass the argument directly.
45    ///
46    /// The argument has a layout abi of `Scalar` or `Vector`.
47    /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
48    /// This is bad since it leaks LLVM implementation details into the ABI.
49    /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
50    Direct(ArgAttributes),
51    /// Pass a pair's elements directly in two arguments.
52    ///
53    /// The argument has a layout abi of `ScalarPair`.
54    Pair(ArgAttributes, ArgAttributes),
55    /// Pass the argument after casting it. See the `CastTarget` docs for details.
56    ///
57    /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
58    Cast { pad_i32: bool, cast: Box<CastTarget> },
59    /// Pass the argument indirectly via a hidden pointer.
60    ///
61    /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
62    /// argument. (This is the only mode that supports unsized arguments.)
63    ///
64    /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
65    /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
66    /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
67    /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
68    /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
69    /// alignment (if `None`). This means that the alignment will not always
70    /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
71    ///
72    /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
73    Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
74}
75
76impl PassMode {
77    /// Checks if these two `PassMode` are equal enough to be considered "the same for all
78    /// function call ABIs". However, the `Layout` can also impact ABI decisions,
79    /// so that needs to be compared as well!
80    pub fn eq_abi(&self, other: &Self) -> bool {
81        match (self, other) {
82            (PassMode::Ignore, PassMode::Ignore) => true,
83            (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
84            (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
85            (
86                PassMode::Cast { cast: c1, pad_i32: pad1 },
87                PassMode::Cast { cast: c2, pad_i32: pad2 },
88            ) => c1.eq_abi(c2) && pad1 == pad2,
89            (
90                PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
91                PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
92            ) => a1.eq_abi(a2) && s1 == s2,
93            (
94                PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
95                PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
96            ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
97            _ => false,
98        }
99    }
100}
101
102// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
103// of this module
104pub use attr_impl::ArgAttribute;
105
106#[allow(non_upper_case_globals)]
107#[allow(unused)]
108mod attr_impl {
109    use rustc_macros::HashStable_Generic;
110
111    // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
112    #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
113    pub struct ArgAttribute(u8);
114    bitflags::bitflags! {
115        impl ArgAttribute: u8 {
116            const NoAlias   = 1 << 1;
117            const NoCapture = 1 << 2;
118            const NonNull   = 1 << 3;
119            const ReadOnly  = 1 << 4;
120            const InReg     = 1 << 5;
121            const NoUndef = 1 << 6;
122            const CapturesReadOnly = 1 << 7;
123        }
124    }
125    rustc_data_structures::external_bitflags_debug! { ArgAttribute }
126}
127
128/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
129/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
130/// not necessary to extend the argument, this enum is ignored.
131#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
132pub enum ArgExtension {
133    None,
134    Zext,
135    Sext,
136}
137
138/// A compact representation of LLVM attributes (at least those relevant for this module)
139/// that can be manipulated without interacting with LLVM's Attribute machinery.
140#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
141pub struct ArgAttributes {
142    pub regular: ArgAttribute,
143    pub arg_ext: ArgExtension,
144    /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
145    /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
146    /// set on a null pointer, but all non-null pointers must be dereferenceable).
147    pub pointee_size: Size,
148    /// The minimum alignment of the pointee, if any.
149    pub pointee_align: Option<Align>,
150}
151
152impl ArgAttributes {
153    pub fn new() -> Self {
154        ArgAttributes {
155            regular: ArgAttribute::default(),
156            arg_ext: ArgExtension::None,
157            pointee_size: Size::ZERO,
158            pointee_align: None,
159        }
160    }
161
162    pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
163        assert!(
164            self.arg_ext == ArgExtension::None || self.arg_ext == ext,
165            "cannot set {:?} when {:?} is already set",
166            ext,
167            self.arg_ext
168        );
169        self.arg_ext = ext;
170        self
171    }
172
173    pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
174        self.regular |= attr;
175        self
176    }
177
178    pub fn contains(&self, attr: ArgAttribute) -> bool {
179        self.regular.contains(attr)
180    }
181
182    /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
183    /// function call ABIs".
184    pub fn eq_abi(&self, other: &Self) -> bool {
185        // There's only one regular attribute that matters for the call ABI: InReg.
186        // Everything else is things like noalias, dereferenceable, nonnull, ...
187        // (This also applies to pointee_size, pointee_align.)
188        if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
189        {
190            return false;
191        }
192        // We also compare the sign extension mode -- this could let the callee make assumptions
193        // about bits that conceptually were not even passed.
