rustc_parse/parser/
expr.rs

1// ignore-tidy-filelength
2
3use core::mem;
4use core::ops::{Bound, ControlFlow};
5
6use ast::mut_visit::{self, MutVisitor};
7use ast::token::IdentIsRaw;
8use ast::{CoroutineKind, ForLoopKind, GenBlockKind, MatchKind, Pat, Path, PathSegment, Recovered};
9use rustc_ast::token::{self, Delimiter, InvisibleOrigin, MetaVarKind, Token, TokenKind};
10use rustc_ast::tokenstream::TokenTree;
11use rustc_ast::util::case::Case;
12use rustc_ast::util::classify;
13use rustc_ast::util::parser::{AssocOp, ExprPrecedence, Fixity, prec_let_scrutinee_needs_par};
14use rustc_ast::visit::{Visitor, walk_expr};
15use rustc_ast::{
16    self as ast, AnonConst, Arm, AssignOp, AssignOpKind, AttrStyle, AttrVec, BinOp, BinOpKind,
17    BlockCheckMode, CaptureBy, ClosureBinder, DUMMY_NODE_ID, Expr, ExprField, ExprKind, FnDecl,
18    FnRetTy, Label, MacCall, MetaItemLit, Movability, Param, RangeLimits, StmtKind, Ty, TyKind,
19    UnOp, UnsafeBinderCastKind, YieldKind,
20};
21use rustc_data_structures::stack::ensure_sufficient_stack;
22use rustc_errors::{Applicability, Diag, PResult, StashKey, Subdiagnostic};
23use rustc_literal_escaper::unescape_char;
24use rustc_macros::Subdiagnostic;
25use rustc_session::errors::{ExprParenthesesNeeded, report_lit_error};
26use rustc_session::lint::BuiltinLintDiag;
27use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP;
28use rustc_span::edition::Edition;
29use rustc_span::source_map::{self, Spanned};
30use rustc_span::{BytePos, ErrorGuaranteed, Ident, Pos, Span, Symbol, kw, sym};
31use thin_vec::{ThinVec, thin_vec};
32use tracing::instrument;
33
34use super::diagnostics::SnapshotParser;
35use super::pat::{CommaRecoveryMode, Expected, RecoverColon, RecoverComma};
36use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
37use super::{
38    AttrWrapper, BlockMode, ClosureSpans, ExpTokenPair, ForceCollect, Parser, PathStyle,
39    Restrictions, SemiColonMode, SeqSep, TokenType, Trailing, UsePreAttrPos,
40};
41use crate::{errors, exp, maybe_recover_from_interpolated_ty_qpath};
42
43#[derive(Debug)]
44pub(super) enum DestructuredFloat {
45    /// 1e2
46    Single(Symbol, Span),
47    /// 1.
48    TrailingDot(Symbol, Span, Span),
49    /// 1.2 | 1.2e3
50    MiddleDot(Symbol, Span, Span, Symbol, Span),
51    /// Invalid
52    Error,
53}
54
55impl<'a> Parser<'a> {
56    /// Parses an expression.
57    #[inline]
58    pub fn parse_expr(&mut self) -> PResult<'a, Box<Expr>> {
59        self.current_closure.take();
60
61        let attrs = self.parse_outer_attributes()?;
62        self.parse_expr_res(Restrictions::empty(), attrs).map(|res| res.0)
63    }
64
65    /// Parses an expression, forcing tokens to be collected.
66    pub fn parse_expr_force_collect(&mut self) -> PResult<'a, Box<Expr>> {
67        self.current_closure.take();
68
69        // If the expression is associative (e.g. `1 + 2`), then any preceding
70        // outer attribute actually belongs to the first inner sub-expression.
71        // In which case we must use the pre-attr pos to include the attribute
72        // in the collected tokens for the outer expression.
73        let pre_attr_pos = self.collect_pos();
74        let attrs = self.parse_outer_attributes()?;
75        self.collect_tokens(
76            Some(pre_attr_pos),
77            AttrWrapper::empty(),
78            ForceCollect::Yes,
79            |this, _empty_attrs| {
80                let (expr, is_assoc) = this.parse_expr_res(Restrictions::empty(), attrs)?;
81                let use_pre_attr_pos =
82                    if is_assoc { UsePreAttrPos::Yes } else { UsePreAttrPos::No };
83                Ok((expr, Trailing::No, use_pre_attr_pos))
84            },
85        )
86    }
87
88    pub fn parse_expr_anon_const(&mut self) -> PResult<'a, AnonConst> {
89        self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
90    }
91
92    fn parse_expr_catch_underscore(
93        &mut self,
94        restrictions: Restrictions,
95    ) -> PResult<'a, Box<Expr>> {
96        let attrs = self.parse_outer_attributes()?;
97        match self.parse_expr_res(restrictions, attrs) {
98            Ok((expr, _)) => Ok(expr),
99            Err(err) => match self.token.ident() {
100                Some((Ident { name: kw::Underscore, .. }, IdentIsRaw::No))
101                    if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) =>
102                {
103                    // Special-case handling of `foo(_, _, _)`
104                    let guar = err.emit();
105                    self.bump();
106                    Ok(self.mk_expr(self.prev_token.span, ExprKind::Err(guar)))
107                }
108                _ => Err(err),
109            },
110        }
111    }
112
113    /// Parses a sequence of expressions delimited by parentheses.
114    fn parse_expr_paren_seq(&mut self) -> PResult<'a, ThinVec<Box<Expr>>> {
115        self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore(Restrictions::empty()))
116            .map(|(r, _)| r)
117    }
118
119    /// Parses an expression, subject to the given restrictions.
120    #[inline]
121    pub(super) fn parse_expr_res(
122        &mut self,
123        r: Restrictions,
124        attrs: AttrWrapper,
125    ) -> PResult<'a, (Box<Expr>, bool)> {
126        self.with_res(r, |this| this.parse_expr_assoc_with(Bound::Unbounded, attrs))
127    }
128
129    /// Parses an associative expression with operators of at least `min_prec` precedence.
130    /// The `bool` in the return value indicates if it was an assoc expr, i.e. with an operator
131    /// followed by a subexpression (e.g. `1 + 2`).
132    pub(super) fn parse_expr_assoc_with(
133        &mut self,
134        min_prec: Bound<ExprPrecedence>,
135        attrs: AttrWrapper,
136    ) -> PResult<'a, (Box<Expr>, bool)> {
137        let lhs = if self.token.is_range_separator() {
138            return self.parse_expr_prefix_range(attrs).map(|res| (res, false));
139        } else {
140            self.parse_expr_prefix(attrs)?
141        };
142        self.parse_expr_assoc_rest_with(min_prec, false, lhs)
143    }
144
145    /// Parses the rest of an associative expression (i.e. the part after the lhs) with operators
146    /// of at least `min_prec` precedence. The `bool` in the return value indicates if something
147    /// was actually parsed.
148    pub(super) fn parse_expr_assoc_rest_with(
149        &mut self,
150        min_prec: Bound<ExprPrecedence>,
151        starts_stmt: bool,
152        mut lhs: Box<Expr>,
153    ) -> PResult<'a, (Box<Expr>, bool)> {
154        let mut parsed_something = false;
155        if !self.should_continue_as_assoc_expr(&lhs) {
156            return Ok((lhs, parsed_something));
157        }
158
159        self.expected_token_types.insert(TokenType::Operator);
160        while let Some(op) = self.check_assoc_op() {
161            let lhs_span = self.interpolated_or_expr_span(&lhs);
162            let cur_op_span = self.token.span;
163            let restrictions = if op.node.is_assign_like() {
164                self.restrictions & Restrictions::NO_STRUCT_LITERAL
165            } else {
166                self.restrictions
167            };
168            let prec = op.node.precedence();
169            if match min_prec {
170                Bound::Included(min_prec) => prec < min_prec,
171                Bound::Excluded(min_prec) => prec <= min_prec,
172                Bound::Unbounded => false,
173            } {
174                break;
175            }
176            // Check for deprecated `...` syntax
177            if self.token == token::DotDotDot && op.node == AssocOp::Range(RangeLimits::Closed) {
178                self.err_dotdotdot_syntax(self.token.span);
179            }
180
181            if self.token == token::LArrow {
182                self.err_larrow_operator(self.token.span);
183            }
184
185            parsed_something = true;
186            self.bump();
187            if op.node.is_comparison() {
188                if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
189                    return Ok((expr, parsed_something));
190                }
191            }
192
193            // Look for JS' `===` and `!==` and recover
194            if let AssocOp::Binary(bop @ BinOpKind::Eq | bop @ BinOpKind::Ne) = op.node
195                && self.token == token::Eq
196                && self.prev_token.span.hi() == self.token.span.lo()
197            {
198                let sp = op.span.to(self.token.span);
199                let sugg = bop.as_str().into();
200                let invalid = format!("{sugg}=");
201                self.dcx().emit_err(errors::InvalidComparisonOperator {
202                    span: sp,
203                    invalid: invalid.clone(),
204                    sub: errors::InvalidComparisonOperatorSub::Correctable {
205                        span: sp,
206                        invalid,
207                        correct: sugg,
208                    },
209                });
210                self.bump();
211            }
212
213            // Look for PHP's `<>` and recover
214            if op.node == AssocOp::Binary(BinOpKind::Lt)
215                && self.token == token::Gt
216                && self.prev_token.span.hi() == self.token.span.lo()
217            {
218                let sp = op.span.to(self.token.span);
219                self.dcx().emit_err(errors::InvalidComparisonOperator {
220                    span: sp,
221                    invalid: "<>".into(),
222                    sub: errors::InvalidComparisonOperatorSub::Correctable {
223                        span: sp,
224                        invalid: "<>".into(),
225                        correct: "!=".into(),
226                    },
227                });
228                self.bump();
229            }
230
231            // Look for C++'s `<=>` and recover
232            if op.node == AssocOp::Binary(BinOpKind::Le)
233                && self.token == token::Gt
234                && self.prev_token.span.hi() == self.token.span.lo()
235            {
236                let sp = op.span.to(self.token.span);
237                self.dcx().emit_err(errors::InvalidComparisonOperator {
238                    span: sp,
239                    invalid: "<=>".into(),
240                    sub: errors::InvalidComparisonOperatorSub::Spaceship(sp),
241                });
242                self.bump();
243            }
244
245            if self.prev_token == token::Plus
246                && self.token == token::Plus
247                && self.prev_token.span.between(self.token.span).is_empty()
248            {
249                let op_span = self.prev_token.span.to(self.token.span);
250                // Eat the second `+`
251                self.bump();
252                lhs = self.recover_from_postfix_increment(lhs, op_span, starts_stmt)?;
253                continue;
254            }
255
256            if self.prev_token == token::Minus
257                && self.token == token::Minus
258                && self.prev_token.span.between(self.token.span).is_empty()
259                && !self.look_ahead(1, |tok| tok.can_begin_expr())
260            {
261                let op_span = self.prev_token.span.to(self.token.span);
262                // Eat the second `-`
263                self.bump();
264                lhs = self.recover_from_postfix_decrement(lhs, op_span, starts_stmt)?;
265                continue;
266            }
267
268            let op_span = op.span;
269            let op = op.node;
270            // Special cases:
271            if op == AssocOp::Cast {
272                lhs = self.parse_assoc_op_cast(lhs, lhs_span, op_span, ExprKind::Cast)?;
273                continue;
274            } else if let AssocOp::Range(limits) = op {
275                // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to
276                // generalise it to the Fixity::None code.
277                lhs = self.parse_expr_range(prec, lhs, limits, cur_op_span)?;
278                break;
279            }
280
281            let min_prec = match op.fixity() {
282                Fixity::Right => Bound::Included(prec),
283                Fixity::Left | Fixity::None => Bound::Excluded(prec),
284            };
285            let (rhs, _) = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
286                let attrs = this.parse_outer_attributes()?;
287                this.parse_expr_assoc_with(min_prec, attrs)
288            })?;
289
290            let span = self.mk_expr_sp(&lhs, lhs_span, op_span, rhs.span);
291            lhs = match op {
292                AssocOp::Binary(ast_op) => {
293                    let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
294                    self.mk_expr(span, binary)
295                }
296                AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)),
297                AssocOp::AssignOp(aop) => {
298                    let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
299                    self.mk_expr(span, aopexpr)
300                }
301                AssocOp::Cast | AssocOp::Range(_) => {
302                    self.dcx().span_bug(span, "AssocOp should have been handled by special case")
303                }
304            };
305        }
306
307        Ok((lhs, parsed_something))
308    }
309
310    fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
311        match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
312            // Semi-statement forms are odd:
313            // See https://github.com/rust-lang/rust/issues/29071
314            (true, None) => false,
315            (false, _) => true, // Continue parsing the expression.
316            // An exhaustive check is done in the following block, but these are checked first
317            // because they *are* ambiguous but also reasonable looking incorrect syntax, so we
318            // want to keep their span info to improve diagnostics in these cases in a later stage.
319            (true, Some(AssocOp::Binary(
320                BinOpKind::Mul | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
321                BinOpKind::Sub | // `{ 42 } -5`
322                BinOpKind::Add | // `{ 42 } + 42` (unary plus)
323                BinOpKind::And | // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`
324                BinOpKind::Or | // `{ 42 } || 42` ("logical or" or closure)
325                BinOpKind::BitOr // `{ 42 } | 42` or `{ 42 } |x| 42`
326            ))) => {
327                // These cases are ambiguous and can't be identified in the parser alone.
328                //
329                // Bitwise AND is left out because guessing intent is hard. We can make
330                // suggestions based on the assumption that double-refs are rarely intentional,
331                // and closures are distinct enough that they don't get mixed up with their
332                // return value.
333                let sp = self.psess.source_map().start_point(self.token.span);
334                self.psess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
335                false
336            }
337            (true, Some(op)) if !op.can_continue_expr_unambiguously() => false,
338            (true, Some(_)) => {
339                self.error_found_expr_would_be_stmt(lhs);
340                true
341            }
342        }
343    }
344
345    /// We've found an expression that would be parsed as a statement,
346    /// but the next token implies this should be parsed as an expression.
347    /// For example: `if let Some(x) = x { x } else { 0 } / 2`.
348    fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
349        self.dcx().emit_err(errors::FoundExprWouldBeStmt {
350            span: self.token.span,
351            token: self.token,
352            suggestion: ExprParenthesesNeeded::surrounding(lhs.span),
353        });
354    }
355
356    /// Possibly translate the current token to an associative operator.
357    /// The method does not advance the current token.
358    ///
359    /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
360    pub(super) fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
361        let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
362            // When parsing const expressions, stop parsing when encountering `>`.
363            (
364                Some(
365                    AssocOp::Binary(BinOpKind::Shr | BinOpKind::Gt | BinOpKind::Ge)
366                    | AssocOp::AssignOp(AssignOpKind::ShrAssign),
367                ),
368                _,
369            ) if self.restrictions.contains(Restrictions::CONST_EXPR) => {
370                return None;
371            }
372            // When recovering patterns as expressions, stop parsing when encountering an
373            // assignment `=`, an alternative `|`, or a range `..`.
374            (
375                Some(
376                    AssocOp::Assign
377                    | AssocOp::AssignOp(_)
378                    | AssocOp::Binary(BinOpKind::BitOr)
379                    | AssocOp::Range(_),
380                ),
381                _,
382            ) if self.restrictions.contains(Restrictions::IS_PAT) => {
383                return None;
384            }
385            (Some(op), _) => (op, self.token.span),
386            (None, Some((Ident { name: sym::and, span }, IdentIsRaw::No)))
387                if self.may_recover() =>
388            {
389                self.dcx().emit_err(errors::InvalidLogicalOperator {
390                    span: self.token.span,
391                    incorrect: "and".into(),
392                    sub: errors::InvalidLogicalOperatorSub::Conjunction(self.token.span),
393                });
394                (AssocOp::Binary(BinOpKind::And), span)
395            }
396            (None, Some((Ident { name: sym::or, span }, IdentIsRaw::No))) if self.may_recover() => {
397                self.dcx().emit_err(errors::InvalidLogicalOperator {
398                    span: self.token.span,
399                    incorrect: "or".into(),
400                    sub: errors::InvalidLogicalOperatorSub::Disjunction(self.token.span),
401                });
402                (AssocOp::Binary(BinOpKind::Or), span)
403            }
404            _ => return None,
405        };
406        Some(source_map::respan(span, op))
407    }
408
409    /// Checks if this expression is a successfully parsed statement.
410    fn expr_is_complete(&self, e: &Expr) -> bool {
411        self.restrictions.contains(Restrictions::STMT_EXPR) && classify::expr_is_complete(e)
412    }
413
414    /// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
415    /// The other two variants are handled in `parse_prefix_range_expr` below.
416    fn parse_expr_range(
417        &mut self,
418        prec: ExprPrecedence,
419        lhs: Box<Expr>,
420        limits: RangeLimits,
421        cur_op_span: Span,
422    ) -> PResult<'a, Box<Expr>> {
423        let rhs = if self.is_at_start_of_range_notation_rhs() {
424            let maybe_lt = self.token;
425            let attrs = self.parse_outer_attributes()?;
426            Some(
427                self.parse_expr_assoc_with(Bound::Excluded(prec), attrs)
428                    .map_err(|err| self.maybe_err_dotdotlt_syntax(maybe_lt, err))?
429                    .0,
430            )
431        } else {
432            None
433        };
434        let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
435        let span = self.mk_expr_sp(&lhs, lhs.span, cur_op_span, rhs_span);
436        let range = self.mk_range(Some(lhs), rhs, limits);
437        Ok(self.mk_expr(span, range))
438    }
439
440    fn is_at_start_of_range_notation_rhs(&self) -> bool {
441        if self.token.can_begin_expr() {
442            // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
443            if self.token == token::OpenBrace {
444                return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
445            }
446            true
447        } else {
448            false
449        }
450    }
451
452    /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
453    fn parse_expr_prefix_range(&mut self, attrs: AttrWrapper) -> PResult<'a, Box<Expr>> {
454        if !attrs.is_empty() {
455            let err = errors::DotDotRangeAttribute { span: self.token.span };
456            self.dcx().emit_err(err);
457        }
458
459        // Check for deprecated `...` syntax.
460        if self.token == token::DotDotDot {
461            self.err_dotdotdot_syntax(self.token.span);
462        }
463
464        debug_assert!(
465            self.token.is_range_separator(),
466            "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
467            self.token
468        );
469
470        let limits = match self.token.kind {
471            token::DotDot => RangeLimits::HalfOpen,
472            _ => RangeLimits::Closed,
473        };
474        let op = AssocOp::from_token(&self.token);
475        let attrs = self.parse_outer_attributes()?;
476        self.collect_tokens_for_expr(attrs, |this, attrs| {
477            let lo = this.token.span;
478            let maybe_lt = this.look_ahead(1, |t| t.clone());
479            this.bump();
480            let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() {
481                // RHS must be parsed with more associativity than the dots.
482                let attrs = this.parse_outer_attributes()?;
483                this.parse_expr_assoc_with(Bound::Excluded(op.unwrap().precedence()), attrs)
484                    .map(|(x, _)| (lo.to(x.span), Some(x)))
485                    .map_err(|err| this.maybe_err_dotdotlt_syntax(maybe_lt, err))?
486            } else {
487                (lo, None)
488            };
489            let range = this.mk_range(None, opt_end, limits);
490            Ok(this.mk_expr_with_attrs(span, range, attrs))
491        })
492    }
493
494    /// Parses a prefix-unary-operator expr.
495    fn parse_expr_prefix(&mut self, attrs: AttrWrapper) -> PResult<'a, Box<Expr>> {
496        let lo = self.token.span;
497
498        macro_rules! make_it {
499            ($this:ident, $attrs:expr, |this, _| $body:expr) => {
500                $this.collect_tokens_for_expr($attrs, |$this, attrs| {
501                    let (hi, ex) = $body?;
502                    Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs))
503                })
504            };
505        }
506
507        let this = self;
508
509        // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
510        match this.token.uninterpolate().kind {
511            // `!expr`
512            token::Bang => make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Not)),
513            // `~expr`
514            token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)),
515            // `-expr`
516            token::Minus => {
517                make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Neg))
518            }
519            // `*expr`
520            token::Star => {
521                make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Deref))
522            }
523            // `&expr` and `&&expr`
524            token::And | token::AndAnd => {
525                make_it!(this, attrs, |this, _| this.parse_expr_borrow(lo))
526            }
527            // `+lit`
528            token::Plus if this.look_ahead(1, |tok| tok.is_numeric_lit()) => {
529                let mut err = errors::LeadingPlusNotSupported {
530                    span: lo,
531                    remove_plus: None,
532                    add_parentheses: None,
533                };
534
535                // a block on the LHS might have been intended to be an expression instead
536                if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
537                    err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp));
538                } else {
539                    err.remove_plus = Some(lo);
540                }
541                this.dcx().emit_err(err);
542
543                this.bump();
544                let attrs = this.parse_outer_attributes()?;
545                this.parse_expr_prefix(attrs)
546            }
547            // Recover from `++x`:
548            token::Plus if this.look_ahead(1, |t| *t == token::Plus) => {
549                let starts_stmt =
550                    this.prev_token == token::Semi || this.prev_token == token::CloseBrace;
551                let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span));
552                // Eat both `+`s.
