rustc_parse/parser/
mod.rs

1pub mod attr;
2mod attr_wrapper;
3mod diagnostics;
4mod expr;
5mod generics;
6mod item;
7mod nonterminal;
8mod pat;
9mod path;
10mod stmt;
11pub mod token_type;
12mod ty;
13
14// Parsers for non-functionlike builtin macros are defined in rustc_parse so they can be used by
15// both rustc_builtin_macros and rustfmt.
16pub mod asm;
17pub mod cfg_select;
18
19use std::assert_matches::debug_assert_matches;
20use std::{fmt, mem, slice};
21
22use attr_wrapper::{AttrWrapper, UsePreAttrPos};
23pub use diagnostics::AttemptLocalParseRecovery;
24pub(crate) use expr::ForbiddenLetReason;
25// Public to use it for custom `if` expressions in rustfmt forks like https://github.com/tucant/rustfmt
26pub use expr::LetChainsPolicy;
27pub(crate) use item::{FnContext, FnParseMode};
28pub use pat::{CommaRecoveryMode, RecoverColon, RecoverComma};
29pub use path::PathStyle;
30use rustc_ast::token::{
31    self, IdentIsRaw, InvisibleOrigin, MetaVarKind, NtExprKind, NtPatKind, Token, TokenKind,
32};
33use rustc_ast::tokenstream::{
34    ParserRange, ParserReplacement, Spacing, TokenCursor, TokenStream, TokenTree, TokenTreeCursor,
35};
36use rustc_ast::util::case::Case;
37use rustc_ast::{
38    self as ast, AnonConst, AttrArgs, AttrId, ByRef, Const, CoroutineKind, DUMMY_NODE_ID,
39    DelimArgs, Expr, ExprKind, Extern, HasAttrs, HasTokens, Mutability, Recovered, Safety, StrLit,
40    Visibility, VisibilityKind,
41};
42use rustc_ast_pretty::pprust;
43use rustc_data_structures::fx::FxHashMap;
44use rustc_errors::{Applicability, Diag, FatalError, MultiSpan, PResult};
45use rustc_index::interval::IntervalSet;
46use rustc_session::parse::ParseSess;
47use rustc_span::{Ident, Span, Symbol, kw, sym};
48use thin_vec::ThinVec;
49use token_type::TokenTypeSet;
50pub use token_type::{ExpKeywordPair, ExpTokenPair, TokenType};
51use tracing::debug;
52
53use crate::errors::{self, IncorrectVisibilityRestriction, NonStringAbiLiteral};
54use crate::exp;
55
56#[cfg(test)]
57mod tests;
58
59// Ideally, these tests would be in `rustc_ast`. But they depend on having a
60// parser, so they are here.
61#[cfg(test)]
62mod tokenstream {
63    mod tests;
64}
65
66bitflags::bitflags! {
67    /// Restrictions applied while parsing.
68    ///
69    /// The parser maintains a bitset of restrictions it will honor while
70    /// parsing. This is essentially used as a way of tracking state of what
71    /// is being parsed and to change behavior based on that.
72    #[derive(Clone, Copy, Debug)]
73    struct Restrictions: u8 {
74        /// Restricts expressions for use in statement position.
75        ///
76        /// When expressions are used in various places, like statements or
77        /// match arms, this is used to stop parsing once certain tokens are
78        /// reached.
79        ///
80        /// For example, `if true {} & 1` with `STMT_EXPR` in effect is parsed
81        /// as two separate expression statements (`if` and a reference to 1).
82        /// Otherwise it is parsed as a bitwise AND where `if` is on the left
83        /// and 1 is on the right.
84        const STMT_EXPR         = 1 << 0;
85        /// Do not allow struct literals.
86        ///
87        /// There are several places in the grammar where we don't want to
88        /// allow struct literals because they can require lookahead, or
89        /// otherwise could be ambiguous or cause confusion. For example,
90        /// `if Foo {} {}` isn't clear if it is `Foo{}` struct literal, or
91        /// just `Foo` is the condition, followed by a consequent block,
92        /// followed by an empty block.
93        ///
94        /// See [RFC 92](https://rust-lang.github.io/rfcs/0092-struct-grammar.html).