194        if self.arg_ext != other.arg_ext {
195            return false;
196        }
197        true
198    }
199}
200
201impl From<ArgAttribute> for ArgAttributes {
202    fn from(value: ArgAttribute) -> Self {
203        Self {
204            regular: value,
205            arg_ext: ArgExtension::None,
206            pointee_size: Size::ZERO,
207            pointee_align: None,
208        }
209    }
210}
211
212/// An argument passed entirely registers with the
213/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
214#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
215pub struct Uniform {
216    pub unit: Reg,
217
218    /// The total size of the argument, which can be:
219    /// * equal to `unit.size` (one scalar/vector),
220    /// * a multiple of `unit.size` (an array of scalar/vectors),
221    /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
222    ///   for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
223    ///   this size will be rounded up to the nearest multiple of `unit.size`.
224    pub total: Size,
225
226    /// Indicate that the argument is consecutive, in the sense that either all values need to be
227    /// passed in register, or all on the stack. If they are passed on the stack, there should be
228    /// no additional padding between elements.
229    pub is_consecutive: bool,
230}
231
232impl From<Reg> for Uniform {
233    fn from(unit: Reg) -> Uniform {
234        Uniform { unit, total: unit.size, is_consecutive: false }
235    }
236}
237
238impl Uniform {
239    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
240        self.unit.align(cx)
241    }
242
243    /// Pass using one or more values of the given type, without requiring them to be consecutive.
244    /// That is, some values may be passed in register and some on the stack.
245    pub fn new(unit: Reg, total: Size) -> Self {
246        Uniform { unit, total, is_consecutive: false }
247    }
248
249    /// Pass using one or more consecutive values of the given type. Either all values will be
250    /// passed in registers, or all on the stack.
251    pub fn consecutive(unit: Reg, total: Size) -> Self {
252        Uniform { unit, total, is_consecutive: true }
253    }
254}
255
256/// Describes the type used for `PassMode::Cast`.
257///
258/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
259/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
260/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
261/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
262/// (and all data in the padding between the registers is dropped).
263#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
264pub struct CastTarget {
265    pub prefix: [Option<Reg>; 8],
266    /// The offset of `rest` from the start of the value. Currently only implemented for a `Reg`
267    /// pair created by the `offset_pair` method.
268    pub rest_offset: Option<Size>,
269    pub rest: Uniform,
270    pub attrs: ArgAttributes,
271}
272
273impl From<Reg> for CastTarget {
274    fn from(unit: Reg) -> CastTarget {
275        CastTarget::from(Uniform::from(unit))
276    }
277}
278
279impl From<Uniform> for CastTarget {
280    fn from(uniform: Uniform) -> CastTarget {
281        Self::prefixed([None; 8], uniform)
282    }
283}
284
285impl CastTarget {
286    pub fn prefixed(prefix: [Option<Reg>; 8], rest: Uniform) -> Self {
287        Self { prefix, rest_offset: None, rest, attrs: ArgAttributes::new() }
288    }
289
290    pub fn offset_pair(a: Reg, offset_from_start: Size, b: Reg) -> Self {
291        Self {
292            prefix: [Some(a), None, None, None, None, None, None, None],
293            rest_offset: Some(offset_from_start),
294            rest: b.into(),
295            attrs: ArgAttributes::new(),
296        }
297    }
298
299    pub fn with_attrs(mut self, attrs: ArgAttributes) -> Self {
300        self.attrs = attrs;
301        self
302    }
303
304    pub fn pair(a: Reg, b: Reg) -> CastTarget {
305        Self::prefixed([Some(a), None, None, None, None, None, None, None], Uniform::from(b))
306    }
307
308    /// When you only access the range containing valid data, you can use this unaligned size;
309    /// otherwise, use the safer `size` method.
310    pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
311        // Prefix arguments are passed in specific designated registers
312        let prefix_size = if let Some(offset_from_start) = self.rest_offset {
313            offset_from_start
314        } else {
315            self.prefix
316                .iter()
317                .filter_map(|x| x.map(|reg| reg.size))
318                .fold(Size::ZERO, |acc, size| acc + size)
319        };
320        // Remaining arguments are passed in chunks of the unit size
321        let rest_size =
322            self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
323
324        prefix_size + rest_size
325    }
326
327    pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
328        self.unaligned_size(cx).align_to(self.align(cx))
329    }
330
331    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
332        self.prefix
333            .iter()
334            .filter_map(|x| x.map(|reg| reg.align(cx)))
335            .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
336                acc.max(align)
337            })
338    }
339
340    /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
341    /// function call ABIs".