553                this.bump();
554                this.bump();
555
556                let operand_expr = this.parse_expr_dot_or_call(attrs)?;
557                this.recover_from_prefix_increment(operand_expr, pre_span, starts_stmt)
558            }
559            token::Ident(..) if this.token.is_keyword(kw::Box) => {
560                make_it!(this, attrs, |this, _| this.parse_expr_box(lo))
561            }
562            token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => {
563                make_it!(this, attrs, |this, _| this.recover_not_expr(lo))
564            }
565            _ => return this.parse_expr_dot_or_call(attrs),
566        }
567    }
568
569    fn parse_expr_prefix_common(&mut self, lo: Span) -> PResult<'a, (Span, Box<Expr>)> {
570        self.bump();
571        let attrs = self.parse_outer_attributes()?;
572        let expr = if self.token.is_range_separator() {
573            self.parse_expr_prefix_range(attrs)
574        } else {
575            self.parse_expr_prefix(attrs)
576        }?;
577        let span = self.interpolated_or_expr_span(&expr);
578        Ok((lo.to(span), expr))
579    }
580
581    fn parse_expr_unary(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
582        let (span, expr) = self.parse_expr_prefix_common(lo)?;
583        Ok((span, self.mk_unary(op, expr)))
584    }
585
586    /// Recover on `~expr` in favor of `!expr`.
587    fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
588        self.dcx().emit_err(errors::TildeAsUnaryOperator(lo));
589
590        self.parse_expr_unary(lo, UnOp::Not)
591    }
592
593    /// Parse `box expr` - this syntax has been removed, but we still parse this
594    /// for now to provide a more useful error
595    fn parse_expr_box(&mut self, box_kw: Span) -> PResult<'a, (Span, ExprKind)> {
596        let (span, expr) = self.parse_expr_prefix_common(box_kw)?;
597        // Make a multipart suggestion instead of `span_to_snippet` in case source isn't available
598        let box_kw_and_lo = box_kw.until(self.interpolated_or_expr_span(&expr));
599        let hi = span.shrink_to_hi();
600        let sugg = errors::AddBoxNew { box_kw_and_lo, hi };
601        let guar = self.dcx().emit_err(errors::BoxSyntaxRemoved { span, sugg });
602        Ok((span, ExprKind::Err(guar)))
603    }
604
605    fn is_mistaken_not_ident_negation(&self) -> bool {
606        let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
607            // These tokens can start an expression after `!`, but
608            // can't continue an expression after an ident
609            token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
610            token::Literal(..) | token::Pound => true,
611            _ => t.is_metavar_expr(),
612        };
613        self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
614    }
615
616    /// Recover on `not expr` in favor of `!expr`.
617    fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
618        let negated_token = self.look_ahead(1, |t| *t);
619
620        let sub_diag = if negated_token.is_numeric_lit() {
621            errors::NotAsNegationOperatorSub::SuggestNotBitwise
622        } else if negated_token.is_bool_lit() {
623            errors::NotAsNegationOperatorSub::SuggestNotLogical
624        } else {
625            errors::NotAsNegationOperatorSub::SuggestNotDefault
626        };
627
628        self.dcx().emit_err(errors::NotAsNegationOperator {
629            negated: negated_token.span,
630            negated_desc: super::token_descr(&negated_token),
631            // Span the `not` plus trailing whitespace to avoid
632            // trailing whitespace after the `!` in our suggestion
633            sub: sub_diag(
634                self.psess.source_map().span_until_non_whitespace(lo.to(negated_token.span)),
635            ),
636        });
637
638        self.parse_expr_unary(lo, UnOp::Not)
639    }
640
641    /// Returns the span of expr if it was not interpolated, or the span of the interpolated token.
642    fn interpolated_or_expr_span(&self, expr: &Expr) -> Span {
643        match self.prev_token.kind {
644            token::NtIdent(..) | token::NtLifetime(..) => self.prev_token.span,
645            token::CloseInvisible(InvisibleOrigin::MetaVar(_)) => {
646                // `expr.span` is the interpolated span, because invisible open
647                // and close delims both get marked with the same span, one
648                // that covers the entire thing between them. (See
649                // `rustc_expand::mbe::transcribe::transcribe`.)
650                self.prev_token.span
651            }
652            _ => expr.span,
653        }
654    }
655
656    fn parse_assoc_op_cast(
657        &mut self,
658        lhs: Box<Expr>,
659        lhs_span: Span,
660        op_span: Span,
661        expr_kind: fn(Box<Expr>, Box<Ty>) -> ExprKind,
662    ) -> PResult<'a, Box<Expr>> {
663        let mk_expr = |this: &mut Self, lhs: Box<Expr>, rhs: Box<Ty>| {
664            this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, op_span, rhs.span), expr_kind(lhs, rhs))
665        };
666
667        // Save the state of the parser before parsing type normally, in case there is a
668        // LessThan comparison after this cast.
669        let parser_snapshot_before_type = self.clone();
670        let cast_expr = match self.parse_as_cast_ty() {
671            Ok(rhs) => mk_expr(self, lhs, rhs),
672            Err(type_err) => {
673                if !self.may_recover() {
674                    return Err(type_err);
675                }
676
677                // Rewind to before attempting to parse the type with generics, to recover
678                // from situations like `x as usize < y` in which we first tried to parse
679                // `usize < y` as a type with generic arguments.
680                let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
681
682                // Check for typo of `'a: loop { break 'a }` with a missing `'`.
683                match (&lhs.kind, &self.token.kind) {
684                    (
685                        // `foo: `
686                        ExprKind::Path(None, ast::Path { segments, .. }),
687                        token::Ident(kw::For | kw::Loop | kw::While, IdentIsRaw::No),
688                    ) if let [segment] = segments.as_slice() => {
689                        let snapshot = self.create_snapshot_for_diagnostic();
690                        let label = Label {
691                            ident: Ident::from_str_and_span(
692                                &format!("'{}", segment.ident),
693                                segment.ident.span,
694                            ),
695                        };
696                        match self.parse_expr_labeled(label, false) {
697                            Ok(expr) => {
698                                type_err.cancel();
699                                self.dcx().emit_err(errors::MalformedLoopLabel {
700                                    span: label.ident.span,
701                                    suggestion: label.ident.span.shrink_to_lo(),
702                                });
703                                return Ok(expr);
704                            }
705                            Err(err) => {
706                                err.cancel();
707                                self.restore_snapshot(snapshot);
708                            }
709                        }
710                    }
711                    _ => {}
712                }
713
714                match self.parse_path(PathStyle::Expr) {
715                    Ok(path) => {
716                        let span_after_type = parser_snapshot_after_type.token.span;
717                        let expr = mk_expr(
718                            self,
719                            lhs,
720                            self.mk_ty(path.span, TyKind::Path(None, path.clone())),
721                        );
722
723                        let args_span = self.look_ahead(1, |t| t.span).to(span_after_type);
724                        let suggestion = errors::ComparisonOrShiftInterpretedAsGenericSugg {
725                            left: expr.span.shrink_to_lo(),
726                            right: expr.span.shrink_to_hi(),
727                        };
728
729                        match self.token.kind {
730                            token::Lt => {
731                                self.dcx().emit_err(errors::ComparisonInterpretedAsGeneric {
732                                    comparison: self.token.span,
733                                    r#type: path,
734                                    args: args_span,
735                                    suggestion,
736                                })
737                            }
738                            token::Shl => self.dcx().emit_err(errors::ShiftInterpretedAsGeneric {
739                                shift: self.token.span,
740                                r#type: path,
741                                args: args_span,
742                                suggestion,
743                            }),
744                            _ => {
745                                // We can end up here even without `<` being the next token, for
746                                // example because `parse_ty_no_plus` returns `Err` on keywords,
747                                // but `parse_path` returns `Ok` on them due to error recovery.
748                                // Return original error and parser state.
749                                *self = parser_snapshot_after_type;
750                                return Err(type_err);
751                            }
752                        };
753
754                        // Successfully parsed the type path leaving a `<` yet to parse.
755                        type_err.cancel();
756
757                        // Keep `x as usize` as an expression in AST and continue parsing.
758                        expr
759                    }
760                    Err(path_err) => {
761                        // Couldn't parse as a path, return original error and parser state.
762                        path_err.cancel();
763                        *self = parser_snapshot_after_type;
764                        return Err(type_err);
765                    }
766                }
767            }
768        };
769
770        // Try to parse a postfix operator such as `.`, `?`, or index (`[]`)
771        // after a cast. If one is present, emit an error then return a valid
772        // parse tree; For something like `&x as T[0]` will be as if it was
773        // written `((&x) as T)[0]`.
774
775        let span = cast_expr.span;
776
777        let with_postfix = self.parse_expr_dot_or_call_with(AttrVec::new(), cast_expr, span)?;
778
779        // Check if an illegal postfix operator has been added after the cast.
780        // If the resulting expression is not a cast, it is an illegal postfix operator.
781        if !matches!(with_postfix.kind, ExprKind::Cast(_, _)) {
782            let msg = format!(
783                "cast cannot be followed by {}",
784                match with_postfix.kind {
785                    ExprKind::Index(..) => "indexing",
786                    ExprKind::Try(_) => "`?`",
787                    ExprKind::Field(_, _) => "a field access",
788                    ExprKind::MethodCall(_) => "a method call",
789                    ExprKind::Call(_, _) => "a function call",
790                    ExprKind::Await(_, _) => "`.await`",
791                    ExprKind::Use(_, _) => "`.use`",
792                    ExprKind::Yield(YieldKind::Postfix(_)) => "`.yield`",
793                    ExprKind::Match(_, _, MatchKind::Postfix) => "a postfix match",
794                    ExprKind::Err(_) => return Ok(with_postfix),
795                    _ => unreachable!(
796                        "did not expect {:?} as an illegal postfix operator following cast",
797                        with_postfix.kind
798                    ),
799                }
800            );
801            let mut err = self.dcx().struct_span_err(span, msg);
802
803            let suggest_parens = |err: &mut Diag<'_>| {
804                let suggestions = vec![
805                    (span.shrink_to_lo(), "(".to_string()),
806                    (span.shrink_to_hi(), ")".to_string()),
807                ];
808                err.multipart_suggestion(
809                    "try surrounding the expression in parentheses",
810                    suggestions,
811                    Applicability::MachineApplicable,
812                );
813            };
814
815            suggest_parens(&mut err);
816
817            err.emit();
818        };
819        Ok(with_postfix)
820    }
821
822    /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
823    fn parse_expr_borrow(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
824        self.expect_and()?;
825        let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
826        let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
827        let (borrow_kind, mutbl) = self.parse_borrow_modifiers();
828        let attrs = self.parse_outer_attributes()?;
829        let expr = if self.token.is_range_separator() {
830            self.parse_expr_prefix_range(attrs)
831        } else {
832            self.parse_expr_prefix(attrs)
833        }?;
834        let hi = self.interpolated_or_expr_span(&expr);
835        let span = lo.to(hi);
836        if let Some(lt) = lifetime {
837            self.error_remove_borrow_lifetime(span, lt.ident.span.until(expr.span));
838        }
839
840        // Add expected tokens if we parsed `&raw` as an expression.
841        // This will make sure we see "expected `const`, `mut`", and
842        // guides recovery in case we write `&raw expr`.
843        if borrow_kind == ast::BorrowKind::Ref
844            && mutbl == ast::Mutability::Not
845            && matches!(&expr.kind, ExprKind::Path(None, p) if *p == kw::Raw)
846        {
847            self.expected_token_types.insert(TokenType::KwMut);
848            self.expected_token_types.insert(TokenType::KwConst);
849        }
850
851        Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
852    }
853
854    fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
855        self.dcx().emit_err(errors::LifetimeInBorrowExpression { span, lifetime_span: lt_span });
856    }
857
858    /// Parse `mut?` or `[ raw | pin ] [ const | mut ]`.
859    fn parse_borrow_modifiers(&mut self) -> (ast::BorrowKind, ast::Mutability) {
860        if self.check_keyword(exp!(Raw)) && self.look_ahead(1, Token::is_mutability) {
861            // `raw [ const | mut ]`.
862            let found_raw = self.eat_keyword(exp!(Raw));
863            assert!(found_raw);
864            let mutability = self.parse_const_or_mut().unwrap();
865            (ast::BorrowKind::Raw, mutability)
866        } else if let Some((ast::Pinnedness::Pinned, mutbl)) = self.parse_pin_and_mut() {
867            // `pin [ const | mut ]`.
868            // `pin` has been gated in `self.parse_pin_and_mut()` so we don't
869            // need to gate it here.
870            (ast::BorrowKind::Pin, mutbl)
871        } else {
872            // `mut?`
873            (ast::BorrowKind::Ref, self.parse_mutability())
874        }
875    }
876
877    /// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
878    fn parse_expr_dot_or_call(&mut self, attrs: AttrWrapper) -> PResult<'a, Box<Expr>> {
879        self.collect_tokens_for_expr(attrs, |this, attrs| {
880            let base = this.parse_expr_bottom()?;
881            let span = this.interpolated_or_expr_span(&base);
882            this.parse_expr_dot_or_call_with(attrs, base, span)
883        })
884    }
885
886    pub(super) fn parse_expr_dot_or_call_with(
887        &mut self,
888        mut attrs: ast::AttrVec,
889        mut e: Box<Expr>,
890        lo: Span,
891    ) -> PResult<'a, Box<Expr>> {
892        let mut res = ensure_sufficient_stack(|| {
893            loop {
894                let has_question =
895                    if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
896                        // We are using noexpect here because we don't expect a `?` directly after
897                        // a `return` which could be suggested otherwise.
898                        self.eat_noexpect(&token::Question)
899                    } else {
900                        self.eat(exp!(Question))
901                    };
902                if has_question {
903                    // `expr?`
904                    e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e));
905                    continue;
906                }
907                let has_dot = if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) {
908                    // We are using noexpect here because we don't expect a `.` directly after
909                    // a `return` which could be suggested otherwise.
910                    self.eat_noexpect(&token::Dot)
911                } else if self.token == TokenKind::RArrow && self.may_recover() {
912                    // Recovery for `expr->suffix`.
913                    self.bump();
914                    let span = self.prev_token.span;
915                    self.dcx().emit_err(errors::ExprRArrowCall { span });
916                    true
917                } else {
918                    self.eat(exp!(Dot))
919                };
920                if has_dot {
921                    // expr.f
922                    e = self.parse_dot_suffix_expr(lo, e)?;
923                    continue;
924                }
925                if self.expr_is_complete(&e) {
926                    return Ok(e);
927                }
928                e = match self.token.kind {
929                    token::OpenParen => self.parse_expr_fn_call(lo, e),
930                    token::OpenBracket => self.parse_expr_index(lo, e)?,
931                    _ => return Ok(e),
932                }
933            }
934        });
935
936        // Stitch the list of outer attributes onto the return value. A little
937        // bit ugly, but the best way given the current code structure.
938        if !attrs.is_empty()
939            && let Ok(expr) = &mut res
940        {
941            mem::swap(&mut expr.attrs, &mut attrs);
942            expr.attrs.extend(attrs)
943        }
944        res
945    }
946
947    pub(super) fn parse_dot_suffix_expr(
948        &mut self,
949        lo: Span,
950        base: Box<Expr>,
951    ) -> PResult<'a, Box<Expr>> {
952        // At this point we've consumed something like `expr.` and `self.token` holds the token
953        // after the dot.
954        match self.token.uninterpolate().kind {
955            token::Ident(..) => self.parse_dot_suffix(base, lo),
956            token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
957                let ident_span = self.token.span;
958                self.bump();
959                Ok(self.mk_expr_tuple_field_access(lo, ident_span, base, symbol, suffix))
960            }
961            token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
962                Ok(match self.break_up_float(symbol, self.token.span) {
963                    // 1e2
964                    DestructuredFloat::Single(sym, _sp) => {
965                        // `foo.1e2`: a single complete dot access, fully consumed. We end up with
966                        // the `1e2` token in `self.prev_token` and the following token in
967                        // `self.token`.
968                        let ident_span = self.token.span;
969                        self.bump();
970                        self.mk_expr_tuple_field_access(lo, ident_span, base, sym, suffix)
971                    }
972                    // 1.
973                    DestructuredFloat::TrailingDot(sym, ident_span, dot_span) => {
974                        // `foo.1.`: a single complete dot access and the start of another.
975                        // We end up with the `sym` (`1`) token in `self.prev_token` and a dot in
976                        // `self.token`.
977                        assert!(suffix.is_none());
978                        self.token = Token::new(token::Ident(sym, IdentIsRaw::No), ident_span);
979                        self.bump_with((Token::new(token::Dot, dot_span), self.token_spacing));
980                        self.mk_expr_tuple_field_access(lo, ident_span, base, sym, None)
981                    }
982                    // 1.2 | 1.2e3
983                    DestructuredFloat::MiddleDot(
984                        sym1,
985                        ident1_span,
986                        _dot_span,
987                        sym2,
988                        ident2_span,
989                    ) => {
990                        // `foo.1.2` (or `foo.1.2e3`): two complete dot accesses. We end up with
991                        // the `sym2` (`2` or `2e3`) token in `self.prev_token` and the following
992                        // token in `self.token`.
993                        let next_token2 =
994                            Token::new(token::Ident(sym2, IdentIsRaw::No), ident2_span);
995                        self.bump_with((next_token2, self.token_spacing));
996                        self.bump();
997                        let base1 =
998                            self.mk_expr_tuple_field_access(lo, ident1_span, base, sym1, None);
999                        self.mk_expr_tuple_field_access(lo, ident2_span, base1, sym2, suffix)
1000                    }
1001                    DestructuredFloat::Error => base,
1002                })
1003            }
1004            _ => {
1005                self.error_unexpected_after_dot();
1006                Ok(base)
1007            }
1008        }
1009    }
1010
1011    fn error_unexpected_after_dot(&self) {
1012        let actual = super::token_descr(&self.token);
1013        let span = self.token.span;
1014        let sm = self.psess.source_map();
1015        let (span, actual) = match (&self.token.kind, self.subparser_name) {
1016            (token::Eof, Some(_)) if let Ok(snippet) = sm.span_to_snippet(sm.next_point(span)) => {
1017                (span.shrink_to_hi(), format!("`{}`", snippet))
1018            }
1019            (token::CloseInvisible(InvisibleOrigin::MetaVar(_)), _) => {
1020                // No need to report an error. This case will only occur when parsing a pasted
1021                // metavariable, and we should have emitted an error when parsing the macro call in
1022                // the first place. E.g. in this code:
1023                // ```
1024                // macro_rules! m { ($e:expr) => { $e }; }
1025                //
1026                // fn main() {
1027                //     let f = 1;
1028                //     m!(f.);
1029                // }
1030                // ```
1031                // we'll get an error "unexpected token: `)` when parsing the `m!(f.)`, so we don't
1032                // want to issue a second error when parsing the expansion `«f.»` (where `«`/`»`
1033                // represent the invisible delimiters).
1034                self.dcx().span_delayed_bug(span, "bad dot expr in metavariable");
1035                return;
1036            }
1037            _ => (span, actual),
1038        };
1039        self.dcx().emit_err(errors::UnexpectedTokenAfterDot { span, actual });
1040    }
1041
1042    /// We need an identifier or integer, but the next token is a float.
1043    /// Break the float into components to extract the identifier or integer.
1044    ///
1045    /// See also [`TokenKind::break_two_token_op`] which does similar splitting of `>>` into `>`.
1046    //
1047    // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
1048    //  parts unless those parts are processed immediately. `TokenCursor` should either
1049    //  support pushing "future tokens" (would be also helpful to `break_and_eat`), or
1050    //  we should break everything including floats into more basic proc-macro style
1051    //  tokens in the lexer (probably preferable).
1052    pub(super) fn break_up_float(&self, float: Symbol, span: Span) -> DestructuredFloat {
1053        #[derive(Debug)]
1054        enum FloatComponent {
1055            IdentLike(String),
1056            Punct(char),
1057        }
1058        use FloatComponent::*;
1059
1060        let float_str = float.as_str();
1061        let mut components = Vec::new();
1062        let mut ident_like = String::new();
1063        for c in float_str.chars() {
1064            if c == '_' || c.is_ascii_alphanumeric() {
1065                ident_like.push(c);
1066            } else if matches!(c, '.' | '+' | '-') {
1067                if !ident_like.is_empty() {
1068                    components.push(IdentLike(mem::take(&mut ident_like)));
1069                }
1070                components.push(Punct(c));
1071            } else {
1072                panic!("unexpected character in a float token: {c:?}")
1073            }
1074        }
1075        if !ident_like.is_empty() {
1076            components.push(IdentLike(ident_like));
1077        }
1078
1079        // With proc macros the span can refer to anything, the source may be too short,
1080        // or too long, or non-ASCII. It only makes sense to break our span into components
1081        // if its underlying text is identical to our float literal.