95        const NO_STRUCT_LITERAL = 1 << 1;
96        /// Used to provide better error messages for const generic arguments.
97        ///
98        /// An un-braced const generic argument is limited to a very small
99        /// subset of expressions. This is used to detect the situation where
100        /// an expression outside of that subset is used, and to suggest to
101        /// wrap the expression in braces.
102        const CONST_EXPR        = 1 << 2;
103        /// Allows `let` expressions.
104        ///
105        /// `let pattern = scrutinee` is parsed as an expression, but it is
106        /// only allowed in let chains (`if` and `while` conditions).
107        /// Otherwise it is not an expression (note that `let` in statement
108        /// positions is treated as a `StmtKind::Let` statement, which has a
109        /// slightly different grammar).
110        const ALLOW_LET         = 1 << 3;
111        /// Used to detect a missing `=>` in a match guard.
112        ///
113        /// This is used for error handling in a match guard to give a better
114        /// error message if the `=>` is missing. It is set when parsing the
115        /// guard expression.
116        const IN_IF_GUARD       = 1 << 4;
117        /// Used to detect the incorrect use of expressions in patterns.
118        ///
119        /// This is used for error handling while parsing a pattern. During
120        /// error recovery, this will be set to try to parse the pattern as an
121        /// expression, but halts parsing the expression when reaching certain
122        /// tokens like `=`.
123        const IS_PAT            = 1 << 5;
124    }
125}
126
127#[derive(Clone, Copy, PartialEq, Debug)]
128enum SemiColonMode {
129    Break,
130    Ignore,
131    Comma,
132}
133
134#[derive(Clone, Copy, PartialEq, Debug)]
135enum BlockMode {
136    Break,
137    Ignore,
138}
139
140/// Whether or not we should force collection of tokens for an AST node,
141/// regardless of whether or not it has attributes
142#[derive(Clone, Copy, Debug, PartialEq)]
143pub enum ForceCollect {
144    Yes,
145    No,
146}
147
148/// If the next tokens are ill-formed `$ty::` recover them as `<$ty>::`.
149#[macro_export]
150macro_rules! maybe_recover_from_interpolated_ty_qpath {
151    ($self: expr, $allow_qpath_recovery: expr) => {
152        if $allow_qpath_recovery
153            && $self.may_recover()
154            && let Some(mv_kind) = $self.token.is_metavar_seq()
155            && let token::MetaVarKind::Ty { .. } = mv_kind
156            && $self.check_noexpect_past_close_delim(&token::PathSep)
157        {
158            // Reparse the type, then move to recovery.
159            let ty = $self
160                .eat_metavar_seq(mv_kind, |this| this.parse_ty_no_question_mark_recover())
161                .expect("metavar seq ty");
162
163            return $self.maybe_recover_from_bad_qpath_stage_2($self.prev_token.span, ty);
164        }
165    };
166}
167
168#[derive(Clone, Copy, Debug)]
169pub enum Recovery {
170    Allowed,
171    Forbidden,
172}
173
174#[derive(Clone)]
175pub struct Parser<'a> {
176    pub psess: &'a ParseSess,
177    /// The current token.
178    pub token: Token,
179    /// The spacing for the current token.
180    token_spacing: Spacing,
181    /// The previous token.
182    pub prev_token: Token,
183    pub capture_cfg: bool,
184    restrictions: Restrictions,
185    expected_token_types: TokenTypeSet,
186    token_cursor: TokenCursor,
187    // The number of calls to `bump`, i.e. the position in the token stream.
188    num_bump_calls: u32,
189    // During parsing we may sometimes need to "unglue" a glued token into two
190    // or three component tokens (e.g. `>>` into `>` and `>`, or `>>=` into `>`
191    // and `>` and `=`), so the parser can consume them one at a time. This
192    // process bypasses the normal capturing mechanism (e.g. `num_bump_calls`
193    // will not be incremented), since the "unglued" tokens due not exist in
194    // the original `TokenStream`.
195    //
196    // If we end up consuming all the component tokens, this is not an issue,
197    // because we'll end up capturing the single "glued" token.