342    pub fn eq_abi(&self, other: &Self) -> bool {
343        let CastTarget {
344            prefix: prefix_l,
345            rest_offset: rest_offset_l,
346            rest: rest_l,
347            attrs: attrs_l,
348        } = self;
349        let CastTarget {
350            prefix: prefix_r,
351            rest_offset: rest_offset_r,
352            rest: rest_r,
353            attrs: attrs_r,
354        } = other;
355        prefix_l == prefix_r
356            && rest_offset_l == rest_offset_r
357            && rest_l == rest_r
358            && attrs_l.eq_abi(attrs_r)
359    }
360}
361
362/// Information about how to pass an argument to,
363/// or return a value from, a function, under some ABI.
364#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
365pub struct ArgAbi<'a, Ty> {
366    pub layout: TyAndLayout<'a, Ty>,
367    pub mode: PassMode,
368}
369
370// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
371impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
372    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
373        let ArgAbi { layout, mode } = self;
374        f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
375    }
376}
377
378impl<'a, Ty> ArgAbi<'a, Ty> {
379    /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
380    pub fn new(
381        cx: &impl HasDataLayout,
382        layout: TyAndLayout<'a, Ty>,
383        scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
384    ) -> Self {
385        let mode = match layout.backend_repr {
386            BackendRepr::Scalar(scalar) => {
387                PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
388            }
389            BackendRepr::ScalarPair(a, b) => PassMode::Pair(
390                scalar_attrs(&layout, a, Size::ZERO),
391                scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
392            ),
393            BackendRepr::SimdVector { .. } => PassMode::Direct(ArgAttributes::new()),
394            BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
395        };
396        ArgAbi { layout, mode }
397    }
398
399    fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
400        let mut attrs = ArgAttributes::new();
401
402        // For non-immediate arguments the callee gets its own copy of
403        // the value on the stack, so there are no aliases. It's also
404        // program-invisible so can't possibly capture
405        attrs
406            .set(ArgAttribute::NoAlias)
407            .set(ArgAttribute::NoCapture)
408            .set(ArgAttribute::NonNull)
409            .set(ArgAttribute::NoUndef);
410        attrs.pointee_size = layout.size;
411        attrs.pointee_align = Some(layout.align.abi);
412
413        let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
414
415        PassMode::Indirect { attrs, meta_attrs, on_stack: false }
416    }
417
418    /// Pass this argument directly instead. Should NOT be used!
419    /// Only exists because of past ABI mistakes that will take time to fix
420    /// (see <https://github.com/rust-lang/rust/issues/115666>).
421    #[track_caller]
422    pub fn make_direct_deprecated(&mut self) {
423        match self.mode {
424            PassMode::Indirect { .. } => {
425                self.mode = PassMode::Direct(ArgAttributes::new());
426            }
427            PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
428            _ => panic!("Tried to make {:?} direct", self.mode),
429        }
430    }
431
432    /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
433    /// This is valid for both sized and unsized arguments.
434    #[track_caller]
435    pub fn make_indirect(&mut self) {
436        match self.mode {
437            PassMode::Direct(_) | PassMode::Pair(_, _) => {
438                self.mode = Self::indirect_pass_mode(&self.layout);
439            }
440            PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
441                // already indirect
442            }
443            _ => panic!("Tried to make {:?} indirect", self.mode),
444        }
445    }
446
447    /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
448    /// ZSTs indirectly.
449    #[track_caller]
450    pub fn make_indirect_from_ignore(&mut self) {
451        match self.mode {
452            PassMode::Ignore => {
453                self.mode = Self::indirect_pass_mode(&self.layout);
454            }
455            PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
456                // already indirect
457            }
458            _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
459        }
460    }
461
462    /// Pass this argument indirectly, by placing it at a fixed stack offset.
463    /// This corresponds to the `byval` LLVM argument attribute.
464    /// This is only valid for sized arguments.
465    ///
466    /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
467    /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
468    /// stack slots used for arguments passed by-value have specific alignment requirements which
469    /// differ from the alignment used in other situations.
470    ///
471    /// If `None`, the type's alignment is used.