1082        let can_take_span_apart =
1083            || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref();
1084
1085        match &*components {
1086            // 1e2
1087            [IdentLike(i)] => {
1088                DestructuredFloat::Single(Symbol::intern(i), span)
1089            }
1090            // 1.
1091            [IdentLike(left), Punct('.')] => {
1092                let (left_span, dot_span) = if can_take_span_apart() {
1093                    let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len()));
1094                    let dot_span = span.with_lo(left_span.hi());
1095                    (left_span, dot_span)
1096                } else {
1097                    (span, span)
1098                };
1099                let left = Symbol::intern(left);
1100                DestructuredFloat::TrailingDot(left, left_span, dot_span)
1101            }
1102            // 1.2 | 1.2e3
1103            [IdentLike(left), Punct('.'), IdentLike(right)] => {
1104                let (left_span, dot_span, right_span) = if can_take_span_apart() {
1105                    let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len()));
1106                    let dot_span = span.with_lo(left_span.hi()).with_hi(left_span.hi() + BytePos(1));
1107                    let right_span = span.with_lo(dot_span.hi());
1108                    (left_span, dot_span, right_span)
1109                } else {
1110                    (span, span, span)
1111                };
1112                let left = Symbol::intern(left);
1113                let right = Symbol::intern(right);
1114                DestructuredFloat::MiddleDot(left, left_span, dot_span, right, right_span)
1115            }
1116            // 1e+ | 1e- (recovered)
1117            [IdentLike(_), Punct('+' | '-')] |
1118            // 1e+2 | 1e-2
1119            [IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
1120            // 1.2e+ | 1.2e-
1121            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] |
1122            // 1.2e+3 | 1.2e-3
1123            [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
1124                // See the FIXME about `TokenCursor` above.
1125                self.error_unexpected_after_dot();
1126                DestructuredFloat::Error
1127            }
1128            _ => panic!("unexpected components in a float token: {components:?}"),
1129        }
1130    }
1131
1132    /// Parse the field access used in offset_of, matched by `$(e:expr)+`.
1133    /// Currently returns a list of idents. However, it should be possible in
1134    /// future to also do array indices, which might be arbitrary expressions.
1135    fn parse_floating_field_access(&mut self) -> PResult<'a, Vec<Ident>> {
1136        let mut fields = Vec::new();
1137        let mut trailing_dot = None;
1138
1139        loop {
1140            // This is expected to use a metavariable $(args:expr)+, but the builtin syntax
1141            // could be called directly. Calling `parse_expr` allows this function to only
1142            // consider `Expr`s.
1143            let expr = self.parse_expr()?;
1144            let mut current = &expr;
1145            let start_idx = fields.len();
1146            loop {
1147                match current.kind {
1148                    ExprKind::Field(ref left, right) => {
1149                        // Field access is read right-to-left.
1150                        fields.insert(start_idx, right);
1151                        trailing_dot = None;
1152                        current = left;
1153                    }
1154                    // Parse this both to give helpful error messages and to
1155                    // verify it can be done with this parser setup.
1156                    ExprKind::Index(ref left, ref _right, span) => {
1157                        self.dcx().emit_err(errors::ArrayIndexInOffsetOf(span));
1158                        current = left;
1159                    }
1160                    ExprKind::Lit(token::Lit {
1161                        kind: token::Float | token::Integer,
1162                        symbol,
1163                        suffix,
1164                    }) => {
1165                        if let Some(suffix) = suffix {
1166                            self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
1167                                span: current.span,
1168                                suffix,
1169                            });
1170                        }
1171                        match self.break_up_float(symbol, current.span) {
1172                            // 1e2
1173                            DestructuredFloat::Single(sym, sp) => {
1174                                trailing_dot = None;
1175                                fields.insert(start_idx, Ident::new(sym, sp));
1176                            }
1177                            // 1.
1178                            DestructuredFloat::TrailingDot(sym, sym_span, dot_span) => {
1179                                assert!(suffix.is_none());
1180                                trailing_dot = Some(dot_span);
1181                                fields.insert(start_idx, Ident::new(sym, sym_span));
1182                            }
1183                            // 1.2 | 1.2e3
1184                            DestructuredFloat::MiddleDot(
1185                                symbol1,
1186                                span1,
1187                                _dot_span,
1188                                symbol2,
1189                                span2,
1190                            ) => {
1191                                trailing_dot = None;
1192                                fields.insert(start_idx, Ident::new(symbol2, span2));
1193                                fields.insert(start_idx, Ident::new(symbol1, span1));
1194                            }
1195                            DestructuredFloat::Error => {
1196                                trailing_dot = None;
1197                                fields.insert(start_idx, Ident::new(symbol, self.prev_token.span));
1198                            }
1199                        }
1200                        break;
1201                    }
1202                    ExprKind::Path(None, Path { ref segments, .. }) => {
1203                        match &segments[..] {
1204                            [PathSegment { ident, args: None, .. }] => {
1205                                trailing_dot = None;
1206                                fields.insert(start_idx, *ident)
1207                            }
1208                            _ => {
1209                                self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
1210                                break;
1211                            }
1212                        }
1213                        break;
1214                    }
1215                    _ => {
1216                        self.dcx().emit_err(errors::InvalidOffsetOf(current.span));
1217                        break;
1218                    }
1219                }
1220            }
1221
1222            if self.token.kind.close_delim().is_some() || self.token.kind == token::Comma {
1223                break;
1224            } else if trailing_dot.is_none() {
1225                // This loop should only repeat if there is a trailing dot.
1226                self.dcx().emit_err(errors::InvalidOffsetOf(self.token.span));
1227                break;
1228            }
1229        }
1230        if let Some(dot) = trailing_dot {
1231            self.dcx().emit_err(errors::InvalidOffsetOf(dot));
1232        }
1233        Ok(fields.into_iter().collect())
1234    }
1235
1236    fn mk_expr_tuple_field_access(
1237        &self,
1238        lo: Span,
1239        ident_span: Span,
1240        base: Box<Expr>,
1241        field: Symbol,
1242        suffix: Option<Symbol>,
1243    ) -> Box<Expr> {
1244        if let Some(suffix) = suffix {
1245            self.dcx()
1246                .emit_err(errors::InvalidLiteralSuffixOnTupleIndex { span: ident_span, suffix });
1247        }
1248        self.mk_expr(lo.to(ident_span), ExprKind::Field(base, Ident::new(field, ident_span)))
1249    }
1250
1251    /// Parse a function call expression, `expr(...)`.
1252    fn parse_expr_fn_call(&mut self, lo: Span, fun: Box<Expr>) -> Box<Expr> {
1253        let snapshot = if self.token == token::OpenParen {
1254            Some((self.create_snapshot_for_diagnostic(), fun.kind.clone()))
1255        } else {
1256            None
1257        };
1258        let open_paren = self.token.span;
1259
1260        let seq = self
1261            .parse_expr_paren_seq()
1262            .map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args)));
1263        match self.maybe_recover_struct_lit_bad_delims(lo, open_paren, seq, snapshot) {
1264            Ok(expr) => expr,
1265            Err(err) => self.recover_seq_parse_error(exp!(OpenParen), exp!(CloseParen), lo, err),
1266        }
1267    }
1268
1269    /// If we encounter a parser state that looks like the user has written a `struct` literal with
1270    /// parentheses instead of braces, recover the parser state and provide suggestions.
1271    #[instrument(skip(self, seq, snapshot), level = "trace")]
1272    fn maybe_recover_struct_lit_bad_delims(
1273        &mut self,
1274        lo: Span,
1275        open_paren: Span,
1276        seq: PResult<'a, Box<Expr>>,
1277        snapshot: Option<(SnapshotParser<'a>, ExprKind)>,
1278    ) -> PResult<'a, Box<Expr>> {
1279        match (self.may_recover(), seq, snapshot) {
1280            (true, Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => {
1281                snapshot.bump(); // `(`
1282                match snapshot.parse_struct_fields(path.clone(), false, exp!(CloseParen)) {
1283                    Ok((fields, ..)) if snapshot.eat(exp!(CloseParen)) => {
1284                        // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest
1285                        // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`.
1286                        self.restore_snapshot(snapshot);
1287                        let close_paren = self.prev_token.span;
1288                        let span = lo.to(close_paren);
1289                        // filter shorthand fields
1290                        let fields: Vec<_> =
1291                            fields.into_iter().filter(|field| !field.is_shorthand).collect();
1292
1293                        let guar = if !fields.is_empty() &&
1294                            // `token.kind` should not be compared here.
1295                            // This is because the `snapshot.token.kind` is treated as the same as
1296                            // that of the open delim in `TokenTreesReader::parse_token_tree`, even
1297                            // if they are different.
1298                            self.span_to_snippet(close_paren).is_ok_and(|snippet| snippet == ")")
1299                        {
1300                            err.cancel();
1301                            self.dcx()
1302                                .create_err(errors::ParenthesesWithStructFields {
1303                                    span,
1304                                    r#type: path,
1305                                    braces_for_struct: errors::BracesForStructLiteral {
1306                                        first: open_paren,
1307                                        second: close_paren,
1308                                    },
1309                                    no_fields_for_fn: errors::NoFieldsForFnCall {
1310                                        fields: fields
1311                                            .into_iter()
1312                                            .map(|field| field.span.until(field.expr.span))
1313                                            .collect(),
1314                                    },
1315                                })
1316                                .emit()
1317                        } else {
1318                            err.emit()
1319                        };
1320                        Ok(self.mk_expr_err(span, guar))
1321                    }
1322                    Ok(_) => Err(err),
1323                    Err(err2) => {
1324                        err2.cancel();
1325                        Err(err)
1326                    }
1327                }
1328            }
1329            (_, seq, _) => seq,
1330        }
1331    }
1332
1333    /// Parse an indexing expression `expr[...]`.
1334    fn parse_expr_index(&mut self, lo: Span, base: Box<Expr>) -> PResult<'a, Box<Expr>> {
1335        let prev_span = self.prev_token.span;
1336        let open_delim_span = self.token.span;
1337        self.bump(); // `[`
1338        let index = self.parse_expr()?;
1339        self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?;
1340        self.expect(exp!(CloseBracket))?;
1341        Ok(self.mk_expr(
1342            lo.to(self.prev_token.span),
1343            self.mk_index(base, index, open_delim_span.to(self.prev_token.span)),
1344        ))
1345    }
1346
1347    /// Assuming we have just parsed `.`, continue parsing into an expression.
1348    fn parse_dot_suffix(&mut self, self_arg: Box<Expr>, lo: Span) -> PResult<'a, Box<Expr>> {
1349        if self.token_uninterpolated_span().at_least_rust_2018() && self.eat_keyword(exp!(Await)) {
1350            return Ok(self.mk_await_expr(self_arg, lo));
1351        }
1352
1353        if self.eat_keyword(exp!(Use)) {
1354            let use_span = self.prev_token.span;
1355            self.psess.gated_spans.gate(sym::ergonomic_clones, use_span);
1356            return Ok(self.mk_use_expr(self_arg, lo));
1357        }
1358
1359        // Post-fix match
1360        if self.eat_keyword(exp!(Match)) {
1361            let match_span = self.prev_token.span;
1362            self.psess.gated_spans.gate(sym::postfix_match, match_span);
1363            return self.parse_match_block(lo, match_span, self_arg, MatchKind::Postfix);
1364        }
1365
1366        // Parse a postfix `yield`.
1367        if self.eat_keyword(exp!(Yield)) {
1368            let yield_span = self.prev_token.span;
1369            self.psess.gated_spans.gate(sym::yield_expr, yield_span);
1370            return Ok(
1371                self.mk_expr(lo.to(yield_span), ExprKind::Yield(YieldKind::Postfix(self_arg)))
1372            );
1373        }
1374
1375        let fn_span_lo = self.token.span;
1376        let mut seg = self.parse_path_segment(PathStyle::Expr, None)?;
1377        self.check_trailing_angle_brackets(&seg, &[exp!(OpenParen)]);
1378        self.check_turbofish_missing_angle_brackets(&mut seg);
1379
1380        if self.check(exp!(OpenParen)) {
1381            // Method call `expr.f()`
1382            let args = self.parse_expr_paren_seq()?;
1383            let fn_span = fn_span_lo.to(self.prev_token.span);
1384            let span = lo.to(self.prev_token.span);
1385            Ok(self.mk_expr(
1386                span,
1387                ExprKind::MethodCall(Box::new(ast::MethodCall {
1388                    seg,
1389                    receiver: self_arg,
1390                    args,
1391                    span: fn_span,
1392                })),
1393            ))
1394        } else {
1395            // Field access `expr.f`
1396            let span = lo.to(self.prev_token.span);
1397            if let Some(args) = seg.args {
1398                // See `StashKey::GenericInFieldExpr` for more info on why we stash this.
1399                self.dcx()
1400                    .create_err(errors::FieldExpressionWithGeneric(args.span()))
1401                    .stash(seg.ident.span, StashKey::GenericInFieldExpr);
1402            }
1403
1404            Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident)))
1405        }
1406    }
1407
1408    /// At the bottom (top?) of the precedence hierarchy,
1409    /// Parses things like parenthesized exprs, macros, `return`, etc.
1410    ///
1411    /// N.B., this does not parse outer attributes, and is private because it only works
1412    /// correctly if called from `parse_expr_dot_or_call`.
1413    fn parse_expr_bottom(&mut self) -> PResult<'a, Box<Expr>> {
1414        maybe_recover_from_interpolated_ty_qpath!(self, true);
1415
1416        let span = self.token.span;
1417        if let Some(expr) = self.eat_metavar_seq_with_matcher(
1418            |mv_kind| matches!(mv_kind, MetaVarKind::Expr { .. }),
1419            |this| {
1420                // Force collection (as opposed to just `parse_expr`) is required to avoid the
1421                // attribute duplication seen in #138478.
1422                let expr = this.parse_expr_force_collect();
1423                // FIXME(nnethercote) Sometimes with expressions we get a trailing comma, possibly
1424                // related to the FIXME in `collect_tokens_for_expr`. Examples are the multi-line
1425                // `assert_eq!` calls involving arguments annotated with `#[rustfmt::skip]` in
1426                // `compiler/rustc_index/src/bit_set/tests.rs`.
1427                if this.token.kind == token::Comma {
1428                    this.bump();
1429                }
1430                expr
1431            },
1432        ) {
1433            return Ok(expr);
1434        } else if let Some(lit) =
1435            self.eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
1436        {
1437            return Ok(lit);
1438        } else if let Some(block) =
1439            self.eat_metavar_seq(MetaVarKind::Block, |this| this.parse_block())
1440        {
1441            return Ok(self.mk_expr(span, ExprKind::Block(block, None)));
1442        } else if let Some(path) =
1443            self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
1444        {
1445            return Ok(self.mk_expr(span, ExprKind::Path(None, path)));
1446        }
1447
1448        // Outer attributes are already parsed and will be
1449        // added to the return value after the fact.
1450
1451        let restrictions = self.restrictions;
1452        self.with_res(restrictions - Restrictions::ALLOW_LET, |this| {
1453            // Note: adding new syntax here? Don't forget to adjust `TokenKind::can_begin_expr()`.
1454            let lo = this.token.span;
1455            if let token::Literal(_) = this.token.kind {
1456                // This match arm is a special-case of the `_` match arm below and
1457                // could be removed without changing functionality, but it's faster
1458                // to have it here, especially for programs with large constants.
1459                this.parse_expr_lit()
1460            } else if this.check(exp!(OpenParen)) {
1461                this.parse_expr_tuple_parens(restrictions)
1462            } else if this.check(exp!(OpenBrace)) {
1463                this.parse_expr_block(None, lo, BlockCheckMode::Default)
1464            } else if this.check(exp!(Or)) || this.check(exp!(OrOr)) {
1465                this.parse_expr_closure().map_err(|mut err| {
1466                    // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }`
1467                    // then suggest parens around the lhs.
1468                    if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) {
1469                        err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
1470                    }
1471                    err
1472                })
1473            } else if this.check(exp!(OpenBracket)) {
1474                this.parse_expr_array_or_repeat(exp!(CloseBracket))
1475            } else if this.is_builtin() {
1476                this.parse_expr_builtin()
1477            } else if this.check_path() {
1478                this.parse_expr_path_start()
1479            } else if this.check_keyword(exp!(Move))
1480                || this.check_keyword(exp!(Use))
1481                || this.check_keyword(exp!(Static))
1482                || this.check_const_closure()
1483            {
1484                this.parse_expr_closure()
1485            } else if this.eat_keyword(exp!(If)) {
1486                this.parse_expr_if()
1487            } else if this.check_keyword(exp!(For)) {
1488                if this.choose_generics_over_qpath(1) {
1489                    this.parse_expr_closure()
1490                } else {
1491                    assert!(this.eat_keyword(exp!(For)));
1492                    this.parse_expr_for(None, lo)
1493                }
1494            } else if this.eat_keyword(exp!(While)) {
1495                this.parse_expr_while(None, lo)
1496            } else if let Some(label) = this.eat_label() {
1497                this.parse_expr_labeled(label, true)
1498            } else if this.eat_keyword(exp!(Loop)) {
1499                this.parse_expr_loop(None, lo).map_err(|mut err| {
1500                    err.span_label(lo, "while parsing this `loop` expression");
1501                    err
1502                })
1503            } else if this.eat_keyword(exp!(Match)) {
1504                this.parse_expr_match().map_err(|mut err| {
1505                    err.span_label(lo, "while parsing this `match` expression");
1506                    err
1507                })
1508            } else if this.eat_keyword(exp!(Unsafe)) {
1509                this.parse_expr_block(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err(
1510                    |mut err| {
1511                        err.span_label(lo, "while parsing this `unsafe` expression");
1512                        err
1513                    },
1514                )
1515            } else if this.check_inline_const(0) {
1516                this.parse_const_block(lo, false)
1517            } else if this.may_recover() && this.is_do_catch_block() {
1518                this.recover_do_catch()
1519            } else if this.is_try_block() {
1520                this.expect_keyword(exp!(Try))?;
1521                this.parse_try_block(lo)
1522            } else if this.eat_keyword(exp!(Return)) {
1523                this.parse_expr_return()
1524            } else if this.eat_keyword(exp!(Continue)) {
1525                this.parse_expr_continue(lo)
1526            } else if this.eat_keyword(exp!(Break)) {
1527                this.parse_expr_break()
1528            } else if this.eat_keyword(exp!(Yield)) {
1529                this.parse_expr_yield()
1530            } else if this.is_do_yeet() {
1531                this.parse_expr_yeet()
1532            } else if this.eat_keyword(exp!(Become)) {
1533                this.parse_expr_become()
1534            } else if this.check_keyword(exp!(Let)) {
1535                this.parse_expr_let(restrictions)
1536            } else if this.eat_keyword(exp!(Underscore)) {
1537                Ok(this.mk_expr(this.prev_token.span, ExprKind::Underscore))
1538            } else if this.token_uninterpolated_span().at_least_rust_2018() {
1539                // `Span::at_least_rust_2018()` is somewhat expensive; don't get it repeatedly.
1540                let at_async = this.check_keyword(exp!(Async));
1541                // check for `gen {}` and `gen move {}`
1542                // or `async gen {}` and `async gen move {}`
1543                // FIXME: (async) gen closures aren't yet parsed.
1544                // FIXME(gen_blocks): Parse `gen async` and suggest swap
1545                if this.token_uninterpolated_span().at_least_rust_2024()
1546                    && this.is_gen_block(kw::Gen, at_async as usize)
1547                {
1548                    this.parse_gen_block()
1549                // Check for `async {` and `async move {`,
1550                } else if this.is_gen_block(kw::Async, 0) {
1551                    this.parse_gen_block()
1552                } else if at_async {
1553                    this.parse_expr_closure()
1554                } else if this.eat_keyword_noexpect(kw::Await) {
1555                    this.recover_incorrect_await_syntax(lo)
1556                } else {
1557                    this.parse_expr_lit()
1558                }
1559            } else {
1560                this.parse_expr_lit()
1561            }
1562        })
1563    }
1564
1565    fn parse_expr_lit(&mut self) -> PResult<'a, Box<Expr>> {
1566        let lo = self.token.span;
1567        match self.parse_opt_token_lit() {
1568            Some((token_lit, _)) => {
1569                let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit));
1570                self.maybe_recover_from_bad_qpath(expr)
1571            }
1572            None => self.try_macro_suggestion(),
1573        }
1574    }
1575
1576    fn parse_expr_tuple_parens(&mut self, restrictions: Restrictions) -> PResult<'a, Box<Expr>> {
1577        let lo = self.token.span;
1578        self.expect(exp!(OpenParen))?;
1579        let (es, trailing_comma) = match self.parse_seq_to_end(
1580            exp!(CloseParen),
1581            SeqSep::trailing_allowed(exp!(Comma)),
1582            |p| p.parse_expr_catch_underscore(restrictions.intersection(Restrictions::ALLOW_LET)),
1583        ) {
1584            Ok(x) => x,
1585            Err(err) => {
1586                return Ok(self.recover_seq_parse_error(
1587                    exp!(OpenParen),
1588                    exp!(CloseParen),
1589                    lo,
1590                    err,
1591                ));
1592            }
1593        };
1594        let kind = if es.len() == 1 && matches!(trailing_comma, Trailing::No) {
1595            // `(e)` is parenthesized `e`.