198    //
199    // However, sometimes we may want to capture not all of the original
200    // token. For example, capturing the `Vec<u8>` in `Option<Vec<u8>>`
201    // requires us to unglue the trailing `>>` token. The `break_last_token`
202    // field is used to track these tokens. They get appended to the captured
203    // stream when we evaluate a `LazyAttrTokenStream`.
204    //
205    // This value is always 0, 1, or 2. It can only reach 2 when splitting
206    // `>>=` or `<<=`.
207    break_last_token: u32,
208    /// This field is used to keep track of how many left angle brackets we have seen. This is
209    /// required in order to detect extra leading left angle brackets (`<` characters) and error
210    /// appropriately.
211    ///
212    /// See the comments in the `parse_path_segment` function for more details.
213    unmatched_angle_bracket_count: u16,
214    angle_bracket_nesting: u16,
215
216    last_unexpected_token_span: Option<Span>,
217    /// If present, this `Parser` is not parsing Rust code but rather a macro call.
218    subparser_name: Option<&'static str>,
219    capture_state: CaptureState,
220    /// This allows us to recover when the user forget to add braces around
221    /// multiple statements in the closure body.
222    current_closure: Option<ClosureSpans>,
223    /// Whether the parser is allowed to do recovery.
224    /// This is disabled when parsing macro arguments, see #103534
225    recovery: Recovery,
226}
227
228// This type is used a lot, e.g. it's cloned when matching many declarative macro rules with
229// nonterminals. Make sure it doesn't unintentionally get bigger. We only check a few arches
230// though, because `TokenTypeSet(u128)` alignment varies on others, changing the total size.
231#[cfg(all(target_pointer_width = "64", any(target_arch = "aarch64", target_arch = "x86_64")))]
232rustc_data_structures::static_assert_size!(Parser<'_>, 288);
233
234/// Stores span information about a closure.
235#[derive(Clone, Debug)]
236struct ClosureSpans {
237    whole_closure: Span,
238    closing_pipe: Span,
239    body: Span,
240}
241
242/// Controls how we capture tokens. Capturing can be expensive,
243/// so we try to avoid performing capturing in cases where
244/// we will never need an `AttrTokenStream`.
245#[derive(Copy, Clone, Debug)]
246enum Capturing {
247    /// We aren't performing any capturing - this is the default mode.
248    No,
249    /// We are capturing tokens
250    Yes,
251}
252
253// This state is used by `Parser::collect_tokens`.
254#[derive(Clone, Debug)]
255struct CaptureState {
256    capturing: Capturing,
257    parser_replacements: Vec<ParserReplacement>,
258    inner_attr_parser_ranges: FxHashMap<AttrId, ParserRange>,
259    // `IntervalSet` is good for perf because attrs are mostly added to this
260    // set in contiguous ranges.
261    seen_attrs: IntervalSet<AttrId>,
262}
263
264/// A sequence separator.
265#[derive(Debug)]
266struct SeqSep {
267    /// The separator token.
268    sep: Option<ExpTokenPair>,
269    /// `true` if a trailing separator is allowed.
270    trailing_sep_allowed: bool,
271}
272
273impl SeqSep {
274    fn trailing_allowed(sep: ExpTokenPair) -> SeqSep {
275        SeqSep { sep: Some(sep), trailing_sep_allowed: true }
276    }
277
278    fn none() -> SeqSep {
279        SeqSep { sep: None, trailing_sep_allowed: false }
280    }
281}
282
283#[derive(Debug)]
284pub enum FollowedByType {
285    Yes,
286    No,
287}
288
289#[derive(Copy, Clone, Debug)]
290pub enum Trailing {
291    No,
292    Yes,
293}
294
295impl From<bool> for Trailing {
296    fn from(b: bool) -> Trailing {
297        if b { Trailing::Yes } else { Trailing::No }
298    }
299}
300
301#[derive(Clone, Copy, Debug, PartialEq, Eq)]
302pub(super) enum TokenDescription {
303    ReservedIdentifier,
304    Keyword,
305    ReservedKeyword,
306    DocComment,
307
308    // Expanded metavariables are wrapped in invisible delimiters which aren't
309    // pretty-printed. In error messages we must handle these specially
310    // otherwise we get confusing things in messages like "expected `(`, found
311    // ``". It's better to say e.g. "expected `(`, found type metavariable".