472    ///
473    /// If the resulting alignment differs from the type's alignment,
474    /// the argument will be copied to an alloca with sufficient alignment,
475    /// either in the caller (if the type's alignment is lower than the byval alignment)
476    /// or in the callee (if the type's alignment is higher than the byval alignment),
477    /// to ensure that Rust code never sees an underaligned pointer.
478    pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
479        assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
480        self.make_indirect();
481        match self.mode {
482            PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
483                *on_stack = true;
484
485                // Some platforms, like 32-bit x86, change the alignment of the type when passing
486                // `byval`. Account for that.
487                if let Some(byval_align) = byval_align {
488                    // On all targets with byval align this is currently true, so let's assert it.
489                    debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
490                    attrs.pointee_align = Some(byval_align);
491                }
492            }
493            _ => unreachable!(),
494        }
495    }
496
497    pub fn extend_integer_width_to(&mut self, bits: u64) {
498        // Only integers have signedness
499        if let BackendRepr::Scalar(scalar) = self.layout.backend_repr
500            && let Primitive::Int(i, signed) = scalar.primitive()
501            && i.size().bits() < bits
502            && let PassMode::Direct(ref mut attrs) = self.mode
503        {
504            if signed {
505                attrs.ext(ArgExtension::Sext)
506            } else {
507                attrs.ext(ArgExtension::Zext)
508            };
509        }
510    }
511
512    pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
513        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
514    }
515
516    pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
517        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
518    }
519
520    pub fn is_indirect(&self) -> bool {
521        matches!(self.mode, PassMode::Indirect { .. })
522    }
523
524    pub fn is_sized_indirect(&self) -> bool {
525        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
526    }
527
528    pub fn is_unsized_indirect(&self) -> bool {
529        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
530    }
531
532    pub fn is_ignore(&self) -> bool {
533        matches!(self.mode, PassMode::Ignore)
534    }
535
536    /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
537    /// function call ABIs".
538    pub fn eq_abi(&self, other: &Self) -> bool
539    where
540        Ty: PartialEq,
541    {
542        // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
543        // at the type.
544        self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
545            // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
546            // That elevates any type difference to an ABI difference since we just use the
547            // full Rust type as the LLVM argument/return type.
548            if matches!(self.mode, PassMode::Direct(..))
549                && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
550            {
551                // For aggregates in `Direct` mode to be compatible, the types need to be equal.
552                self.layout.ty == other.layout.ty
553            } else {
554                true
555            }
556        }
557    }
558}
559
560#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
561pub enum RiscvInterruptKind {
562    Machine,
563    Supervisor,
564}
565
566impl RiscvInterruptKind {
567    pub fn as_str(&self) -> &'static str {
568        match self {
569            Self::Machine => "machine",
570            Self::Supervisor => "supervisor",
571        }
572    }
573}
574
575/// Metadata describing how the arguments to a native function
576/// should be passed in order to respect the native ABI.
577///
578/// The signature represented by this type may not match the MIR function signature.
579/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
580/// While this difference is rarely relevant, it should still be kept in mind.
581///
582/// I will do my best to describe this structure, but these
583/// comments are reverse-engineered and may be inaccurate. -NDM
584#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
585pub struct FnAbi<'a, Ty> {
586    /// The type, layout, and information about how each argument is passed.
587    pub args: Box<[ArgAbi<'a, Ty>]>,
588
589    /// The layout, type, and the way a value is returned from this function.
590    pub ret: ArgAbi<'a, Ty>,
591
592    /// Marks this function as variadic (accepting a variable number of arguments).
593    pub c_variadic: bool,
594
595    /// The count of non-variadic arguments.
596    ///
597    /// Should only be different from args.len() when c_variadic is true.
598    /// This can be used to know whether an argument is variadic or not.
599    pub fixed_count: u32,
600    /// The calling convention of this function.
601    pub conv: CanonAbi,
602    /// Indicates if an unwind may happen across a call to this function.