1596            ExprKind::Paren(es.into_iter().next().unwrap())
1597        } else {
1598            // `(e,)` is a tuple with only one field, `e`.
1599            ExprKind::Tup(es)
1600        };
1601        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1602        self.maybe_recover_from_bad_qpath(expr)
1603    }
1604
1605    fn parse_expr_array_or_repeat(&mut self, close: ExpTokenPair) -> PResult<'a, Box<Expr>> {
1606        let lo = self.token.span;
1607        self.bump(); // `[` or other open delim
1608
1609        let kind = if self.eat(close) {
1610            // Empty vector
1611            ExprKind::Array(ThinVec::new())
1612        } else {
1613            // Non-empty vector
1614            let first_expr = self.parse_expr()?;
1615            if self.eat(exp!(Semi)) {
1616                // Repeating array syntax: `[ 0; 512 ]`
1617                let count = self.parse_expr_anon_const()?;
1618                self.expect(close)?;
1619                ExprKind::Repeat(first_expr, count)
1620            } else if self.eat(exp!(Comma)) {
1621                // Vector with two or more elements.
1622                let sep = SeqSep::trailing_allowed(exp!(Comma));
1623                let (mut exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?;
1624                exprs.insert(0, first_expr);
1625                ExprKind::Array(exprs)
1626            } else {
1627                // Vector with one element
1628                self.expect(close)?;
1629                ExprKind::Array(thin_vec![first_expr])
1630            }
1631        };
1632        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1633        self.maybe_recover_from_bad_qpath(expr)
1634    }
1635
1636    fn parse_expr_path_start(&mut self) -> PResult<'a, Box<Expr>> {
1637        let maybe_eq_tok = self.prev_token;
1638        let (qself, path) = if self.eat_lt() {
1639            let lt_span = self.prev_token.span;
1640            let (qself, path) = self.parse_qpath(PathStyle::Expr).map_err(|mut err| {
1641                // Suggests using '<=' if there is an error parsing qpath when the previous token
1642                // is an '=' token. Only emits suggestion if the '<' token and '=' token are
1643                // directly adjacent (i.e. '=<')
1644                if maybe_eq_tok == TokenKind::Eq && maybe_eq_tok.span.hi() == lt_span.lo() {
1645                    let eq_lt = maybe_eq_tok.span.to(lt_span);
1646                    err.span_suggestion(eq_lt, "did you mean", "<=", Applicability::Unspecified);
1647                }
1648                err
1649            })?;
1650            (Some(qself), path)
1651        } else {
1652            (None, self.parse_path(PathStyle::Expr)?)
1653        };
1654
1655        // `!`, as an operator, is prefix, so we know this isn't that.
1656        let (span, kind) = if self.eat(exp!(Bang)) {
1657            // MACRO INVOCATION expression
1658            if qself.is_some() {
1659                self.dcx().emit_err(errors::MacroInvocationWithQualifiedPath(path.span));
1660            }
1661            let lo = path.span;
1662            let mac = Box::new(MacCall { path, args: self.parse_delim_args()? });
1663            (lo.to(self.prev_token.span), ExprKind::MacCall(mac))
1664        } else if self.check(exp!(OpenBrace))
1665            && let Some(expr) = self.maybe_parse_struct_expr(&qself, &path)
1666        {
1667            if qself.is_some() {
1668                self.psess.gated_spans.gate(sym::more_qualified_paths, path.span);
1669            }
1670            return expr;
1671        } else {
1672            (path.span, ExprKind::Path(qself, path))
1673        };
1674
1675        let expr = self.mk_expr(span, kind);
1676        self.maybe_recover_from_bad_qpath(expr)
1677    }
1678
1679    /// Parse `'label: $expr`. The label is already parsed.
1680    pub(super) fn parse_expr_labeled(
1681        &mut self,
1682        label_: Label,
1683        mut consume_colon: bool,
1684    ) -> PResult<'a, Box<Expr>> {
1685        let lo = label_.ident.span;
1686        let label = Some(label_);
1687        let ate_colon = self.eat(exp!(Colon));
1688        let tok_sp = self.token.span;
1689        let expr = if self.eat_keyword(exp!(While)) {
1690            self.parse_expr_while(label, lo)
1691        } else if self.eat_keyword(exp!(For)) {
1692            self.parse_expr_for(label, lo)
1693        } else if self.eat_keyword(exp!(Loop)) {
1694            self.parse_expr_loop(label, lo)
1695        } else if self.check_noexpect(&token::OpenBrace) || self.token.is_metavar_block() {
1696            self.parse_expr_block(label, lo, BlockCheckMode::Default)
1697        } else if !ate_colon
1698            && self.may_recover()
1699            && (self.token.kind.close_delim().is_some() || self.token.is_punct())
1700            && could_be_unclosed_char_literal(label_.ident)
1701        {
1702            let (lit, _) =
1703                self.recover_unclosed_char(label_.ident, Parser::mk_token_lit_char, |self_| {
1704                    self_.dcx().create_err(errors::UnexpectedTokenAfterLabel {
1705                        span: self_.token.span,
1706                        remove_label: None,
1707                        enclose_in_block: None,
1708                    })
1709                });
1710            consume_colon = false;
1711            Ok(self.mk_expr(lo, ExprKind::Lit(lit)))
1712        } else if !ate_colon
1713            && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt))
1714        {
1715            // We're probably inside of a `Path<'a>` that needs a turbofish
1716            let guar = self.dcx().emit_err(errors::UnexpectedTokenAfterLabel {
1717                span: self.token.span,
1718                remove_label: None,
1719                enclose_in_block: None,
1720            });
1721            consume_colon = false;
1722            Ok(self.mk_expr_err(lo, guar))
1723        } else {
1724            let mut err = errors::UnexpectedTokenAfterLabel {
1725                span: self.token.span,
1726                remove_label: None,
1727                enclose_in_block: None,
1728            };
1729
1730            // Continue as an expression in an effort to recover on `'label: non_block_expr`.
1731            let expr = self.parse_expr().map(|expr| {
1732                let span = expr.span;
1733
1734                let found_labeled_breaks = {
1735                    struct FindLabeledBreaksVisitor;
1736
1737                    impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor {
1738                        type Result = ControlFlow<()>;
1739                        fn visit_expr(&mut self, ex: &'ast Expr) -> ControlFlow<()> {
1740                            if let ExprKind::Break(Some(_label), _) = ex.kind {
1741                                ControlFlow::Break(())
1742                            } else {
1743                                walk_expr(self, ex)
1744                            }
1745                        }
1746                    }
1747
1748                    FindLabeledBreaksVisitor.visit_expr(&expr).is_break()
1749                };
1750
1751                // Suggestion involves adding a labeled block.
1752                //
1753                // If there are no breaks that may use this label, suggest removing the label and
1754                // recover to the unmodified expression.
1755                if !found_labeled_breaks {
1756                    err.remove_label = Some(lo.until(span));
1757
1758                    return expr;
1759                }
1760
1761                err.enclose_in_block = Some(errors::UnexpectedTokenAfterLabelSugg {
1762                    left: span.shrink_to_lo(),
1763                    right: span.shrink_to_hi(),
1764                });
1765
1766                // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to suppress future errors about `break 'label`.
1767                let stmt = self.mk_stmt(span, StmtKind::Expr(expr));
1768                let blk = self.mk_block(thin_vec![stmt], BlockCheckMode::Default, span);
1769                self.mk_expr(span, ExprKind::Block(blk, label))
1770            });
1771
1772            self.dcx().emit_err(err);
1773            expr
1774        }?;
1775
1776        if !ate_colon && consume_colon {
1777            self.dcx().emit_err(errors::RequireColonAfterLabeledExpression {
1778                span: expr.span,
1779                label: lo,
1780                label_end: lo.between(tok_sp),
1781            });
1782        }
1783
1784        Ok(expr)
1785    }
1786
1787    /// Emit an error when a char is parsed as a lifetime or label because of a missing quote.
1788    pub(super) fn recover_unclosed_char<L>(
1789        &self,
1790        ident: Ident,
1791        mk_lit_char: impl FnOnce(Symbol, Span) -> L,
1792        err: impl FnOnce(&Self) -> Diag<'a>,
1793    ) -> L {
1794        assert!(could_be_unclosed_char_literal(ident));
1795        self.dcx()
1796            .try_steal_modify_and_emit_err(ident.span, StashKey::LifetimeIsChar, |err| {
1797                err.span_suggestion_verbose(
1798                    ident.span.shrink_to_hi(),
1799                    "add `'` to close the char literal",
1800                    "'",
1801                    Applicability::MaybeIncorrect,
1802                );
1803            })
1804            .unwrap_or_else(|| {
1805                err(self)
1806                    .with_span_suggestion_verbose(
1807                        ident.span.shrink_to_hi(),
1808                        "add `'` to close the char literal",
1809                        "'",
1810                        Applicability::MaybeIncorrect,
1811                    )
1812                    .emit()
1813            });
1814        let name = ident.without_first_quote().name;
1815        mk_lit_char(name, ident.span)
1816    }
1817
1818    /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead.
1819    fn recover_do_catch(&mut self) -> PResult<'a, Box<Expr>> {
1820        let lo = self.token.span;
1821
1822        self.bump(); // `do`
1823        self.bump(); // `catch`
1824
1825        let span = lo.to(self.prev_token.span);
1826        self.dcx().emit_err(errors::DoCatchSyntaxRemoved { span });
1827
1828        self.parse_try_block(lo)
1829    }
1830
1831    /// Parse an expression if the token can begin one.
1832    fn parse_expr_opt(&mut self) -> PResult<'a, Option<Box<Expr>>> {
1833        Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None })
1834    }
1835
1836    /// Parse `"return" expr?`.
1837    fn parse_expr_return(&mut self) -> PResult<'a, Box<Expr>> {
1838        let lo = self.prev_token.span;
1839        let kind = ExprKind::Ret(self.parse_expr_opt()?);
1840        let expr = self.mk_expr(lo.to(self.prev_token.span), kind);
1841        self.maybe_recover_from_bad_qpath(expr)
1842    }
1843
1844    /// Parse `"do" "yeet" expr?`.
1845    fn parse_expr_yeet(&mut self) -> PResult<'a, Box<Expr>> {
1846        let lo = self.token.span;
1847
1848        self.bump(); // `do`
1849        self.bump(); // `yeet`
1850
1851        let kind = ExprKind::Yeet(self.parse_expr_opt()?);
1852
1853        let span = lo.to(self.prev_token.span);
1854        self.psess.gated_spans.gate(sym::yeet_expr, span);
1855        let expr = self.mk_expr(span, kind);
1856        self.maybe_recover_from_bad_qpath(expr)
1857    }
1858
1859    /// Parse `"become" expr`, with `"become"` token already eaten.
1860    fn parse_expr_become(&mut self) -> PResult<'a, Box<Expr>> {
1861        let lo = self.prev_token.span;
1862        let kind = ExprKind::Become(self.parse_expr()?);
1863        let span = lo.to(self.prev_token.span);
1864        self.psess.gated_spans.gate(sym::explicit_tail_calls, span);
1865        let expr = self.mk_expr(span, kind);
1866        self.maybe_recover_from_bad_qpath(expr)
1867    }
1868
1869    /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten.
1870    /// If the label is followed immediately by a `:` token, the label and `:` are
1871    /// parsed as part of the expression (i.e. a labeled loop). The language team has
1872    /// decided in #87026 to require parentheses as a visual aid to avoid confusion if
1873    /// the break expression of an unlabeled break is a labeled loop (as in
1874    /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value
1875    /// expression only gets a warning for compatibility reasons; and a labeled break
1876    /// with a labeled loop does not even get a warning because there is no ambiguity.
1877    fn parse_expr_break(&mut self) -> PResult<'a, Box<Expr>> {
1878        let lo = self.prev_token.span;
1879        let mut label = self.eat_label();
1880        let kind = if self.token == token::Colon
1881            && let Some(label) = label.take()
1882        {
1883            // The value expression can be a labeled loop, see issue #86948, e.g.:
1884            // `loop { break 'label: loop { break 'label 42; }; }`
1885            let lexpr = self.parse_expr_labeled(label, true)?;
1886            self.dcx().emit_err(errors::LabeledLoopInBreak {
1887                span: lexpr.span,
1888                sub: errors::WrapInParentheses::Expression {
1889                    left: lexpr.span.shrink_to_lo(),
1890                    right: lexpr.span.shrink_to_hi(),
1891                },
1892            });
1893            Some(lexpr)
1894        } else if self.token != token::OpenBrace
1895            || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
1896        {
1897            let mut expr = self.parse_expr_opt()?;
1898            if let Some(expr) = &mut expr {
1899                if label.is_some()
1900                    && match &expr.kind {
1901                        ExprKind::While(_, _, None)
1902                        | ExprKind::ForLoop { label: None, .. }
1903                        | ExprKind::Loop(_, None, _) => true,
1904                        ExprKind::Block(block, None) => {
1905                            matches!(block.rules, BlockCheckMode::Default)
1906                        }
1907                        _ => false,
1908                    }
1909                {
1910                    self.psess.buffer_lint(
1911                        BREAK_WITH_LABEL_AND_LOOP,
1912                        lo.to(expr.span),
1913                        ast::CRATE_NODE_ID,
1914                        BuiltinLintDiag::BreakWithLabelAndLoop(expr.span),
1915                    );
1916                }
1917
1918                // Recover `break label aaaaa`
1919                if self.may_recover()
1920                    && let ExprKind::Path(None, p) = &expr.kind
1921                    && let [segment] = &*p.segments
1922                    && let &ast::PathSegment { ident, args: None, .. } = segment
1923                    && let Some(next) = self.parse_expr_opt()?
1924                {
1925                    label = Some(self.recover_ident_into_label(ident));
1926                    *expr = next;
1927                }
1928            }
1929
1930            expr
1931        } else {
1932            None
1933        };
1934        let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind));
1935        self.maybe_recover_from_bad_qpath(expr)
1936    }
1937
1938    /// Parse `"continue" label?`.
1939    fn parse_expr_continue(&mut self, lo: Span) -> PResult<'a, Box<Expr>> {
1940        let mut label = self.eat_label();
1941
1942        // Recover `continue label` -> `continue 'label`
1943        if self.may_recover()
1944            && label.is_none()
1945            && let Some((ident, _)) = self.token.ident()
1946        {
1947            self.bump();
1948            label = Some(self.recover_ident_into_label(ident));
1949        }
1950
1951        let kind = ExprKind::Continue(label);
1952        Ok(self.mk_expr(lo.to(self.prev_token.span), kind))
1953    }
1954
1955    /// Parse `"yield" expr?`.
1956    fn parse_expr_yield(&mut self) -> PResult<'a, Box<Expr>> {
1957        let lo = self.prev_token.span;
1958        let kind = ExprKind::Yield(YieldKind::Prefix(self.parse_expr_opt()?));
1959        let span = lo.to(self.prev_token.span);
1960        self.psess.gated_spans.gate(sym::yield_expr, span);
1961        let expr = self.mk_expr(span, kind);
1962        self.maybe_recover_from_bad_qpath(expr)
1963    }
1964
1965    /// Parse `builtin # ident(args,*)`.
1966    fn parse_expr_builtin(&mut self) -> PResult<'a, Box<Expr>> {
1967        self.parse_builtin(|this, lo, ident| {
1968            Ok(match ident.name {
1969                sym::offset_of => Some(this.parse_expr_offset_of(lo)?),
1970                sym::type_ascribe => Some(this.parse_expr_type_ascribe(lo)?),
1971                sym::wrap_binder => {
1972                    Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Wrap)?)
1973                }
1974                sym::unwrap_binder => {
1975                    Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Unwrap)?)
1976                }
1977                _ => None,
1978            })
1979        })
1980    }
1981
1982    pub(crate) fn parse_builtin<T>(
1983        &mut self,
1984        parse: impl FnOnce(&mut Parser<'a>, Span, Ident) -> PResult<'a, Option<T>>,
1985    ) -> PResult<'a, T> {
1986        let lo = self.token.span;
1987
1988        self.bump(); // `builtin`
1989        self.bump(); // `#`
1990
1991        let Some((ident, IdentIsRaw::No)) = self.token.ident() else {
1992            let err = self.dcx().create_err(errors::ExpectedBuiltinIdent { span: self.token.span });
1993            return Err(err);
1994        };
1995        self.psess.gated_spans.gate(sym::builtin_syntax, ident.span);
1996        self.bump();
1997
1998        self.expect(exp!(OpenParen))?;
1999        let ret = if let Some(res) = parse(self, lo, ident)? {
2000            Ok(res)
2001        } else {
2002            let err = self.dcx().create_err(errors::UnknownBuiltinConstruct {
2003                span: lo.to(ident.span),
2004                name: ident,
2005            });
2006            return Err(err);
2007        };
2008        self.expect(exp!(CloseParen))?;
2009
2010        ret
2011    }
2012
2013    /// Built-in macro for `offset_of!` expressions.
2014    pub(crate) fn parse_expr_offset_of(&mut self, lo: Span) -> PResult<'a, Box<Expr>> {
2015        let container = self.parse_ty()?;
2016        self.expect(exp!(Comma))?;
2017
2018        let fields = self.parse_floating_field_access()?;
2019        let trailing_comma = self.eat_noexpect(&TokenKind::Comma);
2020
2021        if let Err(mut e) = self.expect_one_of(&[], &[exp!(CloseParen)]) {
2022            if trailing_comma {
2023                e.note("unexpected third argument to offset_of");
2024            } else {
2025                e.note("offset_of expects dot-separated field and variant names");
2026            }
2027            e.emit();
2028        }
2029
2030        // Eat tokens until the macro call ends.
2031        if self.may_recover() {
2032            while !self.token.kind.is_close_delim_or_eof() {
2033                self.bump();
2034            }
2035        }
2036
2037        let span = lo.to(self.token.span);
2038        Ok(self.mk_expr(span, ExprKind::OffsetOf(container, fields)))
2039    }
2040
2041    /// Built-in macro for type ascription expressions.
2042    pub(crate) fn parse_expr_type_ascribe(&mut self, lo: Span) -> PResult<'a, Box<Expr>> {
2043        let expr = self.parse_expr()?;
2044        self.expect(exp!(Comma))?;
2045        let ty = self.parse_ty()?;
2046        let span = lo.to(self.token.span);
2047        Ok(self.mk_expr(span, ExprKind::Type(expr, ty)))
2048    }
2049
2050    pub(crate) fn parse_expr_unsafe_binder_cast(
2051        &mut self,
2052        lo: Span,
2053        kind: UnsafeBinderCastKind,
2054    ) -> PResult<'a, Box<Expr>> {
2055        let expr = self.parse_expr()?;
2056        let ty = if self.eat(exp!(Comma)) { Some(self.parse_ty()?) } else { None };
2057        let span = lo.to(self.token.span);
2058        Ok(self.mk_expr(span, ExprKind::UnsafeBinderCast(kind, expr, ty)))
2059    }
2060
2061    /// Returns a string literal if the next token is a string literal.
2062    /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind,
2063    /// and returns `None` if the next token is not literal at all.
2064    pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> {
2065        match self.parse_opt_meta_item_lit() {
2066            Some(lit) => match lit.kind {
2067                ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit {
2068                    style,
2069                    symbol: lit.symbol,
2070                    suffix: lit.suffix,
2071                    span: lit.span,
2072                    symbol_unescaped,
2073                }),
2074                _ => Err(Some(lit)),
2075            },
2076            None => Err(None),
2077        }
2078    }
2079
2080    pub(crate) fn mk_token_lit_char(name: Symbol, span: Span) -> (token::Lit, Span) {
2081        (token::Lit { symbol: name, suffix: None, kind: token::Char }, span)
2082    }
2083
2084    fn mk_meta_item_lit_char(name: Symbol, span: Span) -> MetaItemLit {
2085        ast::MetaItemLit {
2086            symbol: name,
2087            suffix: None,
2088            kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')),
2089            span,
2090        }
2091    }
2092
2093    fn handle_missing_lit<L>(
2094        &mut self,
2095        mk_lit_char: impl FnOnce(Symbol, Span) -> L,
2096    ) -> PResult<'a, L> {
2097        let token = self.token;
2098        let err = |self_: &Self| {
2099            let msg = format!("unexpected token: {}", super::token_descr(&token));
2100            self_.dcx().struct_span_err(token.span, msg)
2101        };
2102        // On an error path, eagerly consider a lifetime to be an unclosed character lit, if that
2103        // makes sense.