312    MetaVar(MetaVarKind),
313}
314
315impl TokenDescription {
316    pub(super) fn from_token(token: &Token) -> Option<Self> {
317        match token.kind {
318            _ if token.is_special_ident() => Some(TokenDescription::ReservedIdentifier),
319            _ if token.is_used_keyword() => Some(TokenDescription::Keyword),
320            _ if token.is_unused_keyword() => Some(TokenDescription::ReservedKeyword),
321            token::DocComment(..) => Some(TokenDescription::DocComment),
322            token::OpenInvisible(InvisibleOrigin::MetaVar(kind)) => {
323                Some(TokenDescription::MetaVar(kind))
324            }
325            _ => None,
326        }
327    }
328}
329
330pub fn token_descr(token: &Token) -> String {
331    let s = pprust::token_to_string(token).to_string();
332
333    match (TokenDescription::from_token(token), &token.kind) {
334        (Some(TokenDescription::ReservedIdentifier), _) => format!("reserved identifier `{s}`"),
335        (Some(TokenDescription::Keyword), _) => format!("keyword `{s}`"),
336        (Some(TokenDescription::ReservedKeyword), _) => format!("reserved keyword `{s}`"),
337        (Some(TokenDescription::DocComment), _) => format!("doc comment `{s}`"),
338        // Deliberately doesn't print `s`, which is empty.
339        (Some(TokenDescription::MetaVar(kind)), _) => format!("`{kind}` metavariable"),
340        (None, TokenKind::NtIdent(..)) => format!("identifier `{s}`"),
341        (None, TokenKind::NtLifetime(..)) => format!("lifetime `{s}`"),
342        (None, _) => format!("`{s}`"),
343    }
344}
345
346impl<'a> Parser<'a> {
347    pub fn new(
348        psess: &'a ParseSess,
349        stream: TokenStream,
350        subparser_name: Option<&'static str>,
351    ) -> Self {
352        let mut parser = Parser {
353            psess,
354            token: Token::dummy(),
355            token_spacing: Spacing::Alone,
356            prev_token: Token::dummy(),
357            capture_cfg: false,
358            restrictions: Restrictions::empty(),
359            expected_token_types: TokenTypeSet::new(),
360            token_cursor: TokenCursor { curr: TokenTreeCursor::new(stream), stack: Vec::new() },
361            num_bump_calls: 0,
362            break_last_token: 0,
363            unmatched_angle_bracket_count: 0,
364            angle_bracket_nesting: 0,
365            last_unexpected_token_span: None,
366            subparser_name,
367            capture_state: CaptureState {
368                capturing: Capturing::No,
369                parser_replacements: Vec::new(),
370                inner_attr_parser_ranges: Default::default(),
371                seen_attrs: IntervalSet::new(u32::MAX as usize),
372            },
373            current_closure: None,
374            recovery: Recovery::Allowed,
375        };
376
377        // Make parser point to the first token.
378        parser.bump();
379
380        // Change this from 1 back to 0 after the bump. This eases debugging of
381        // `Parser::collect_tokens` because 0-indexed token positions are nicer
382        // than 1-indexed token positions.
383        parser.num_bump_calls = 0;
384
385        parser
386    }
387
388    #[inline]
389    pub fn recovery(mut self, recovery: Recovery) -> Self {
390        self.recovery = recovery;
391        self
392    }
393
394    #[inline]
395    fn with_recovery<T>(&mut self, recovery: Recovery, f: impl FnOnce(&mut Self) -> T) -> T {
396        let old = mem::replace(&mut self.recovery, recovery);
397        let res = f(self);
398        self.recovery = old;
399        res
400    }
401
402    /// Whether the parser is allowed to recover from broken code.
403    ///
404    /// If this returns false, recovering broken code into valid code (especially if this recovery does lookahead)
405    /// is not allowed. All recovery done by the parser must be gated behind this check.