603    pub can_unwind: bool,
604}
605
606// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
607impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
608    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
609        let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
610        f.debug_struct("FnAbi")
611            .field("args", args)
612            .field("ret", ret)
613            .field("c_variadic", c_variadic)
614            .field("fixed_count", fixed_count)
615            .field("conv", conv)
616            .field("can_unwind", can_unwind)
617            .finish()
618    }
619}
620
621impl<'a, Ty> FnAbi<'a, Ty> {
622    pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
623    where
624        Ty: TyAbiInterface<'a, C> + Copy,
625        C: HasDataLayout + HasTargetSpec + HasX86AbiOpt,
626    {
627        if abi == ExternAbi::X86Interrupt {
628            if let Some(arg) = self.args.first_mut() {
629                arg.pass_by_stack_offset(None);
630            }
631            return;
632        }
633
634        let spec = cx.target_spec();
635        match &spec.arch[..] {
636            "x86" => {
637                let (flavor, regparm) = match abi {
638                    ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
639                        (x86::Flavor::FastcallOrVectorcall, None)
640                    }
641                    ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
642                        (x86::Flavor::General, cx.x86_abi_opt().regparm)
643                    }
644                    _ => (x86::Flavor::General, None),
645                };
646                let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
647                let opts = x86::X86Options { flavor, regparm, reg_struct_return };
648                if spec.is_like_msvc {
649                    x86_win32::compute_abi_info(cx, self, opts);
650                } else {
651                    x86::compute_abi_info(cx, self, opts);
652                }
653            }
654            "x86_64" => match abi {
655                ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
656                ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
657                    x86_win64::compute_abi_info(cx, self)
658                }
659                _ => {
660                    if cx.target_spec().is_like_windows {
661                        x86_win64::compute_abi_info(cx, self)
662                    } else {
663                        x86_64::compute_abi_info(cx, self)
664                    }
665                }
666            },
667            "aarch64" | "arm64ec" => {
668                let kind = if cx.target_spec().is_like_darwin {
669                    aarch64::AbiKind::DarwinPCS
670                } else if cx.target_spec().is_like_windows {
671                    aarch64::AbiKind::Win64
672                } else {
673                    aarch64::AbiKind::AAPCS
674                };
675                aarch64::compute_abi_info(cx, self, kind)
676            }
677            "amdgpu" => amdgpu::compute_abi_info(cx, self),
678            "arm" => arm::compute_abi_info(cx, self),
679            "avr" => avr::compute_abi_info(self),
680            "loongarch32" | "loongarch64" => loongarch::compute_abi_info(cx, self),
681            "m68k" => m68k::compute_abi_info(self),
682            "csky" => csky::compute_abi_info(self),
683            "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
684            "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
685            "powerpc" => powerpc::compute_abi_info(cx, self),
686            "powerpc64" => powerpc64::compute_abi_info(cx, self),
687            "s390x" => s390x::compute_abi_info(cx, self),
688            "msp430" => msp430::compute_abi_info(self),
689            "sparc" => sparc::compute_abi_info(cx, self),
690            "sparc64" => sparc64::compute_abi_info(cx, self),
691            "nvptx64" => {
692                if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
693                    nvptx64::compute_ptx_kernel_abi_info(cx, self)
694                } else {
695                    nvptx64::compute_abi_info(self)
696                }
697            }
698            "hexagon" => hexagon::compute_abi_info(self),
699            "xtensa" => xtensa::compute_abi_info(cx, self),
700            "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
701            "wasm32" | "wasm64" => wasm::compute_abi_info(cx, self),
702            "bpf" => bpf::compute_abi_info(self),
703            arch => panic!("no lowering implemented for {arch}"),
704        }
705    }
706
707    pub fn adjust_for_rust_abi<C>(&mut self, cx: &C)
708    where
709        Ty: TyAbiInterface<'a, C> + Copy,
710        C: HasDataLayout + HasTargetSpec,
711    {
712        let spec = cx.target_spec();
713        match &*spec.arch {
714            "x86" => x86::compute_rust_abi_info(cx, self),
715            "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self),
716            "loongarch32" | "loongarch64" => loongarch::compute_rust_abi_info(cx, self),
717            "aarch64" => aarch64::compute_rust_abi_info(cx, self),
718            _ => {}
719        };
720
721        for (arg_idx, arg) in self
722            .args
723            .iter_mut()
724            .enumerate()
725            .map(|(idx, arg)| (Some(idx), arg))
726            .chain(iter::once((None, &mut self.ret)))
727        {
728            // If the logic above already picked a specific type to cast the argument to, leave that
729            // in place.