2104        if let Some((ident, IdentIsRaw::No)) = self.token.lifetime()
2105            && could_be_unclosed_char_literal(ident)
2106        {
2107            let lt = self.expect_lifetime();
2108            Ok(self.recover_unclosed_char(lt.ident, mk_lit_char, err))
2109        } else {
2110            Err(err(self))
2111        }
2112    }
2113
2114    pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> {
2115        self.parse_opt_token_lit()
2116            .ok_or(())
2117            .or_else(|()| self.handle_missing_lit(Parser::mk_token_lit_char))
2118    }
2119
2120    pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> {
2121        self.parse_opt_meta_item_lit()
2122            .ok_or(())
2123            .or_else(|()| self.handle_missing_lit(Parser::mk_meta_item_lit_char))
2124    }
2125
2126    fn recover_after_dot(&mut self) {
2127        if self.token == token::Dot {
2128            // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where
2129            // dot would follow an optional literal, so we do this unconditionally.
2130            let recovered = self.look_ahead(1, |next_token| {
2131                // If it's an integer that looks like a float, then recover as such.
2132                //
2133                // We will never encounter the exponent part of a floating
2134                // point literal here, since there's no use of the exponent
2135                // syntax that also constitutes a valid integer, so we need
2136                // not check for that.
2137                if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) =
2138                    next_token.kind
2139                    && suffix.is_none_or(|s| s == sym::f32 || s == sym::f64)
2140                    && symbol.as_str().chars().all(|c| c.is_numeric() || c == '_')
2141                    && self.token.span.hi() == next_token.span.lo()
2142                {
2143                    let s = String::from("0.") + symbol.as_str();
2144                    let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix);
2145                    Some(Token::new(kind, self.token.span.to(next_token.span)))
2146                } else {
2147                    None
2148                }
2149            });
2150            if let Some(recovered) = recovered {
2151                self.dcx().emit_err(errors::FloatLiteralRequiresIntegerPart {
2152                    span: recovered.span,
2153                    suggestion: recovered.span.shrink_to_lo(),
2154                });
2155                self.bump();
2156                self.token = recovered;
2157            }
2158        }
2159    }
2160
2161    /// Keep this in sync with `Token::can_begin_literal_maybe_minus` and
2162    /// `Lit::from_token` (excluding unary negation).
2163    pub fn eat_token_lit(&mut self) -> Option<token::Lit> {
2164        let check_expr = |expr: Box<Expr>| {
2165            if let ast::ExprKind::Lit(token_lit) = expr.kind {
2166                Some(token_lit)
2167            } else if let ast::ExprKind::Unary(UnOp::Neg, inner) = &expr.kind
2168                && let ast::Expr { kind: ast::ExprKind::Lit(_), .. } = **inner
2169            {
2170                None
2171            } else {
2172                panic!("unexpected reparsed expr/literal: {:?}", expr.kind);
2173            }
2174        };
2175        match self.token.uninterpolate().kind {
2176            token::Ident(name, IdentIsRaw::No) if name.is_bool_lit() => {
2177                self.bump();
2178                Some(token::Lit::new(token::Bool, name, None))
2179            }
2180            token::Literal(token_lit) => {
2181                self.bump();
2182                Some(token_lit)
2183            }
2184            token::OpenInvisible(InvisibleOrigin::MetaVar(MetaVarKind::Literal)) => {
2185                let lit = self
2186                    .eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
2187                    .expect("metavar seq literal");
2188                check_expr(lit)
2189            }
2190            token::OpenInvisible(InvisibleOrigin::MetaVar(
2191                mv_kind @ MetaVarKind::Expr { can_begin_literal_maybe_minus: true, .. },
2192            )) => {
2193                let expr = self
2194                    .eat_metavar_seq(mv_kind, |this| this.parse_expr())
2195                    .expect("metavar seq expr");
2196                check_expr(expr)
2197            }
2198            _ => None,
2199        }
2200    }
2201
2202    /// Matches `lit = true | false | token_lit`.
2203    /// Returns `None` if the next token is not a literal.
2204    fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> {
2205        self.recover_after_dot();
2206        let span = self.token.span;
2207        self.eat_token_lit().map(|token_lit| (token_lit, span))
2208    }
2209
2210    /// Matches `lit = true | false | token_lit`.
2211    /// Returns `None` if the next token is not a literal.
2212    fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> {
2213        self.recover_after_dot();
2214        let span = self.token.span;
2215        let uninterpolated_span = self.token_uninterpolated_span();
2216        self.eat_token_lit().map(|token_lit| {
2217            match MetaItemLit::from_token_lit(token_lit, span) {
2218                Ok(lit) => lit,
2219                Err(err) => {
2220                    let guar = report_lit_error(&self.psess, err, token_lit, uninterpolated_span);
2221                    // Pack possible quotes and prefixes from the original literal into
2222                    // the error literal's symbol so they can be pretty-printed faithfully.
2223                    let suffixless_lit = token::Lit::new(token_lit.kind, token_lit.symbol, None);
2224                    let symbol = Symbol::intern(&suffixless_lit.to_string());
2225                    let token_lit = token::Lit::new(token::Err(guar), symbol, token_lit.suffix);
2226                    MetaItemLit::from_token_lit(token_lit, uninterpolated_span).unwrap()
2227                }
2228            }
2229        })
2230    }
2231
2232    /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`).
2233    /// Keep this in sync with `Token::can_begin_literal_maybe_minus`.
2234    pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, Box<Expr>> {
2235        if let Some(expr) = self.eat_metavar_seq_with_matcher(
2236            |mv_kind| matches!(mv_kind, MetaVarKind::Expr { .. }),
2237            |this| {
2238                // FIXME(nnethercote) The `expr` case should only match if
2239                // `e` is an `ExprKind::Lit` or an `ExprKind::Unary` containing
2240                // an `UnOp::Neg` and an `ExprKind::Lit`, like how
2241                // `can_begin_literal_maybe_minus` works. But this method has
2242                // been over-accepting for a long time, and to make that change
2243                // here requires also changing some `parse_literal_maybe_minus`
2244                // call sites to accept additional expression kinds. E.g.
2245                // `ExprKind::Path` must be accepted when parsing range
2246                // patterns. That requires some care. So for now, we continue
2247                // being less strict here than we should be.
2248                this.parse_expr()
2249            },
2250        ) {
2251            return Ok(expr);
2252        } else if let Some(lit) =
2253            self.eat_metavar_seq(MetaVarKind::Literal, |this| this.parse_literal_maybe_minus())
2254        {
2255            return Ok(lit);
2256        }
2257
2258        let lo = self.token.span;
2259        let minus_present = self.eat(exp!(Minus));
2260        let (token_lit, span) = self.parse_token_lit()?;
2261        let expr = self.mk_expr(span, ExprKind::Lit(token_lit));
2262
2263        if minus_present {
2264            Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr)))
2265        } else {
2266            Ok(expr)
2267        }
2268    }
2269
2270    fn is_array_like_block(&mut self) -> bool {
2271        self.token.kind == TokenKind::OpenBrace
2272            && self
2273                .look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_)))
2274            && self.look_ahead(2, |t| t == &token::Comma)
2275            && self.look_ahead(3, |t| t.can_begin_expr())
2276    }
2277
2278    /// Emits a suggestion if it looks like the user meant an array but
2279    /// accidentally used braces, causing the code to be interpreted as a block
2280    /// expression.
2281    fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<Box<Expr>> {
2282        let mut snapshot = self.create_snapshot_for_diagnostic();
2283        match snapshot.parse_expr_array_or_repeat(exp!(CloseBrace)) {
2284            Ok(arr) => {
2285                let guar = self.dcx().emit_err(errors::ArrayBracketsInsteadOfBraces {
2286                    span: arr.span,
2287                    sub: errors::ArrayBracketsInsteadOfBracesSugg {
2288                        left: lo,
2289                        right: snapshot.prev_token.span,
2290                    },
2291                });
2292
2293                self.restore_snapshot(snapshot);
2294                Some(self.mk_expr_err(arr.span, guar))
2295            }
2296            Err(e) => {
2297                e.cancel();
2298                None
2299            }
2300        }
2301    }
2302
2303    fn suggest_missing_semicolon_before_array(
2304        &self,
2305        prev_span: Span,
2306        open_delim_span: Span,
2307    ) -> PResult<'a, ()> {
2308        if !self.may_recover() {
2309            return Ok(());
2310        }
2311
2312        if self.token == token::Comma {
2313            if !self.psess.source_map().is_multiline(prev_span.until(self.token.span)) {
2314                return Ok(());
2315            }
2316            let mut snapshot = self.create_snapshot_for_diagnostic();
2317            snapshot.bump();
2318            match snapshot.parse_seq_to_before_end(
2319                exp!(CloseBracket),
2320                SeqSep::trailing_allowed(exp!(Comma)),
2321                |p| p.parse_expr(),
2322            ) {
2323                Ok(_)
2324                    // When the close delim is `)`, `token.kind` is expected to be `token::CloseParen`,
2325                    // but the actual `token.kind` is `token::CloseBracket`.
2326                    // This is because the `token.kind` of the close delim is treated as the same as
2327                    // that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different.
2328                    // Therefore, `token.kind` should not be compared here.
2329                    if snapshot
2330                        .span_to_snippet(snapshot.token.span)
2331                        .is_ok_and(|snippet| snippet == "]") =>
2332                {
2333                    return Err(self.dcx().create_err(errors::MissingSemicolonBeforeArray {
2334                        open_delim: open_delim_span,
2335                        semicolon: prev_span.shrink_to_hi(),
2336                    }));
2337                }
2338                Ok(_) => (),
2339                Err(err) => err.cancel(),
2340            }
2341        }
2342        Ok(())
2343    }
2344
2345    /// Parses a block or unsafe block.
2346    pub(super) fn parse_expr_block(
2347        &mut self,
2348        opt_label: Option<Label>,
2349        lo: Span,
2350        blk_mode: BlockCheckMode,
2351    ) -> PResult<'a, Box<Expr>> {
2352        if self.may_recover() && self.is_array_like_block() {
2353            if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) {
2354                return Ok(arr);
2355            }
2356        }
2357
2358        if self.token.is_metavar_block() {
2359            self.dcx().emit_err(errors::InvalidBlockMacroSegment {
2360                span: self.token.span,
2361                context: lo.to(self.token.span),
2362                wrap: errors::WrapInExplicitBlock {
2363                    lo: self.token.span.shrink_to_lo(),
2364                    hi: self.token.span.shrink_to_hi(),
2365                },
2366            });
2367        }
2368
2369        let (attrs, blk) = self.parse_block_common(lo, blk_mode, None)?;
2370        Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs))
2371    }
2372
2373    /// Parse a block which takes no attributes and has no label
2374    fn parse_simple_block(&mut self) -> PResult<'a, Box<Expr>> {
2375        let blk = self.parse_block()?;
2376        Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None)))
2377    }
2378
2379    /// Parses a closure expression (e.g., `move |args| expr`).
2380    fn parse_expr_closure(&mut self) -> PResult<'a, Box<Expr>> {
2381        let lo = self.token.span;
2382
2383        let before = self.prev_token;
2384        let binder = if self.check_keyword(exp!(For)) {
2385            let lo = self.token.span;
2386            let (bound_vars, _) = self.parse_higher_ranked_binder()?;
2387            let span = lo.to(self.prev_token.span);
2388
2389            self.psess.gated_spans.gate(sym::closure_lifetime_binder, span);
2390
2391            ClosureBinder::For { span, generic_params: bound_vars }
2392        } else {
2393            ClosureBinder::NotPresent
2394        };
2395
2396        let constness = self.parse_closure_constness();
2397
2398        let movability = if self.eat_keyword(exp!(Static)) {
2399            self.psess.gated_spans.gate(sym::coroutines, self.prev_token.span);
2400            Movability::Static
2401        } else {
2402            Movability::Movable
2403        };
2404
2405        let coroutine_kind = if self.token_uninterpolated_span().at_least_rust_2018() {
2406            self.parse_coroutine_kind(Case::Sensitive)
2407        } else {
2408            None
2409        };
2410
2411        if let ClosureBinder::NotPresent = binder
2412            && coroutine_kind.is_some()
2413        {
2414            // coroutine closures and generators can have the same qualifiers, so we might end up
2415            // in here if there is a missing `|` but also no `{`. Adjust the expectations in that case.
2416            self.expected_token_types.insert(TokenType::OpenBrace);
2417        }
2418
2419        let capture_clause = self.parse_capture_clause()?;
2420        let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?;
2421        let decl_hi = self.prev_token.span;
2422        let mut body = match &fn_decl.output {
2423            // No return type.
2424            FnRetTy::Default(_) => {
2425                let restrictions =
2426                    self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
2427                let prev = self.prev_token;
2428                let token = self.token;
2429                let attrs = self.parse_outer_attributes()?;
2430                match self.parse_expr_res(restrictions, attrs) {
2431                    Ok((expr, _)) => expr,
2432                    Err(err) => self.recover_closure_body(err, before, prev, token, lo, decl_hi)?,
2433                }
2434            }
2435            // Explicit return type (`->`) needs block `-> T { }`.
2436            FnRetTy::Ty(ty) => self.parse_closure_block_body(ty.span)?,
2437        };
2438
2439        match coroutine_kind {
2440            Some(CoroutineKind::Async { .. }) => {}
2441            Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => {
2442                // Feature-gate `gen ||` and `async gen ||` closures.
2443                // FIXME(gen_blocks): This perhaps should be a different gate.
2444                self.psess.gated_spans.gate(sym::gen_blocks, span);
2445            }
2446            None => {}
2447        }
2448
2449        if self.token == TokenKind::Semi
2450            && let Some(last) = self.token_cursor.stack.last()
2451            && let Some(TokenTree::Delimited(_, _, Delimiter::Parenthesis, _)) = last.curr()
2452            && self.may_recover()
2453        {
2454            // It is likely that the closure body is a block but where the
2455            // braces have been removed. We will recover and eat the next
2456            // statements later in the parsing process.
2457            body = self.mk_expr_err(
2458                body.span,
2459                self.dcx().span_delayed_bug(body.span, "recovered a closure body as a block"),
2460            );
2461        }
2462
2463        let body_span = body.span;
2464
2465        let closure = self.mk_expr(
2466            lo.to(body.span),
2467            ExprKind::Closure(Box::new(ast::Closure {
2468                binder,
2469                capture_clause,
2470                constness,
2471                coroutine_kind,
2472                movability,
2473                fn_decl,
2474                body,
2475                fn_decl_span: lo.to(decl_hi),
2476                fn_arg_span,
2477            })),
2478        );
2479
2480        // Disable recovery for closure body
2481        let spans =
2482            ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span };
2483        self.current_closure = Some(spans);
2484
2485        Ok(closure)
2486    }
2487
2488    /// If an explicit return type is given, require a block to appear (RFC 968).
2489    fn parse_closure_block_body(&mut self, ret_span: Span) -> PResult<'a, Box<Expr>> {
2490        if self.may_recover()
2491            && self.token.can_begin_expr()
2492            && self.token.kind != TokenKind::OpenBrace
2493            && !self.token.is_metavar_block()
2494        {
2495            let snapshot = self.create_snapshot_for_diagnostic();
2496            let restrictions =
2497                self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET;
2498            let tok = self.token.clone();
2499            match self.parse_expr_res(restrictions, AttrWrapper::empty()) {
2500                Ok((expr, _)) => {
2501                    let descr = super::token_descr(&tok);
2502                    let mut diag = self
2503                        .dcx()
2504                        .struct_span_err(tok.span, format!("expected `{{`, found {descr}"));
2505                    diag.span_label(
2506                        ret_span,
2507                        "explicit return type requires closure body to be enclosed in braces",
2508                    );
2509                    diag.multipart_suggestion_verbose(
2510                        "wrap the expression in curly braces",
2511                        vec![
2512                            (expr.span.shrink_to_lo(), "{ ".to_string()),
2513                            (expr.span.shrink_to_hi(), " }".to_string()),
2514                        ],
2515                        Applicability::MachineApplicable,
2516                    );
2517                    diag.emit();
2518                    return Ok(expr);
2519                }
2520                Err(diag) => {
2521                    diag.cancel();
2522                    self.restore_snapshot(snapshot);
2523                }
2524            }
2525        }
2526
2527        let body_lo = self.token.span;
2528        self.parse_expr_block(None, body_lo, BlockCheckMode::Default)
2529    }
2530
2531    /// Parses an optional `move` or `use` prefix to a closure-like construct.
2532    fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> {
2533        if self.eat_keyword(exp!(Move)) {
2534            let move_kw_span = self.prev_token.span;
2535            // Check for `move async` and recover
2536            if self.check_keyword(exp!(Async)) {
2537                let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2538                Err(self
2539                    .dcx()
2540                    .create_err(errors::AsyncMoveOrderIncorrect { span: move_async_span }))
2541            } else {
2542                Ok(CaptureBy::Value { move_kw: move_kw_span })
2543            }
2544        } else if self.eat_keyword(exp!(Use)) {
2545            let use_kw_span = self.prev_token.span;
2546            self.psess.gated_spans.gate(sym::ergonomic_clones, use_kw_span);
2547            // Check for `use async` and recover
2548            if self.check_keyword(exp!(Async)) {
2549                let use_async_span = self.token.span.with_lo(self.prev_token.span.data().lo);
2550                Err(self.dcx().create_err(errors::AsyncUseOrderIncorrect { span: use_async_span }))
2551            } else {
2552                Ok(CaptureBy::Use { use_kw: use_kw_span })
2553            }
2554        } else {
2555            Ok(CaptureBy::Ref)
2556        }
2557    }
2558
2559    /// Parses the `|arg, arg|` header of a closure.
2560    fn parse_fn_block_decl(&mut self) -> PResult<'a, (Box<FnDecl>, Span)> {
2561        let arg_start = self.token.span.lo();
2562
2563        let inputs = if self.eat(exp!(OrOr)) {
2564            ThinVec::new()
2565        } else {
2566            self.expect(exp!(Or))?;
2567            let args = self
2568                .parse_seq_to_before_tokens(
2569                    &[exp!(Or)],
2570                    &[&token::OrOr],
2571                    SeqSep::trailing_allowed(exp!(Comma)),
2572                    |p| p.parse_fn_block_param(),
2573                )?
2574                .0;
2575            self.expect_or()?;
2576            args
2577        };
2578        let arg_span = self.prev_token.span.with_lo(arg_start);
2579        let output =
2580            self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?;
2581
2582        Ok((Box::new(FnDecl { inputs, output }), arg_span))
2583    }
2584
2585    /// Parses a parameter in a closure header (e.g., `|arg, arg|`).
2586    fn parse_fn_block_param(&mut self) -> PResult<'a, Param> {
2587        let lo = self.token.span;
2588        let attrs = self.parse_outer_attributes()?;
2589        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
2590            let pat = this.parse_pat_no_top_alt(Some(Expected::ParameterName), None)?;
2591            let ty = if this.eat(exp!(Colon)) {
2592                this.parse_ty()?
2593            } else {
2594                this.mk_ty(pat.span, TyKind::Infer)
2595            };
2596
2597            Ok((
2598                Param {
2599                    attrs,
2600                    ty,
2601                    pat,
2602                    span: lo.to(this.prev_token.span),
2603                    id: DUMMY_NODE_ID,
2604                    is_placeholder: false,
2605                },
2606                Trailing::from(this.token == token::Comma),
2607                UsePreAttrPos::No,
2608            ))
2609        })
2610    }
2611
2612    /// Parses an `if` expression (`if` token already eaten).
2613    fn parse_expr_if(&mut self) -> PResult<'a, Box<Expr>> {
2614        let lo = self.prev_token.span;
2615        // Scoping code checks the top level edition of the `if`; let's match it here.
2616        // The `CondChecker` also checks the edition of the `let` itself, just to make sure.
2617        let let_chains_policy = LetChainsPolicy::EditionDependent { current_edition: lo.edition() };
2618        let cond = self.parse_expr_cond(let_chains_policy)?;
2619        self.parse_if_after_cond(lo, cond)
2620    }
2621
2622    fn parse_if_after_cond(&mut self, lo: Span, mut cond: Box<Expr>) -> PResult<'a, Box<Expr>> {
2623        let cond_span = cond.span;
2624        // Tries to interpret `cond` as either a missing expression if it's a block,
2625        // or as an unfinished expression if it's a binop and the RHS is a block.
2626        // We could probably add more recoveries here too...
2627        let mut recover_block_from_condition = |this: &mut Self| {
2628            let block = match &mut cond.kind {
2629                ExprKind::Binary(Spanned { span: binop_span, .. }, _, right)
2630                    if let ExprKind::Block(_, None) = right.kind =>
2631                {
2632                    let guar = this.dcx().emit_err(errors::IfExpressionMissingThenBlock {
2633                        if_span: lo,
2634                        missing_then_block_sub:
2635                            errors::IfExpressionMissingThenBlockSub::UnfinishedCondition(
2636                                cond_span.shrink_to_lo().to(*binop_span),
2637                            ),
2638                        let_else_sub: None,
2639                    });
2640                    std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi(), guar))
2641                }
2642                ExprKind::Block(_, None) => {
2643                    let guar = this.dcx().emit_err(errors::IfExpressionMissingCondition {
2644                        if_span: lo.with_neighbor(cond.span).shrink_to_hi(),
2645                        block_span: self.psess.source_map().start_point(cond_span),
2646                    });
2647                    std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi(), guar))
2648                }
2649                _ => {
2650                    return None;
2651                }
2652            };
2653            if let ExprKind::Block(block, _) = &block.kind {
2654                Some(block.clone())
2655            } else {
2656                unreachable!()
2657            }
2658        };
2659        // Parse then block
2660        let thn = if self.token.is_keyword(kw::Else) {
2661            if let Some(block) = recover_block_from_condition(self) {
2662                block
2663            } else {
2664                let let_else_sub = matches!(cond.kind, ExprKind::Let(..))