406    ///
407    /// Technically, this only needs to restrict eager recovery by doing lookahead at more tokens.
408    /// But making the distinction is very subtle, and simply forbidding all recovery is a lot simpler to uphold.
409    #[inline]
410    fn may_recover(&self) -> bool {
411        matches!(self.recovery, Recovery::Allowed)
412    }
413
414    /// Version of [`unexpected`](Parser::unexpected) that "returns" any type in the `Ok`
415    /// (both those functions never return "Ok", and so can lie like that in the type).
416    pub fn unexpected_any<T>(&mut self) -> PResult<'a, T> {
417        match self.expect_one_of(&[], &[]) {
418            Err(e) => Err(e),
419            // We can get `Ok(true)` from `recover_closing_delimiter`
420            // which is called in `expected_one_of_not_found`.
421            Ok(_) => FatalError.raise(),
422        }
423    }
424
425    pub fn unexpected(&mut self) -> PResult<'a, ()> {
426        self.unexpected_any()
427    }
428
429    /// Expects and consumes the token `t`. Signals an error if the next token is not `t`.
430    pub fn expect(&mut self, exp: ExpTokenPair) -> PResult<'a, Recovered> {
431        if self.expected_token_types.is_empty() {
432            if self.token == exp.tok {
433                self.bump();
434                Ok(Recovered::No)
435            } else {
436                self.unexpected_try_recover(&exp.tok)
437            }
438        } else {
439            self.expect_one_of(slice::from_ref(&exp), &[])
440        }
441    }
442
443    /// Expect next token to be edible or inedible token. If edible,
444    /// then consume it; if inedible, then return without consuming
445    /// anything. Signal a fatal error if next token is unexpected.
446    fn expect_one_of(
447        &mut self,
448        edible: &[ExpTokenPair],
449        inedible: &[ExpTokenPair],
450    ) -> PResult<'a, Recovered> {
451        if edible.iter().any(|exp| exp.tok == self.token.kind) {
452            self.bump();
453            Ok(Recovered::No)
454        } else if inedible.iter().any(|exp| exp.tok == self.token.kind) {
455            // leave it in the input
456            Ok(Recovered::No)
457        } else if self.token != token::Eof
458            && self.last_unexpected_token_span == Some(self.token.span)
459        {
460            FatalError.raise();
461        } else {
462            self.expected_one_of_not_found(edible, inedible)
463                .map(|error_guaranteed| Recovered::Yes(error_guaranteed))
464        }
465    }
466
467    // Public for rustfmt usage.
468    pub fn parse_ident(&mut self) -> PResult<'a, Ident> {
469        self.parse_ident_common(true)
470    }
471
472    fn parse_ident_common(&mut self, recover: bool) -> PResult<'a, Ident> {
473        let (ident, is_raw) = self.ident_or_err(recover)?;
474
475        if matches!(is_raw, IdentIsRaw::No) && ident.is_reserved() {
476            let err = self.expected_ident_found_err();
477            if recover {
478                err.emit();
479            } else {
480                return Err(err);
481            }
482        }
483        self.bump();
484        Ok(ident)
485    }
486
487    fn ident_or_err(&mut self, recover: bool) -> PResult<'a, (Ident, IdentIsRaw)> {
488        match self.token.ident() {
489            Some(ident) => Ok(ident),
490            None => self.expected_ident_found(recover),
491        }
492    }
493
494    /// Checks if the next token is `tok`, and returns `true` if so.
495    ///
496    /// This method will automatically add `tok` to `expected_token_types` if `tok` is not
497    /// encountered.
498    #[inline]
499    pub fn check(&mut self, exp: ExpTokenPair) -> bool {
500        let is_present = self.token == exp.tok;
501        if !is_present {
502            self.expected_token_types.insert(exp.token_type);
503        }
504        is_present
505    }
506
507    #[inline]
508    #[must_use]
509    fn check_noexpect(&self, tok: &TokenKind) -> bool {
510        self.token == *tok
511    }
512
513    // Check the first token after the delimiter that closes the current
514    // delimited sequence. (Panics if used in the outermost token stream, which
515    // has no delimiters.) It uses a clone of the relevant tree cursor to skip
516    // past the entire `TokenTree::Delimited` in a single step, avoiding the
517    // need for unbounded token lookahead.