730            if matches!(arg.mode, PassMode::Ignore | PassMode::Cast { .. }) {
731                continue;
732            }
733
734            if arg_idx.is_none()
735                && arg.layout.size > Primitive::Pointer(AddressSpace::ZERO).size(cx) * 2
736                && !matches!(arg.layout.backend_repr, BackendRepr::SimdVector { .. })
737            {
738                // Return values larger than 2 registers using a return area
739                // pointer. LLVM and Cranelift disagree about how to return
740                // values that don't fit in the registers designated for return
741                // values. LLVM will force the entire return value to be passed
742                // by return area pointer, while Cranelift will look at each IR level
743                // return value independently and decide to pass it in a
744                // register or not, which would result in the return value
745                // being passed partially in registers and partially through a
746                // return area pointer. For large IR-level values such as `i128`,
747                // cranelift will even split up the value into smaller chunks.
748                //
749                // While Cranelift may need to be fixed as the LLVM behavior is
750                // generally more correct with respect to the surface language,
751                // forcing this behavior in rustc itself makes it easier for
752                // other backends to conform to the Rust ABI and for the C ABI
753                // rustc already handles this behavior anyway.
754                //
755                // In addition LLVM's decision to pass the return value in
756                // registers or using a return area pointer depends on how
757                // exactly the return type is lowered to an LLVM IR type. For
758                // example `Option<u128>` can be lowered as `{ i128, i128 }`
759                // in which case the x86_64 backend would use a return area
760                // pointer, or it could be passed as `{ i32, i128 }` in which
761                // case the x86_64 backend would pass it in registers by taking
762                // advantage of an LLVM ABI extension that allows using 3
763                // registers for the x86_64 sysv call conv rather than the
764                // officially specified 2 registers.
765                //
766                // FIXME: Technically we should look at the amount of available
767                // return registers rather than guessing that there are 2
768                // registers for return values. In practice only a couple of
769                // architectures have less than 2 return registers. None of
770                // which supported by Cranelift.
771                //
772                // NOTE: This adjustment is only necessary for the Rust ABI as
773                // for other ABI's the calling convention implementations in
774                // rustc_target already ensure any return value which doesn't
775                // fit in the available amount of return registers is passed in
776                // the right way for the current target.
777                //
778                // The adjustment is not necessary nor desired for types with a vector
779                // representation; those are handled below.
780                arg.make_indirect();
781                continue;
782            }
783
784            match arg.layout.backend_repr {
785                BackendRepr::Memory { .. } => {
786                    // Compute `Aggregate` ABI.
787
788                    let is_indirect_not_on_stack =
789                        matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
790                    assert!(is_indirect_not_on_stack);
791
792                    let size = arg.layout.size;
793                    if arg.layout.is_sized()
794                        && size <= Primitive::Pointer(AddressSpace::ZERO).size(cx)
795                    {
796                        // We want to pass small aggregates as immediates, but using
797                        // an LLVM aggregate type for this leads to bad optimizations,
798                        // so we pick an appropriately sized integer type instead.
799                        arg.cast_to(Reg { kind: RegKind::Integer, size });
800                    }
801                }
802
803                BackendRepr::SimdVector { .. } => {
804                    // This is a fun case! The gist of what this is doing is
805                    // that we want callers and callees to always agree on the
806                    // ABI of how they pass SIMD arguments. If we were to *not*
807                    // make these arguments indirect then they'd be immediates
808                    // in LLVM, which means that they'd used whatever the
809                    // appropriate ABI is for the callee and the caller. That
810                    // means, for example, if the caller doesn't have AVX
811                    // enabled but the callee does, then passing an AVX argument
812                    // across this boundary would cause corrupt data to show up.
813                    //
814                    // This problem is fixed by unconditionally passing SIMD
815                    // arguments through memory between callers and callees
816                    // which should get them all to agree on ABI regardless of
817                    // target feature sets. Some more information about this
818                    // issue can be found in #44367.
819                    //
820                    // We *could* do better in some cases, e.g. on x86_64 targets where SSE2 is
821                    // required. However, it turns out that that makes LLVM worse at optimizing this
822                    // code, so we pass things indirectly even there. See #139029 for more on that.
823                    if spec.simd_types_indirect {
824                        arg.make_indirect();
825                    }
826                }
827
828                _ => {}
829            }
830        }
831    }
832}
833
834// Some types are used a lot. Make sure they don't unintentionally get bigger.
835#[cfg(target_pointer_width = "64")]
836mod size_asserts {
837    use rustc_data_structures::static_assert_size;
838
839    use super::*;
840    // tidy-alphabetical-start
841    static_assert_size!(ArgAbi<'_, usize>, 56);
842    static_assert_size!(FnAbi<'_, usize>, 80);
843    // tidy-alphabetical-end
844}