2665                    .then(|| errors::IfExpressionLetSomeSub { if_span: lo.until(cond_span) });
2666
2667                let guar = self.dcx().emit_err(errors::IfExpressionMissingThenBlock {
2668                    if_span: lo,
2669                    missing_then_block_sub: errors::IfExpressionMissingThenBlockSub::AddThenBlock(
2670                        cond_span.shrink_to_hi(),
2671                    ),
2672                    let_else_sub,
2673                });
2674                self.mk_block_err(cond_span.shrink_to_hi(), guar)
2675            }
2676        } else {
2677            let attrs = self.parse_outer_attributes()?; // For recovery.
2678            let maybe_fatarrow = self.token;
2679            let block = if self.check(exp!(OpenBrace)) {
2680                self.parse_block()?
2681            } else if let Some(block) = recover_block_from_condition(self) {
2682                block
2683            } else {
2684                self.error_on_extra_if(&cond)?;
2685                // Parse block, which will always fail, but we can add a nice note to the error
2686                self.parse_block().map_err(|mut err| {
2687                        if self.prev_token == token::Semi
2688                            && self.token == token::AndAnd
2689                            && let maybe_let = self.look_ahead(1, |t| t.clone())
2690                            && maybe_let.is_keyword(kw::Let)
2691                        {
2692                            err.span_suggestion(
2693                                self.prev_token.span,
2694                                "consider removing this semicolon to parse the `let` as part of the same chain",
2695                                "",
2696                                Applicability::MachineApplicable,
2697                            ).span_note(
2698                                self.token.span.to(maybe_let.span),
2699                                "you likely meant to continue parsing the let-chain starting here",
2700                            );
2701                        } else {
2702                            // Look for usages of '=>' where '>=' might be intended
2703                            if maybe_fatarrow == token::FatArrow {
2704                                err.span_suggestion(
2705                                    maybe_fatarrow.span,
2706                                    "you might have meant to write a \"greater than or equal to\" comparison",
2707                                    ">=",
2708                                    Applicability::MaybeIncorrect,
2709                                );
2710                            }
2711                            err.span_note(
2712                                cond_span,
2713                                "the `if` expression is missing a block after this condition",
2714                            );
2715                        }
2716                        err
2717                    })?
2718            };
2719            self.error_on_if_block_attrs(lo, false, block.span, attrs);
2720            block
2721        };
2722        let els = if self.eat_keyword(exp!(Else)) { Some(self.parse_expr_else()?) } else { None };
2723        Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els)))
2724    }
2725
2726    /// Parses the condition of a `if` or `while` expression.
2727    ///
2728    /// The specified `edition` in `let_chains_policy` should be that of the whole `if` construct,
2729    /// i.e. the same span we use to later decide whether the drop behaviour should be that of
2730    /// edition `..=2021` or that of `2024..`.
2731    // Public to use it for custom `if` expressions in rustfmt forks like https://github.com/tucant/rustfmt
2732    pub fn parse_expr_cond(
2733        &mut self,
2734        let_chains_policy: LetChainsPolicy,
2735    ) -> PResult<'a, Box<Expr>> {
2736        let attrs = self.parse_outer_attributes()?;
2737        let (mut cond, _) =
2738            self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, attrs)?;
2739
2740        CondChecker::new(self, let_chains_policy).visit_expr(&mut cond);
2741
2742        Ok(cond)
2743    }
2744
2745    /// Parses a `let $pat = $expr` pseudo-expression.
2746    fn parse_expr_let(&mut self, restrictions: Restrictions) -> PResult<'a, Box<Expr>> {
2747        let recovered = if !restrictions.contains(Restrictions::ALLOW_LET) {
2748            let err = errors::ExpectedExpressionFoundLet {
2749                span: self.token.span,
2750                reason: ForbiddenLetReason::OtherForbidden,
2751                missing_let: None,
2752                comparison: None,
2753            };
2754            if self.prev_token == token::Or {
2755                // This was part of a closure, the that part of the parser recover.
2756                return Err(self.dcx().create_err(err));
2757            } else {
2758                Recovered::Yes(self.dcx().emit_err(err))
2759            }
2760        } else {
2761            Recovered::No
2762        };
2763        self.bump(); // Eat `let` token
2764        let lo = self.prev_token.span;
2765        let pat = self.parse_pat_no_top_guard(
2766            None,
2767            RecoverComma::Yes,
2768            RecoverColon::Yes,
2769            CommaRecoveryMode::LikelyTuple,
2770        )?;
2771        if self.token == token::EqEq {
2772            self.dcx().emit_err(errors::ExpectedEqForLetExpr {
2773                span: self.token.span,
2774                sugg_span: self.token.span,
2775            });
2776            self.bump();
2777        } else {
2778            self.expect(exp!(Eq))?;
2779        }
2780        let attrs = self.parse_outer_attributes()?;
2781        let (expr, _) =
2782            self.parse_expr_assoc_with(Bound::Excluded(prec_let_scrutinee_needs_par()), attrs)?;
2783        let span = lo.to(expr.span);
2784        Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span, recovered)))
2785    }
2786
2787    /// Parses an `else { ... }` expression (`else` token already eaten).
2788    fn parse_expr_else(&mut self) -> PResult<'a, Box<Expr>> {
2789        let else_span = self.prev_token.span; // `else`
2790        let attrs = self.parse_outer_attributes()?; // For recovery.
2791        let expr = if self.eat_keyword(exp!(If)) {
2792            ensure_sufficient_stack(|| self.parse_expr_if())?
2793        } else if self.check(exp!(OpenBrace)) {
2794            self.parse_simple_block()?
2795        } else {
2796            let snapshot = self.create_snapshot_for_diagnostic();
2797            let first_tok = super::token_descr(&self.token);
2798            let first_tok_span = self.token.span;
2799            match self.parse_expr() {
2800                Ok(cond)
2801                // Try to guess the difference between a "condition-like" vs
2802                // "statement-like" expression.
2803                //
2804                // We are seeing the following code, in which $cond is neither
2805                // ExprKind::Block nor ExprKind::If (the 2 cases wherein this
2806                // would be valid syntax).
2807                //
2808                //     if ... {
2809                //     } else $cond
2810                //
2811                // If $cond is "condition-like" such as ExprKind::Binary, we
2812                // want to suggest inserting `if`.
2813                //
2814                //     if ... {
2815                //     } else if a == b {
2816                //            ^^
2817                //     }
2818                //
2819                // We account for macro calls that were meant as conditions as well.
2820                //
2821                //     if ... {
2822                //     } else if macro! { foo bar } {
2823                //            ^^
2824                //     }
2825                //
2826                // If $cond is "statement-like" such as ExprKind::While then we
2827                // want to suggest wrapping in braces.
2828                //
2829                //     if ... {
2830                //     } else {
2831                //            ^
2832                //         while true {}
2833                //     }
2834                //     ^
2835                    if self.check(exp!(OpenBrace))
2836                        && (classify::expr_requires_semi_to_be_stmt(&cond)
2837                            || matches!(cond.kind, ExprKind::MacCall(..)))
2838                    =>
2839                {
2840                    self.dcx().emit_err(errors::ExpectedElseBlock {
2841                        first_tok_span,
2842                        first_tok,
2843                        else_span,
2844                        condition_start: cond.span.shrink_to_lo(),
2845                    });
2846                    self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)?
2847                }
2848                Err(e) => {
2849                    e.cancel();
2850                    self.restore_snapshot(snapshot);
2851                    self.parse_simple_block()?
2852                },
2853                Ok(_) => {
2854                    self.restore_snapshot(snapshot);
2855                    self.parse_simple_block()?
2856                },
2857            }
2858        };
2859        self.error_on_if_block_attrs(else_span, true, expr.span, attrs);
2860        Ok(expr)
2861    }
2862
2863    fn error_on_if_block_attrs(
2864        &self,
2865        ctx_span: Span,
2866        is_ctx_else: bool,
2867        branch_span: Span,
2868        attrs: AttrWrapper,
2869    ) {
2870        if !attrs.is_empty()
2871            && let [x0 @ xn] | [x0, .., xn] = &*attrs.take_for_recovery(self.psess)
2872        {
2873            let attributes = x0.span.until(branch_span);
2874            let last = xn.span;
2875            let ctx = if is_ctx_else { "else" } else { "if" };
2876            self.dcx().emit_err(errors::OuterAttributeNotAllowedOnIfElse {
2877                last,
2878                branch_span,
2879                ctx_span,
2880                ctx: ctx.to_string(),
2881                attributes,
2882            });
2883        }
2884    }
2885
2886    fn error_on_extra_if(&mut self, cond: &Box<Expr>) -> PResult<'a, ()> {
2887        if let ExprKind::Binary(Spanned { span: binop_span, node: binop }, _, right) = &cond.kind
2888            && let BinOpKind::And = binop
2889            && let ExprKind::If(cond, ..) = &right.kind
2890        {
2891            Err(self.dcx().create_err(errors::UnexpectedIfWithIf(
2892                binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()),
2893            )))
2894        } else {
2895            Ok(())
2896        }
2897    }
2898
2899    // Public to use it for custom `for` expressions in rustfmt forks like https://github.com/tucant/rustfmt
2900    pub fn parse_for_head(&mut self) -> PResult<'a, (Box<Pat>, Box<Expr>)> {
2901        let begin_paren = if self.token == token::OpenParen {
2902            // Record whether we are about to parse `for (`.
2903            // This is used below for recovery in case of `for ( $stuff ) $block`
2904            // in which case we will suggest `for $stuff $block`.
2905            let start_span = self.token.span;
2906            let left = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
2907            Some((start_span, left))
2908        } else {
2909            None
2910        };
2911        // Try to parse the pattern `for ($PAT) in $EXPR`.
2912        let pat = match (
2913            self.parse_pat_allow_top_guard(
2914                None,
2915                RecoverComma::Yes,
2916                RecoverColon::Yes,
2917                CommaRecoveryMode::LikelyTuple,
2918            ),
2919            begin_paren,
2920        ) {
2921            (Ok(pat), _) => pat, // Happy path.
2922            (Err(err), Some((start_span, left))) if self.eat_keyword(exp!(In)) => {
2923                // We know for sure we have seen `for ($SOMETHING in`. In the happy path this would
2924                // happen right before the return of this method.
2925                let attrs = self.parse_outer_attributes()?;
2926                let (expr, _) = match self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs) {
2927                    Ok(expr) => expr,
2928                    Err(expr_err) => {
2929                        // We don't know what followed the `in`, so cancel and bubble up the
2930                        // original error.
2931                        expr_err.cancel();
2932                        return Err(err);
2933                    }
2934                };
2935                return if self.token == token::CloseParen {
2936                    // We know for sure we have seen `for ($SOMETHING in $EXPR)`, so we recover the
2937                    // parser state and emit a targeted suggestion.
2938                    let span = vec![start_span, self.token.span];
2939                    let right = self.prev_token.span.between(self.look_ahead(1, |t| t.span));
2940                    self.bump(); // )
2941                    err.cancel();
2942                    self.dcx().emit_err(errors::ParenthesesInForHead {
2943                        span,
2944                        // With e.g. `for (x) in y)` this would replace `(x) in y)`
2945                        // with `x) in y)` which is syntactically invalid.
2946                        // However, this is prevented before we get here.
2947                        sugg: errors::ParenthesesInForHeadSugg { left, right },
2948                    });
2949                    Ok((self.mk_pat(start_span.to(right), ast::PatKind::Wild), expr))
2950                } else {
2951                    Err(err) // Some other error, bubble up.
2952                };
2953            }
2954            (Err(err), _) => return Err(err), // Some other error, bubble up.
2955        };
2956        if !self.eat_keyword(exp!(In)) {
2957            self.error_missing_in_for_loop();
2958        }
2959        self.check_for_for_in_in_typo(self.prev_token.span);
2960        let attrs = self.parse_outer_attributes()?;
2961        let (expr, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?;
2962        Ok((pat, expr))
2963    }
2964
2965    /// Parses `for await? <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten).
2966    fn parse_expr_for(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, Box<Expr>> {
2967        let is_await =
2968            self.token_uninterpolated_span().at_least_rust_2018() && self.eat_keyword(exp!(Await));
2969
2970        if is_await {
2971            self.psess.gated_spans.gate(sym::async_for_loop, self.prev_token.span);
2972        }
2973
2974        let kind = if is_await { ForLoopKind::ForAwait } else { ForLoopKind::For };
2975
2976        let (pat, expr) = self.parse_for_head()?;
2977        // Recover from missing expression in `for` loop
2978        if matches!(expr.kind, ExprKind::Block(..))
2979            && self.token.kind != token::OpenBrace
2980            && self.may_recover()
2981        {
2982            let guar = self
2983                .dcx()
2984                .emit_err(errors::MissingExpressionInForLoop { span: expr.span.shrink_to_lo() });
2985            let err_expr = self.mk_expr(expr.span, ExprKind::Err(guar));
2986            let block = self.mk_block(thin_vec![], BlockCheckMode::Default, self.prev_token.span);
2987            return Ok(self.mk_expr(
2988                lo.to(self.prev_token.span),
2989                ExprKind::ForLoop { pat, iter: err_expr, body: block, label: opt_label, kind },
2990            ));
2991        }
2992
2993        let (attrs, loop_block) = self.parse_inner_attrs_and_block(
2994            // Only suggest moving erroneous block label to the loop header
2995            // if there is not already a label there
2996            opt_label.is_none().then_some(lo),
2997        )?;
2998
2999        let kind = ExprKind::ForLoop { pat, iter: expr, body: loop_block, label: opt_label, kind };
3000
3001        self.recover_loop_else("for", lo)?;
3002
3003        Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
3004    }
3005
3006    /// Recovers from an `else` clause after a loop (`for...else`, `while...else`)
3007    fn recover_loop_else(&mut self, loop_kind: &'static str, loop_kw: Span) -> PResult<'a, ()> {
3008        if self.token.is_keyword(kw::Else) && self.may_recover() {
3009            let else_span = self.token.span;
3010            self.bump();
3011            let else_clause = self.parse_expr_else()?;
3012            self.dcx().emit_err(errors::LoopElseNotSupported {
3013                span: else_span.to(else_clause.span),
3014                loop_kind,
3015                loop_kw,
3016            });
3017        }
3018        Ok(())
3019    }
3020
3021    fn error_missing_in_for_loop(&mut self) {
3022        let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) {
3023            // Possibly using JS syntax (#75311).
3024            let span = self.token.span;
3025            self.bump();
3026            (span, errors::MissingInInForLoopSub::InNotOf)
3027        } else if self.eat(exp!(Eq)) {
3028            (self.prev_token.span, errors::MissingInInForLoopSub::InNotEq)
3029        } else {
3030            (self.prev_token.span.between(self.token.span), errors::MissingInInForLoopSub::AddIn)
3031        };
3032
3033        self.dcx().emit_err(errors::MissingInInForLoop { span, sub: sub(span) });
3034    }
3035
3036    /// Parses a `while` or `while let` expression (`while` token already eaten).
3037    fn parse_expr_while(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, Box<Expr>> {
3038        let policy = LetChainsPolicy::EditionDependent { current_edition: lo.edition() };
3039        let cond = self.parse_expr_cond(policy).map_err(|mut err| {
3040            err.span_label(lo, "while parsing the condition of this `while` expression");
3041            err
3042        })?;
3043        let (attrs, body) = self
3044            .parse_inner_attrs_and_block(
3045                // Only suggest moving erroneous block label to the loop header
3046                // if there is not already a label there
3047                opt_label.is_none().then_some(lo),
3048            )
3049            .map_err(|mut err| {
3050                err.span_label(lo, "while parsing the body of this `while` expression");
3051                err.span_label(cond.span, "this `while` condition successfully parsed");
3052                err
3053            })?;
3054
3055        self.recover_loop_else("while", lo)?;
3056
3057        Ok(self.mk_expr_with_attrs(
3058            lo.to(self.prev_token.span),
3059            ExprKind::While(cond, body, opt_label),
3060            attrs,
3061        ))
3062    }
3063
3064    /// Parses `loop { ... }` (`loop` token already eaten).
3065    fn parse_expr_loop(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, Box<Expr>> {
3066        let loop_span = self.prev_token.span;
3067        let (attrs, body) = self.parse_inner_attrs_and_block(
3068            // Only suggest moving erroneous block label to the loop header
3069            // if there is not already a label there
3070            opt_label.is_none().then_some(lo),
3071        )?;
3072        self.recover_loop_else("loop", lo)?;
3073        Ok(self.mk_expr_with_attrs(
3074            lo.to(self.prev_token.span),
3075            ExprKind::Loop(body, opt_label, loop_span),
3076            attrs,
3077        ))
3078    }
3079
3080    pub(crate) fn eat_label(&mut self) -> Option<Label> {
3081        if let Some((ident, is_raw)) = self.token.lifetime() {
3082            // Disallow `'fn`, but with a better error message than `expect_lifetime`.
3083            if matches!(is_raw, IdentIsRaw::No) && ident.without_first_quote().is_reserved() {
3084                self.dcx().emit_err(errors::KeywordLabel { span: ident.span });
3085            }
3086
3087            self.bump();
3088            Some(Label { ident })
3089        } else {
3090            None
3091        }
3092    }
3093
3094    /// Parses a `match ... { ... }` expression (`match` token already eaten).
3095    fn parse_expr_match(&mut self) -> PResult<'a, Box<Expr>> {
3096        let match_span = self.prev_token.span;
3097        let attrs = self.parse_outer_attributes()?;
3098        let (scrutinee, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?;
3099
3100        self.parse_match_block(match_span, match_span, scrutinee, MatchKind::Prefix)
3101    }
3102
3103    /// Parses the block of a `match expr { ... }` or a `expr.match { ... }`
3104    /// expression. This is after the match token and scrutinee are eaten
3105    fn parse_match_block(
3106        &mut self,
3107        lo: Span,
3108        match_span: Span,
3109        scrutinee: Box<Expr>,
3110        match_kind: MatchKind,
3111    ) -> PResult<'a, Box<Expr>> {
3112        if let Err(mut e) = self.expect(exp!(OpenBrace)) {
3113            if self.token == token::Semi {
3114                e.span_suggestion_short(
3115                    match_span,
3116                    "try removing this `match`",
3117                    "",
3118                    Applicability::MaybeIncorrect, // speculative
3119                );
3120            }
3121            if self.maybe_recover_unexpected_block_label(None) {
3122                e.cancel();
3123                self.bump();
3124            } else {
3125                return Err(e);
3126            }
3127        }
3128        let attrs = self.parse_inner_attributes()?;
3129
3130        let mut arms = ThinVec::new();
3131        while self.token != token::CloseBrace {
3132            match self.parse_arm() {
3133                Ok(arm) => arms.push(arm),
3134                Err(e) => {
3135                    // Recover by skipping to the end of the block.
3136                    let guar = e.emit();
3137                    self.recover_stmt();
3138                    let span = lo.to(self.token.span);
3139                    if self.token == token::CloseBrace {
3140                        self.bump();
3141                    }
3142                    // Always push at least one arm to make the match non-empty
3143                    arms.push(Arm {
3144                        attrs: Default::default(),
3145                        pat: self.mk_pat(span, ast::PatKind::Err(guar)),
3146                        guard: None,
3147                        body: Some(self.mk_expr_err(span, guar)),
3148                        span,
3149                        id: DUMMY_NODE_ID,
3150                        is_placeholder: false,
3151                    });
3152                    return Ok(self.mk_expr_with_attrs(
3153                        span,
3154                        ExprKind::Match(scrutinee, arms, match_kind),
3155                        attrs,
3156                    ));
3157                }
3158            }
3159        }
3160        let hi = self.token.span;
3161        self.bump();
3162        Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms, match_kind), attrs))
3163    }
3164
3165    /// Attempt to recover from match arm body with statements and no surrounding braces.
3166    fn parse_arm_body_missing_braces(
3167        &mut self,
3168        first_expr: &Box<Expr>,
3169        arrow_span: Span,
3170    ) -> Option<(Span, ErrorGuaranteed)> {
3171        if self.token != token::Semi {
3172            return None;
3173        }
3174        let start_snapshot = self.create_snapshot_for_diagnostic();
3175        let semi_sp = self.token.span;
3176        self.bump(); // `;`
3177        let mut stmts =
3178            vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))];
3179        let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| {
3180            let span = stmts[0].span.to(stmts[stmts.len() - 1].span);
3181
3182            let guar = this.dcx().emit_err(errors::MatchArmBodyWithoutBraces {
3183                statements: span,
3184                arrow: arrow_span,
3185                num_statements: stmts.len(),
3186                sub: if stmts.len() > 1 {
3187                    errors::MatchArmBodyWithoutBracesSugg::AddBraces {
3188                        left: span.shrink_to_lo(),
3189                        right: span.shrink_to_hi(),
3190                    }
3191                } else {
3192                    errors::MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp }
3193                },
3194            });
3195            (span, guar)
3196        };
3197        // We might have either a `,` -> `;` typo, or a block without braces. We need
3198        // a more subtle parsing strategy.