518    //
519    // Primarily used when `self.token` matches `OpenInvisible(_))`, to look
520    // ahead through the current metavar expansion.
521    fn check_noexpect_past_close_delim(&self, tok: &TokenKind) -> bool {
522        let mut tree_cursor = self.token_cursor.stack.last().unwrap().clone();
523        tree_cursor.bump();
524        matches!(
525            tree_cursor.curr(),
526            Some(TokenTree::Token(token::Token { kind, .. }, _)) if kind == tok
527        )
528    }
529
530    /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
531    ///
532    /// the main purpose of this function is to reduce the cluttering of the suggestions list
533    /// which using the normal eat method could introduce in some cases.
534    #[inline]
535    #[must_use]
536    fn eat_noexpect(&mut self, tok: &TokenKind) -> bool {
537        let is_present = self.check_noexpect(tok);
538        if is_present {
539            self.bump()
540        }
541        is_present
542    }
543
544    /// Consumes a token 'tok' if it exists. Returns whether the given token was present.
545    #[inline]
546    #[must_use]
547    pub fn eat(&mut self, exp: ExpTokenPair) -> bool {
548        let is_present = self.check(exp);
549        if is_present {
550            self.bump()
551        }
552        is_present
553    }
554
555    /// If the next token is the given keyword, returns `true` without eating it.
556    /// An expectation is also added for diagnostics purposes.
557    #[inline]
558    #[must_use]
559    fn check_keyword(&mut self, exp: ExpKeywordPair) -> bool {
560        let is_keyword = self.token.is_keyword(exp.kw);
561        if !is_keyword {
562            self.expected_token_types.insert(exp.token_type);
563        }
564        is_keyword
565    }
566
567    #[inline]
568    #[must_use]
569    fn check_keyword_case(&mut self, exp: ExpKeywordPair, case: Case) -> bool {
570        if self.check_keyword(exp) {
571            true
572        } else if case == Case::Insensitive
573            && let Some((ident, IdentIsRaw::No)) = self.token.ident()
574            // Do an ASCII case-insensitive match, because all keywords are ASCII.
575            && ident.as_str().eq_ignore_ascii_case(exp.kw.as_str())
576        {
577            true
578        } else {
579            false
580        }
581    }
582
583    /// If the next token is the given keyword, eats it and returns `true`.
584    /// Otherwise, returns `false`. An expectation is also added for diagnostics purposes.
585    // Public for rustc_builtin_macros and rustfmt usage.
586    #[inline]
587    #[must_use]
588    pub fn eat_keyword(&mut self, exp: ExpKeywordPair) -> bool {
589        let is_keyword = self.check_keyword(exp);
590        if is_keyword {
591            self.bump();
592        }
593        is_keyword
594    }
595
596    /// Eats a keyword, optionally ignoring the case.
597    /// If the case differs (and is ignored) an error is issued.
598    /// This is useful for recovery.
599    #[inline]
600    #[must_use]
601    fn eat_keyword_case(&mut self, exp: ExpKeywordPair, case: Case) -> bool {
602        if self.eat_keyword(exp) {
603            true
604        } else if case == Case::Insensitive
605            && let Some((ident, IdentIsRaw::No)) = self.token.ident()
606            // Do an ASCII case-insensitive match, because all keywords are ASCII.
607            && ident.as_str().eq_ignore_ascii_case(exp.kw.as_str())
608        {
609            self.dcx().emit_err(errors::KwBadCase { span: ident.span, kw: exp.kw.as_str() });
610            self.bump();
611            true
612        } else {
613            false
614        }
615    }
616
617    /// If the next token is the given keyword, eats it and returns `true`.
618    /// Otherwise, returns `false`. No expectation is added.
619    // Public for rustc_builtin_macros usage.
620    #[inline]
621    #[must_use]
622    pub fn eat_keyword_noexpect(&mut self, kw: Symbol) -> bool {
623        let is_keyword = self.token.is_keyword(kw);
624        if is_keyword {
625            self.bump();
626        }
627        is_keyword
628    }
629
630    /// If the given word is not a keyword, signals an error.