3199        loop {
3200            if self.token == token::CloseBrace {
3201                // We have reached the closing brace of the `match` expression.
3202                return Some(err(self, stmts));
3203            }
3204            if self.token == token::Comma {
3205                self.restore_snapshot(start_snapshot);
3206                return None;
3207            }
3208            let pre_pat_snapshot = self.create_snapshot_for_diagnostic();
3209            match self.parse_pat_no_top_alt(None, None) {
3210                Ok(_pat) => {
3211                    if self.token == token::FatArrow {
3212                        // Reached arm end.
3213                        self.restore_snapshot(pre_pat_snapshot);
3214                        return Some(err(self, stmts));
3215                    }
3216                }
3217                Err(err) => {
3218                    err.cancel();
3219                }
3220            }
3221
3222            self.restore_snapshot(pre_pat_snapshot);
3223            match self.parse_stmt_without_recovery(true, ForceCollect::No, false) {
3224                // Consume statements for as long as possible.
3225                Ok(Some(stmt)) => {
3226                    stmts.push(stmt);
3227                }
3228                Ok(None) => {
3229                    self.restore_snapshot(start_snapshot);
3230                    break;
3231                }
3232                // We couldn't parse either yet another statement missing it's
3233                // enclosing block nor the next arm's pattern or closing brace.
3234                Err(stmt_err) => {
3235                    stmt_err.cancel();
3236                    self.restore_snapshot(start_snapshot);
3237                    break;
3238                }
3239            }
3240        }
3241        None
3242    }
3243
3244    pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> {
3245        let attrs = self.parse_outer_attributes()?;
3246        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
3247            let lo = this.token.span;
3248            let (pat, guard) = this.parse_match_arm_pat_and_guard()?;
3249
3250            let span_before_body = this.prev_token.span;
3251            let arm_body;
3252            let is_fat_arrow = this.check(exp!(FatArrow));
3253            let is_almost_fat_arrow =
3254                TokenKind::FatArrow.similar_tokens().contains(&this.token.kind);
3255
3256            // this avoids the compiler saying that a `,` or `}` was expected even though
3257            // the pattern isn't a never pattern (and thus an arm body is required)
3258            let armless = (!is_fat_arrow && !is_almost_fat_arrow && pat.could_be_never_pattern())
3259                || matches!(this.token.kind, token::Comma | token::CloseBrace);
3260
3261            let mut result = if armless {
3262                // A pattern without a body, allowed for never patterns.
3263                arm_body = None;
3264                let span = lo.to(this.prev_token.span);
3265                this.expect_one_of(&[exp!(Comma)], &[exp!(CloseBrace)]).map(|x| {
3266                    // Don't gate twice
3267                    if !pat.contains_never_pattern() {
3268                        this.psess.gated_spans.gate(sym::never_patterns, span);
3269                    }
3270                    x
3271                })
3272            } else {
3273                if let Err(mut err) = this.expect(exp!(FatArrow)) {
3274                    // We might have a `=>` -> `=` or `->` typo (issue #89396).
3275                    if is_almost_fat_arrow {
3276                        err.span_suggestion(
3277                            this.token.span,
3278                            "use a fat arrow to start a match arm",
3279                            "=>",
3280                            Applicability::MachineApplicable,
3281                        );
3282                        if matches!(
3283                            (&this.prev_token.kind, &this.token.kind),
3284                            (token::DotDotEq, token::Gt)
3285                        ) {
3286                            // `error_inclusive_range_match_arrow` handles cases like `0..=> {}`,
3287                            // so we suppress the error here
3288                            err.delay_as_bug();
3289                        } else {
3290                            err.emit();
3291                        }
3292                        this.bump();
3293                    } else {
3294                        return Err(err);
3295                    }
3296                }
3297                let arrow_span = this.prev_token.span;
3298                let arm_start_span = this.token.span;
3299
3300                let attrs = this.parse_outer_attributes()?;
3301                let (expr, _) =
3302                    this.parse_expr_res(Restrictions::STMT_EXPR, attrs).map_err(|mut err| {
3303                        err.span_label(arrow_span, "while parsing the `match` arm starting here");
3304                        err
3305                    })?;
3306
3307                let require_comma =
3308                    !classify::expr_is_complete(&expr) && this.token != token::CloseBrace;
3309
3310                if !require_comma {
3311                    arm_body = Some(expr);
3312                    // Eat a comma if it exists, though.
3313                    let _ = this.eat(exp!(Comma));
3314                    Ok(Recovered::No)
3315                } else if let Some((span, guar)) =
3316                    this.parse_arm_body_missing_braces(&expr, arrow_span)
3317                {
3318                    let body = this.mk_expr_err(span, guar);
3319                    arm_body = Some(body);
3320                    Ok(Recovered::Yes(guar))
3321                } else {
3322                    let expr_span = expr.span;
3323                    arm_body = Some(expr);
3324                    this.expect_one_of(&[exp!(Comma)], &[exp!(CloseBrace)]).map_err(|mut err| {
3325                        if this.token == token::FatArrow {
3326                            let sm = this.psess.source_map();
3327                            if let Ok(expr_lines) = sm.span_to_lines(expr_span)
3328                                && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span)
3329                                && expr_lines.lines.len() == 2
3330                            {
3331                                if arm_start_lines.lines[0].end_col == expr_lines.lines[0].end_col {
3332                                    // We check whether there's any trailing code in the parse span,
3333                                    // if there isn't, we very likely have the following:
3334                                    //
3335                                    // X |     &Y => "y"
3336                                    //   |        --    - missing comma
3337                                    //   |        |
3338                                    //   |        arrow_span
3339                                    // X |     &X => "x"
3340                                    //   |      - ^^ self.token.span
3341                                    //   |      |
3342                                    //   |      parsed until here as `"y" & X`
3343                                    err.span_suggestion_short(
3344                                        arm_start_span.shrink_to_hi(),
3345                                        "missing a comma here to end this `match` arm",
3346                                        ",",
3347                                        Applicability::MachineApplicable,
3348                                    );
3349                                } else if arm_start_lines.lines[0].end_col + rustc_span::CharPos(1)
3350                                    == expr_lines.lines[0].end_col
3351                                {
3352                                    // similar to the above, but we may typo a `.` or `/` at the end of the line
3353                                    let comma_span = arm_start_span
3354                                        .shrink_to_hi()
3355                                        .with_hi(arm_start_span.hi() + rustc_span::BytePos(1));
3356                                    if let Ok(res) = sm.span_to_snippet(comma_span)
3357                                        && (res == "." || res == "/")
3358                                    {
3359                                        err.span_suggestion_short(
3360                                            comma_span,
3361                                            "you might have meant to write a `,` to end this `match` arm",
3362                                            ",",
3363                                            Applicability::MachineApplicable,
3364                                        );
3365                                    }
3366                                }
3367                            }
3368                        } else {
3369                            err.span_label(
3370                                arrow_span,
3371                                "while parsing the `match` arm starting here",
3372                            );
3373                        }
3374                        err
3375                    })
3376                }
3377            };
3378
3379            let hi_span = arm_body.as_ref().map_or(span_before_body, |body| body.span);
3380            let arm_span = lo.to(hi_span);
3381
3382            // We want to recover:
3383            // X |     Some(_) => foo()
3384            //   |                     - missing comma
3385            // X |     None => "x"
3386            //   |     ^^^^ self.token.span
3387            // as well as:
3388            // X |     Some(!)
3389            //   |            - missing comma
3390            // X |     None => "x"
3391            //   |     ^^^^ self.token.span
3392            // But we musn't recover
3393            // X |     pat[0] => {}
3394            //   |        ^ self.token.span
3395            let recover_missing_comma = arm_body.is_some() || pat.could_be_never_pattern();
3396            if recover_missing_comma {
3397                result = result.or_else(|err| {
3398                    // FIXME(compiler-errors): We could also recover `; PAT =>` here
3399
3400                    // Try to parse a following `PAT =>`, if successful
3401                    // then we should recover.
3402                    let mut snapshot = this.create_snapshot_for_diagnostic();
3403                    let pattern_follows = snapshot
3404                        .parse_pat_no_top_guard(
3405                            None,
3406                            RecoverComma::Yes,
3407                            RecoverColon::Yes,
3408                            CommaRecoveryMode::EitherTupleOrPipe,
3409                        )
3410                        .map_err(|err| err.cancel())
3411                        .is_ok();
3412                    if pattern_follows && snapshot.check(exp!(FatArrow)) {
3413                        err.cancel();
3414                        let guar = this.dcx().emit_err(errors::MissingCommaAfterMatchArm {
3415                            span: arm_span.shrink_to_hi(),
3416                        });
3417                        return Ok(Recovered::Yes(guar));
3418                    }
3419                    Err(err)
3420                });
3421            }
3422            result?;
3423
3424            Ok((
3425                ast::Arm {
3426                    attrs,
3427                    pat,
3428                    guard,
3429                    body: arm_body,
3430                    span: arm_span,
3431                    id: DUMMY_NODE_ID,
3432                    is_placeholder: false,
3433                },
3434                Trailing::No,
3435                UsePreAttrPos::No,
3436            ))
3437        })
3438    }
3439
3440    fn parse_match_arm_guard(&mut self) -> PResult<'a, Option<Box<Expr>>> {
3441        // Used to check the `if_let_guard` feature mostly by scanning
3442        // `&&` tokens.
3443        fn has_let_expr(expr: &Expr) -> bool {
3444            match &expr.kind {
3445                ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => {
3446                    let lhs_rslt = has_let_expr(lhs);
3447                    let rhs_rslt = has_let_expr(rhs);
3448                    lhs_rslt || rhs_rslt
3449                }
3450                ExprKind::Let(..) => true,
3451                _ => false,
3452            }
3453        }
3454        if !self.eat_keyword(exp!(If)) {
3455            // No match arm guard present.
3456            return Ok(None);
3457        }
3458
3459        let if_span = self.prev_token.span;
3460        let mut cond = self.parse_match_guard_condition()?;
3461
3462        CondChecker::new(self, LetChainsPolicy::AlwaysAllowed).visit_expr(&mut cond);
3463
3464        if has_let_expr(&cond) {
3465            let span = if_span.to(cond.span);
3466            self.psess.gated_spans.gate(sym::if_let_guard, span);
3467        }
3468        Ok(Some(cond))
3469    }
3470
3471    fn parse_match_arm_pat_and_guard(&mut self) -> PResult<'a, (Box<Pat>, Option<Box<Expr>>)> {
3472        if self.token == token::OpenParen {
3473            let left = self.token.span;
3474            let pat = self.parse_pat_no_top_guard(
3475                None,
3476                RecoverComma::Yes,
3477                RecoverColon::Yes,
3478                CommaRecoveryMode::EitherTupleOrPipe,
3479            )?;
3480            if let ast::PatKind::Paren(subpat) = &pat.kind
3481                && let ast::PatKind::Guard(..) = &subpat.kind
3482            {
3483                // Detect and recover from `($pat if $cond) => $arm`.
3484                // FIXME(guard_patterns): convert this to a normal guard instead
3485                let span = pat.span;
3486                let ast::PatKind::Paren(subpat) = pat.kind else { unreachable!() };
3487                let ast::PatKind::Guard(_, mut cond) = subpat.kind else { unreachable!() };
3488                self.psess.gated_spans.ungate_last(sym::guard_patterns, cond.span);
3489                CondChecker::new(self, LetChainsPolicy::AlwaysAllowed).visit_expr(&mut cond);
3490                let right = self.prev_token.span;
3491                self.dcx().emit_err(errors::ParenthesesInMatchPat {
3492                    span: vec![left, right],
3493                    sugg: errors::ParenthesesInMatchPatSugg { left, right },
3494                });
3495                Ok((self.mk_pat(span, ast::PatKind::Wild), Some(cond)))
3496            } else {
3497                Ok((pat, self.parse_match_arm_guard()?))
3498            }
3499        } else {
3500            // Regular parser flow:
3501            let pat = self.parse_pat_no_top_guard(
3502                None,
3503                RecoverComma::Yes,
3504                RecoverColon::Yes,
3505                CommaRecoveryMode::EitherTupleOrPipe,
3506            )?;
3507            Ok((pat, self.parse_match_arm_guard()?))
3508        }
3509    }
3510
3511    fn parse_match_guard_condition(&mut self) -> PResult<'a, Box<Expr>> {
3512        let attrs = self.parse_outer_attributes()?;
3513        match self.parse_expr_res(Restrictions::ALLOW_LET | Restrictions::IN_IF_GUARD, attrs) {
3514            Ok((expr, _)) => Ok(expr),
3515            Err(mut err) => {
3516                if self.prev_token == token::OpenBrace {
3517                    let sugg_sp = self.prev_token.span.shrink_to_lo();
3518                    // Consume everything within the braces, let's avoid further parse
3519                    // errors.
3520                    self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore);
3521                    let msg = "you might have meant to start a match arm after the match guard";
3522                    if self.eat(exp!(CloseBrace)) {
3523                        let applicability = if self.token != token::FatArrow {
3524                            // We have high confidence that we indeed didn't have a struct
3525                            // literal in the match guard, but rather we had some operation
3526                            // that ended in a path, immediately followed by a block that was
3527                            // meant to be the match arm.
3528                            Applicability::MachineApplicable
3529                        } else {
3530                            Applicability::MaybeIncorrect
3531                        };
3532                        err.span_suggestion_verbose(sugg_sp, msg, "=> ", applicability);
3533                    }
3534                }
3535                Err(err)
3536            }
3537        }
3538    }
3539
3540    pub(crate) fn is_builtin(&self) -> bool {
3541        self.token.is_keyword(kw::Builtin) && self.look_ahead(1, |t| *t == token::Pound)
3542    }
3543
3544    /// Parses a `try {...}` expression (`try` token already eaten).
3545    fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, Box<Expr>> {
3546        let (attrs, body) = self.parse_inner_attrs_and_block(None)?;
3547        if self.eat_keyword(exp!(Catch)) {
3548            Err(self.dcx().create_err(errors::CatchAfterTry { span: self.prev_token.span }))
3549        } else {
3550            let span = span_lo.to(body.span);
3551            self.psess.gated_spans.gate(sym::try_blocks, span);
3552            Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs))
3553        }
3554    }
3555
3556    fn is_do_catch_block(&self) -> bool {
3557        self.token.is_keyword(kw::Do)
3558            && self.is_keyword_ahead(1, &[kw::Catch])
3559            && self.look_ahead(2, |t| *t == token::OpenBrace || t.is_metavar_block())
3560            && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL)
3561    }
3562
3563    fn is_do_yeet(&self) -> bool {
3564        self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet])
3565    }
3566
3567    fn is_try_block(&self) -> bool {
3568        self.token.is_keyword(kw::Try)
3569            && self.look_ahead(1, |t| *t == token::OpenBrace || t.is_metavar_block())
3570            && self.token_uninterpolated_span().at_least_rust_2018()
3571    }
3572
3573    /// Parses an `async move? {...}` or `gen move? {...}` expression.
3574    fn parse_gen_block(&mut self) -> PResult<'a, Box<Expr>> {
3575        let lo = self.token.span;
3576        let kind = if self.eat_keyword(exp!(Async)) {
3577            if self.eat_keyword(exp!(Gen)) { GenBlockKind::AsyncGen } else { GenBlockKind::Async }
3578        } else {
3579            assert!(self.eat_keyword(exp!(Gen)));
3580            GenBlockKind::Gen
3581        };
3582        match kind {
3583            GenBlockKind::Async => {
3584                // `async` blocks are stable
3585            }
3586            GenBlockKind::Gen | GenBlockKind::AsyncGen => {
3587                self.psess.gated_spans.gate(sym::gen_blocks, lo.to(self.prev_token.span));
3588            }
3589        }
3590        let capture_clause = self.parse_capture_clause()?;
3591        let decl_span = lo.to(self.prev_token.span);
3592        let (attrs, body) = self.parse_inner_attrs_and_block(None)?;
3593        let kind = ExprKind::Gen(capture_clause, body, kind, decl_span);
3594        Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs))
3595    }
3596
3597    fn is_gen_block(&self, kw: Symbol, lookahead: usize) -> bool {
3598        self.is_keyword_ahead(lookahead, &[kw])
3599            && ((
3600                // `async move {`
3601                self.is_keyword_ahead(lookahead + 1, &[kw::Move, kw::Use])
3602                    && self.look_ahead(lookahead + 2, |t| {
3603                        *t == token::OpenBrace || t.is_metavar_block()
3604                    })
3605            ) || (
3606                // `async {`
3607                self.look_ahead(lookahead + 1, |t| *t == token::OpenBrace || t.is_metavar_block())
3608            ))
3609    }
3610
3611    pub(super) fn is_async_gen_block(&self) -> bool {
3612        self.token.is_keyword(kw::Async) && self.is_gen_block(kw::Gen, 1)
3613    }
3614
3615    fn is_certainly_not_a_block(&self) -> bool {
3616        // `{ ident, ` and `{ ident: ` cannot start a block.
3617        self.look_ahead(1, |t| t.is_ident())
3618            && self.look_ahead(2, |t| t == &token::Comma || t == &token::Colon)
3619    }
3620
3621    fn maybe_parse_struct_expr(
3622        &mut self,
3623        qself: &Option<Box<ast::QSelf>>,
3624        path: &ast::Path,
3625    ) -> Option<PResult<'a, Box<Expr>>> {
3626        let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
3627        if struct_allowed || self.is_certainly_not_a_block() {
3628            if let Err(err) = self.expect(exp!(OpenBrace)) {
3629                return Some(Err(err));
3630            }
3631            let expr = self.parse_expr_struct(qself.clone(), path.clone(), true);
3632            if let (Ok(expr), false) = (&expr, struct_allowed) {
3633                // This is a struct literal, but we don't can't accept them here.
3634                self.dcx().emit_err(errors::StructLiteralNotAllowedHere {
3635                    span: expr.span,
3636                    sub: errors::StructLiteralNotAllowedHereSugg {
3637                        left: path.span.shrink_to_lo(),
3638                        right: expr.span.shrink_to_hi(),
3639                    },
3640                });
3641            }
3642            return Some(expr);
3643        }
3644        None
3645    }
3646
3647    pub(super) fn parse_struct_fields(
3648        &mut self,
3649        pth: ast::Path,
3650        recover: bool,
3651        close: ExpTokenPair,
3652    ) -> PResult<
3653        'a,
3654        (
3655            ThinVec<ExprField>,
3656            ast::StructRest,
3657            Option<ErrorGuaranteed>, /* async blocks are forbidden in Rust 2015 */
3658        ),
3659    > {
3660        let mut fields = ThinVec::new();
3661        let mut base = ast::StructRest::None;
3662        let mut recovered_async = None;
3663        let in_if_guard = self.restrictions.contains(Restrictions::IN_IF_GUARD);
3664
3665        let async_block_err = |e: &mut Diag<'_>, span: Span| {
3666            errors::AsyncBlockIn2015 { span }.add_to_diag(e);
3667            errors::HelpUseLatestEdition::new().add_to_diag(e);
3668        };
3669
3670        while self.token != close.tok {
3671            if self.eat(exp!(DotDot)) || self.recover_struct_field_dots(&close.tok) {
3672                let exp_span = self.prev_token.span;
3673                // We permit `.. }` on the left-hand side of a destructuring assignment.
3674                if self.check(close) {
3675                    base = ast::StructRest::Rest(self.prev_token.span);
3676                    break;
3677                }
3678                match self.parse_expr() {
3679                    Ok(e) => base = ast::StructRest::Base(e),
3680                    Err(e) if recover => {
3681                        e.emit();
3682                        self.recover_stmt();
3683                    }
3684                    Err(e) => return Err(e),
3685                }
3686                self.recover_struct_comma_after_dotdot(exp_span);
3687                break;
3688            }
3689
3690            // Peek the field's ident before parsing its expr in order to emit better diagnostics.
3691            let peek = self
3692                .token
3693                .ident()
3694                .filter(|(ident, is_raw)| {
3695                    (!ident.is_reserved() || matches!(is_raw, IdentIsRaw::Yes))
3696                        && self.look_ahead(1, |tok| *tok == token::Colon)
3697                })
3698                .map(|(ident, _)| ident);
3699
3700            // We still want a field even if its expr didn't parse.
3701            let field_ident = |this: &Self, guar: ErrorGuaranteed| {
3702                peek.map(|ident| {
3703                    let span = ident.span;
3704                    ExprField {
3705                        ident,
3706                        span,
3707                        expr: this.mk_expr_err(span, guar),
3708                        is_shorthand: false,
3709                        attrs: AttrVec::new(),
3710                        id: DUMMY_NODE_ID,
3711                        is_placeholder: false,
3712                    }
3713                })
3714            };
3715
3716            let parsed_field = match self.parse_expr_field() {
3717                Ok(f) => Ok(f),
3718                Err(mut e) => {
3719                    if pth == kw::Async {
3720                        async_block_err(&mut e, pth.span);
3721                    } else {
3722                        e.span_label(pth.span, "while parsing this struct");
3723                    }
3724
3725                    if let Some((ident, _)) = self.token.ident()
3726                        && !self.token.is_reserved_ident()
3727                        && self.look_ahead(1, |t| {
3728                            AssocOp::from_token(t).is_some()
3729                                || matches!(
3730                                    t.kind,
3731                                    token::OpenParen | token::OpenBracket | token::OpenBrace
3732                                )
3733                                || *t == token::Dot
3734                        })
3735                    {
3736                        // Looks like they tried to write a shorthand, complex expression,
3737                        // E.g.: `n + m`, `f(a)`, `a[i]`, `S { x: 3 }`, or `x.y`.
3738                        e.span_suggestion_verbose(
3739                            self.token.span.shrink_to_lo(),
3740                            "try naming a field",
3741                            &format!("{ident}: ",),
3742                            Applicability::MaybeIncorrect,
3743                        );
3744                    }
3745                    if in_if_guard && close.token_type == TokenType::CloseBrace {
3746                        return Err(e);
3747                    }
3748
3749                    if !recover {
3750                        return Err(e);
3751                    }
3752
3753                    let guar = e.emit();
3754                    if pth == kw::Async {
3755                        recovered_async = Some(guar);
3756                    }
3757
3758                    // If the next token is a comma, then try to parse
3759                    // what comes next as additional fields, rather than
3760                    // bailing out until next `}`.
3761                    if self.token != token::Comma {
3762                        self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3763                        if self.token != token::Comma {
3764                            break;
3765                        }
3766                    }
3767
3768                    Err(guar)
3769                }
3770            };
3771
3772            let is_shorthand = parsed_field.as_ref().is_ok_and(|f| f.is_shorthand);
3773            // A shorthand field can be turned into a full field with `:`.
3774            // We should point this out.
3775            self.check_or_expected(!is_shorthand, TokenType::Colon);
3776
3777            match self.expect_one_of(&[exp!(Comma)], &[close]) {
3778                Ok(_) => {
3779                    if let Ok(f) = parsed_field.or_else(|guar| field_ident(self, guar).ok_or(guar))
3780                    {
3781                        // Only include the field if there's no parse error for the field name.
3782                        fields.push(f);
3783                    }
3784                }
3785                Err(mut e) => {
3786                    if pth == kw::Async {
3787                        async_block_err(&mut e, pth.span);
3788                    } else {
3789                        e.span_label(pth.span, "while parsing this struct");
3790                        if peek.is_some() {
3791                            e.span_suggestion(
3792                                self.prev_token.span.shrink_to_hi(),
3793                                "try adding a comma",
3794                                ",",
3795                                Applicability::MachineApplicable,
3796                            );
3797                        }
3798                    }
3799                    if !recover {
3800                        return Err(e);
3801                    }
3802                    let guar = e.emit();
3803                    if pth == kw::Async {
3804                        recovered_async = Some(guar);
3805                    } else if let Some(f) = field_ident(self, guar) {
3806                        fields.push(f);
3807                    }
3808                    self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore);
3809                    let _ = self.eat(exp!(Comma));
3810                }
3811            }
3812        }
3813        Ok((fields, base, recovered_async))
3814    }
3815
3816    /// Precondition: already parsed the '{'.
3817    pub(super) fn parse_expr_struct(
3818        &mut self,
3819        qself: Option<Box<ast::QSelf>>,
3820        pth: ast::Path,
3821        recover: bool,
3822    ) -> PResult<'a, Box<Expr>> {
3823        let lo = pth.span;
3824        let (fields, base, recovered_async) =
3825            self.parse_struct_fields(pth.clone(), recover, exp!(CloseBrace))?;
3826        let span = lo.to(self.token.span);
3827        self.expect(exp!(CloseBrace))?;
3828        let expr = if let Some(guar) = recovered_async {
3829            ExprKind::Err(guar)
3830        } else {
3831            ExprKind::Struct(Box::new(ast::StructExpr { qself, path: pth, fields, rest: base }))
3832        };
3833        Ok(self.mk_expr(span, expr))
3834    }
3835
3836    fn recover_struct_comma_after_dotdot(&mut self, span: Span) {
3837        if self.token != token::Comma {
3838            return;
3839        }
3840        self.dcx().emit_err(errors::CommaAfterBaseStruct {
3841            span: span.to(self.prev_token.span),
3842            comma: self.token.span,
3843        });
3844        self.recover_stmt();
3845    }
3846
3847    fn recover_struct_field_dots(&mut self, close: &TokenKind) -> bool {
3848        if !self.look_ahead(1, |t| t == close) && self.eat(exp!(DotDotDot)) {
3849            // recover from typo of `...`, suggest `..`
3850            let span = self.prev_token.span;
3851            self.dcx().emit_err(errors::MissingDotDot { token_span: span, sugg_span: span });
3852            return true;
3853        }
3854        false
3855    }
3856
3857    /// Converts an ident into 'label and emits an "expected a label, found an identifier" error.
3858    fn recover_ident_into_label(&mut self, ident: Ident) -> Label {
3859        // Convert `label` -> `'label`,
3860        // so that nameres doesn't complain about non-existing label
3861        let label = format!("'{}", ident.name);
3862        let ident = Ident::new(Symbol::intern(&label), ident.span);
3863
3864        self.dcx().emit_err(errors::ExpectedLabelFoundIdent {
3865            span: ident.span,
3866            start: ident.span.shrink_to_lo(),
3867        });
3868
3869        Label { ident }
3870    }
3871
3872    /// Parses `ident (COLON expr)?`.
3873    fn parse_expr_field(&mut self) -> PResult<'a, ExprField> {
3874        let attrs = self.parse_outer_attributes()?;
3875        self.recover_vcs_conflict_marker();
3876        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
3877            let lo = this.token.span;
3878
3879            // Check if a colon exists one ahead. This means we're parsing a fieldname.
3880            let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq);
3881            // Proactively check whether parsing the field will be incorrect.
3882            let is_wrong = this.token.is_non_reserved_ident()
3883                && !this.look_ahead(1, |t| {
3884                    t == &token::Colon
3885                        || t == &token::Eq
3886                        || t == &token::Comma
3887                        || t == &token::CloseBrace
3888                        || t == &token::CloseParen
3889                });
3890            if is_wrong {
3891                return Err(this.dcx().create_err(errors::ExpectedStructField {
3892                    span: this.look_ahead(1, |t| t.span),
3893                    ident_span: this.token.span,
3894                    token: this.look_ahead(1, |t| *t),
3895                }));
3896            }
3897            let (ident, expr) = if is_shorthand {
3898                // Mimic `x: x` for the `x` field shorthand.
3899                let ident = this.parse_ident_common(false)?;
3900                let path = ast::Path::from_ident(ident);
3901                (ident, this.mk_expr(ident.span, ExprKind::Path(None, path)))
3902            } else {
3903                let ident = this.parse_field_name()?;
3904                this.error_on_eq_field_init(ident);
3905                this.bump(); // `:`
3906                (ident, this.parse_expr()?)
3907            };
3908
3909            Ok((
3910                ast::ExprField {
3911                    ident,
3912                    span: lo.to(expr.span),
3913                    expr,
3914                    is_shorthand,
3915                    attrs,
3916                    id: DUMMY_NODE_ID,
3917                    is_placeholder: false,
3918                },
3919                Trailing::from(this.token == token::Comma),
3920                UsePreAttrPos::No,
3921            ))
3922        })
3923    }
3924
3925    /// Check for `=`. This means the source incorrectly attempts to
3926    /// initialize a field with an eq rather than a colon.
3927    fn error_on_eq_field_init(&self, field_name: Ident) {
3928        if self.token != token::Eq {
3929            return;
3930        }
3931
3932        self.dcx().emit_err(errors::EqFieldInit {
3933            span: self.token.span,
3934            eq: field_name.span.shrink_to_hi().to(self.token.span),
3935        });
3936    }
3937
3938    fn err_dotdotdot_syntax(&self, span: Span) {
3939        self.dcx().emit_err(errors::DotDotDot { span });
3940    }
3941
3942    fn err_larrow_operator(&self, span: Span) {
3943        self.dcx().emit_err(errors::LeftArrowOperator { span });
3944    }
3945
3946    fn mk_assign_op(&self, assign_op: AssignOp, lhs: Box<Expr>, rhs: Box<Expr>) -> ExprKind {
3947        ExprKind::AssignOp(assign_op, lhs, rhs)
3948    }
3949
3950    fn mk_range(
3951        &mut self,
3952        start: Option<Box<Expr>>,
3953        end: Option<Box<Expr>>,
3954        limits: RangeLimits,
3955    ) -> ExprKind {
3956        if end.is_none() && limits == RangeLimits::Closed {
3957            let guar = self.inclusive_range_with_incorrect_end();
3958            ExprKind::Err(guar)
3959        } else {
3960            ExprKind::Range(start, end, limits)
3961        }
3962    }
3963
3964    fn mk_unary(&self, unop: UnOp, expr: Box<Expr>) -> ExprKind {
3965        ExprKind::Unary(unop, expr)
3966    }
3967
3968    fn mk_binary(&self, binop: BinOp, lhs: Box<Expr>, rhs: Box<Expr>) -> ExprKind {
3969        ExprKind::Binary(binop, lhs, rhs)
3970    }
3971
3972    fn mk_index(&self, expr: Box<Expr>, idx: Box<Expr>, brackets_span: Span) -> ExprKind {
3973        ExprKind::Index(expr, idx, brackets_span)
3974    }
3975
3976    fn mk_call(&self, f: Box<Expr>, args: ThinVec<Box<Expr>>) -> ExprKind {
3977        ExprKind::Call(f, args)
3978    }
3979
3980    fn mk_await_expr(&mut self, self_arg: Box<Expr>, lo: Span) -> Box<Expr> {
3981        let span = lo.to(self.prev_token.span);
3982        let await_expr = self.mk_expr(span, ExprKind::Await(self_arg, self.prev_token.span));
3983        self.recover_from_await_method_call();
3984        await_expr
3985    }
3986
3987    fn mk_use_expr(&mut self, self_arg: Box<Expr>, lo: Span) -> Box<Expr> {
3988        let span = lo.to(self.prev_token.span);
3989        let use_expr = self.mk_expr(span, ExprKind::Use(self_arg, self.prev_token.span));
3990        self.recover_from_use();
3991        use_expr
3992    }
3993
3994    pub(crate) fn mk_expr_with_attrs(
3995        &self,
3996        span: Span,
3997        kind: ExprKind,
3998        attrs: AttrVec,
3999    ) -> Box<Expr> {
4000        Box::new(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None })
4001    }
4002
4003    pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> Box<Expr> {
4004        self.mk_expr_with_attrs(span, kind, AttrVec::new())
4005    }
4006
4007    pub(super) fn mk_expr_err(&self, span: Span, guar: ErrorGuaranteed) -> Box<Expr> {
4008        self.mk_expr(span, ExprKind::Err(guar))
4009    }
4010
4011    /// Create expression span ensuring the span of the parent node
4012    /// is larger than the span of lhs and rhs, including the attributes.
4013    fn mk_expr_sp(&self, lhs: &Box<Expr>, lhs_span: Span, op_span: Span, rhs_span: Span) -> Span {
4014        lhs.attrs
4015            .iter()
4016            .find(|a| a.style == AttrStyle::Outer)
4017            .map_or(lhs_span, |a| a.span)
4018            .to(op_span)
4019            .to(rhs_span)
4020    }
4021
4022    fn collect_tokens_for_expr(
4023        &mut self,
4024        attrs: AttrWrapper,
4025        f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, Box<Expr>>,
4026    ) -> PResult<'a, Box<Expr>> {
4027        self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| {
4028            let res = f(this, attrs)?;
4029            let trailing = Trailing::from(
4030                this.restrictions.contains(Restrictions::STMT_EXPR)
4031                     && this.token == token::Semi
4032                // FIXME: pass an additional condition through from the place
4033                // where we know we need a comma, rather than assuming that
4034                // `#[attr] expr,` always captures a trailing comma.
4035                || this.token == token::Comma,
4036            );
4037            Ok((res, trailing, UsePreAttrPos::No))
4038        })
4039    }
4040}
4041
4042/// Could this lifetime/label be an unclosed char literal? For example, `'a`
4043/// could be, but `'abc` could not.
4044pub(crate) fn could_be_unclosed_char_literal(ident: Ident) -> bool {
4045    ident.name.as_str().starts_with('\'')
4046        && unescape_char(ident.without_first_quote().name.as_str()).is_ok()
4047}
4048
4049/// Used to forbid `let` expressions in certain syntactic locations.
4050#[derive(Clone, Copy, Subdiagnostic)]
4051pub(crate) enum ForbiddenLetReason {
4052    /// `let` is not valid and the source environment is not important
4053    OtherForbidden,
4054    /// A let chain with the `||` operator
4055    #[note(parse_not_supported_or)]
4056    NotSupportedOr(#[primary_span] Span),
4057    /// A let chain with invalid parentheses
4058    ///
4059    /// For example, `let 1 = 1 && (expr && expr)` is allowed
4060    /// but `(let 1 = 1 && (let 1 = 1 && (let 1 = 1))) && let a = 1` is not
4061    #[note(parse_not_supported_parentheses)]
4062    NotSupportedParentheses(#[primary_span] Span),
4063}
4064
4065/// Whether let chains are allowed on all editions, or it's edition dependent (allowed only on
4066/// 2024 and later). In case of edition dependence, specify the currently present edition.
4067pub enum LetChainsPolicy {
4068    AlwaysAllowed,
4069    EditionDependent { current_edition: Edition },
4070}
4071
4072/// Visitor to check for invalid use of `ExprKind::Let` that can't
4073/// easily be caught in parsing. For example:
4074///
4075/// ```rust,ignore (example)
4076/// // Only know that the let isn't allowed once the `||` token is reached
4077/// if let Some(x) = y || true {}
4078/// // Only know that the let isn't allowed once the second `=` token is reached.
4079/// if let Some(x) = y && z = 1 {}
4080/// ```
4081struct CondChecker<'a> {
4082    parser: &'a Parser<'a>,
4083    let_chains_policy: LetChainsPolicy,
4084    depth: u32,
4085    forbid_let_reason: Option<ForbiddenLetReason>,
4086    missing_let: Option<errors::MaybeMissingLet>,
4087    comparison: Option<errors::MaybeComparison>,
4088}
4089
4090impl<'a> CondChecker<'a> {
4091    fn new(parser: &'a Parser<'a>, let_chains_policy: LetChainsPolicy) -> Self {
4092        CondChecker {
4093            parser,
4094            forbid_let_reason: None,
4095            missing_let: None,
4096            comparison: None,
4097            let_chains_policy,
4098            depth: 0,
4099        }
4100    }
4101}
4102
4103impl MutVisitor for CondChecker<'_> {
4104    fn visit_expr(&mut self, e: &mut Expr) {
4105        self.depth += 1;
4106        use ForbiddenLetReason::*;
4107
4108        let span = e.span;
4109        match e.kind {
4110            ExprKind::Let(_, _, _, ref mut recovered @ Recovered::No) => {
4111                if let Some(reason) = self.forbid_let_reason {
4112                    let error = match reason {
4113                        NotSupportedOr(or_span) => {
4114                            self.parser.dcx().emit_err(errors::OrInLetChain { span: or_span })
4115                        }
4116                        _ => self.parser.dcx().emit_err(errors::ExpectedExpressionFoundLet {
4117                            span,
4118                            reason,
4119                            missing_let: self.missing_let,
4120                            comparison: self.comparison,
4121                        }),
4122                    };
4123                    *recovered = Recovered::Yes(error);
4124                } else if self.depth > 1 {
4125                    // Top level `let` is always allowed; only gate chains
4126                    match self.let_chains_policy {
4127                        LetChainsPolicy::AlwaysAllowed => (),
4128                        LetChainsPolicy::EditionDependent { current_edition } => {
4129                            if !current_edition.at_least_rust_2024() || !span.at_least_rust_2024() {
4130                                self.parser.dcx().emit_err(errors::LetChainPre2024 { span });
4131                            }
4132                        }
4133                    }
4134                }
4135            }
4136            ExprKind::Binary(Spanned { node: BinOpKind::And, .. }, _, _) => {
4137                mut_visit::walk_expr(self, e);
4138            }
4139            ExprKind::Binary(Spanned { node: BinOpKind::Or, span: or_span }, _, _)
4140                if let None | Some(NotSupportedOr(_)) = self.forbid_let_reason =>
4141            {
4142                let forbid_let_reason = self.forbid_let_reason;
4143                self.forbid_let_reason = Some(NotSupportedOr(or_span));
4144                mut_visit::walk_expr(self, e);
4145                self.forbid_let_reason = forbid_let_reason;
4146            }
4147            ExprKind::Paren(ref inner)
4148                if let None | Some(NotSupportedParentheses(_)) = self.forbid_let_reason =>
4149            {
4150                let forbid_let_reason = self.forbid_let_reason;
4151                self.forbid_let_reason = Some(NotSupportedParentheses(inner.span));
4152                mut_visit::walk_expr(self, e);
4153                self.forbid_let_reason = forbid_let_reason;
4154            }
4155            ExprKind::Assign(ref lhs, _, span) => {
4156                let forbid_let_reason = self.forbid_let_reason;
4157                self.forbid_let_reason = Some(OtherForbidden);
4158                let missing_let = self.missing_let;
4159                if let ExprKind::Binary(_, _, rhs) = &lhs.kind
4160                    && let ExprKind::Path(_, _)
4161                    | ExprKind::Struct(_)
4162                    | ExprKind::Call(_, _)
4163                    | ExprKind::Array(_) = rhs.kind
4164                {
4165                    self.missing_let =
4166                        Some(errors::MaybeMissingLet { span: rhs.span.shrink_to_lo() });
4167                }
4168                let comparison = self.comparison;
4169                self.comparison = Some(errors::MaybeComparison { span: span.shrink_to_hi() });
4170                mut_visit::walk_expr(self, e);
4171                self.forbid_let_reason = forbid_let_reason;
4172                self.missing_let = missing_let;
4173                self.comparison = comparison;
4174            }
4175            ExprKind::Unary(_, _)
4176            | ExprKind::Await(_, _)
4177            | ExprKind::Use(_, _)
4178            | ExprKind::AssignOp(_, _, _)
4179            | ExprKind::Range(_, _, _)
4180            | ExprKind::Try(_)
4181            | ExprKind::AddrOf(_, _, _)
4182            | ExprKind::Binary(_, _, _)
4183            | ExprKind::Field(_, _)
4184            | ExprKind::Index(_, _, _)
4185            | ExprKind::Call(_, _)
4186            | ExprKind::MethodCall(_)
4187            | ExprKind::Tup(_)
4188            | ExprKind::Paren(_) => {
4189                let forbid_let_reason = self.forbid_let_reason;
4190                self.forbid_let_reason = Some(OtherForbidden);
4191                mut_visit::walk_expr(self, e);
4192                self.forbid_let_reason = forbid_let_reason;
4193            }
4194            ExprKind::Cast(ref mut op, _)
4195            | ExprKind::Type(ref mut op, _)
4196            | ExprKind::UnsafeBinderCast(_, ref mut op, _) => {
4197                let forbid_let_reason = self.forbid_let_reason;
4198                self.forbid_let_reason = Some(OtherForbidden);
4199                self.visit_expr(op);
4200                self.forbid_let_reason = forbid_let_reason;
4201            }
4202            ExprKind::Let(_, _, _, Recovered::Yes(_))
4203            | ExprKind::Array(_)
4204            | ExprKind::ConstBlock(_)
4205            | ExprKind::Lit(_)
4206            | ExprKind::If(_, _, _)
4207            | ExprKind::While(_, _, _)
4208            | ExprKind::ForLoop { .. }
4209            | ExprKind::Loop(_, _, _)
4210            | ExprKind::Match(_, _, _)
4211            | ExprKind::Closure(_)
4212            | ExprKind::Block(_, _)
4213            | ExprKind::Gen(_, _, _, _)
4214            | ExprKind::TryBlock(_)
4215            | ExprKind::Underscore
4216            | ExprKind::Path(_, _)
4217            | ExprKind::Break(_, _)
4218            | ExprKind::Continue(_)
4219            | ExprKind::Ret(_)
4220            | ExprKind::InlineAsm(_)
4221            | ExprKind::OffsetOf(_, _)
4222            | ExprKind::MacCall(_)
4223            | ExprKind::Struct(_)
4224            | ExprKind::Repeat(_, _)
4225            | ExprKind::Yield(_)
4226            | ExprKind::Yeet(_)
4227            | ExprKind::Become(_)
4228            | ExprKind::IncludedBytes(_)
4229            | ExprKind::FormatArgs(_)
4230            | ExprKind::Err(_)
4231            | ExprKind::Dummy => {
4232                // These would forbid any let expressions they contain already.
4233            }
4234        }
4235        self.depth -= 1;
4236    }
4237}