631    /// If the next token is not the given word, signals an error.
632    /// Otherwise, eats it.
633    pub fn expect_keyword(&mut self, exp: ExpKeywordPair) -> PResult<'a, ()> {
634        if !self.eat_keyword(exp) { self.unexpected() } else { Ok(()) }
635    }
636
637    /// Consume a sequence produced by a metavar expansion, if present.
638    pub fn eat_metavar_seq<T>(
639        &mut self,
640        mv_kind: MetaVarKind,
641        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
642    ) -> Option<T> {
643        self.eat_metavar_seq_with_matcher(|mvk| mvk == mv_kind, f)
644    }
645
646    /// A slightly more general form of `eat_metavar_seq`, for use with the
647    /// `MetaVarKind` variants that have parameters, where an exact match isn't
648    /// desired.
649    fn eat_metavar_seq_with_matcher<T>(
650        &mut self,
651        match_mv_kind: impl Fn(MetaVarKind) -> bool,
652        mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
653    ) -> Option<T> {
654        if let token::OpenInvisible(InvisibleOrigin::MetaVar(mv_kind)) = self.token.kind
655            && match_mv_kind(mv_kind)
656        {
657            self.bump();
658
659            // Recovery is disabled when parsing macro arguments, so it must
660            // also be disabled when reparsing pasted macro arguments,
661            // otherwise we get inconsistent results (e.g. #137874).
662            let res = self.with_recovery(Recovery::Forbidden, |this| f(this));
663
664            let res = match res {
665                Ok(res) => res,
666                Err(err) => {
667                    // This can occur in unusual error cases, e.g. #139445.
668                    err.delay_as_bug();
669                    return None;
670                }
671            };
672
673            if let token::CloseInvisible(InvisibleOrigin::MetaVar(mv_kind)) = self.token.kind
674                && match_mv_kind(mv_kind)
675            {
676                self.bump();
677                Some(res)
678            } else {
679                // This can occur when invalid syntax is passed to a decl macro. E.g. see #139248,
680                // where the reparse attempt of an invalid expr consumed the trailing invisible
681                // delimiter.
682                self.dcx()
683                    .span_delayed_bug(self.token.span, "no close delim with reparsing {mv_kind:?}");
684                None
685            }
686        } else {
687            None
688        }
689    }
690
691    /// Is the given keyword `kw` followed by a non-reserved identifier?
692    fn is_kw_followed_by_ident(&self, kw: Symbol) -> bool {
693        self.token.is_keyword(kw) && self.look_ahead(1, |t| t.is_non_reserved_ident())
694    }
695
696    #[inline]
697    fn check_or_expected(&mut self, ok: bool, token_type: TokenType) -> bool {
698        if !ok {
699            self.expected_token_types.insert(token_type);
700        }
701        ok
702    }
703
704    fn check_ident(&mut self) -> bool {
705        self.check_or_expected(self.token.is_ident(), TokenType::Ident)
706    }
707
708    fn check_path(&mut self) -> bool {
709        self.check_or_expected(self.token.is_path_start(), TokenType::Path)
710    }
711
712    fn check_type(&mut self) -> bool {
713        self.check_or_expected(self.token.can_begin_type(), TokenType::Type)
714    }
715
716    fn check_const_arg(&mut self) -> bool {
717        self.check_or_expected(self.token.can_begin_const_arg(), TokenType::Const)
718    }
719
720    fn check_const_closure(&self) -> bool {
721        self.is_keyword_ahead(0, &[kw::Const])
722            && self.look_ahead(1, |t| match &t.kind {
723                // async closures do not work with const closures, so we do not parse that here.
724                token::Ident(kw::Move | kw::Use | kw::Static, IdentIsRaw::No)
725                | token::OrOr
726                | token::Or => true,
727                _ => false,
728            })
729    }
730
731    fn check_inline_const(&self, dist: usize) -> bool {
732        self.is_keyword_ahead(dist, &[kw::Const])
733            && self.look_ahead(dist + 1, |t| match &t.kind {
734                token::OpenBrace => true,
735                token::OpenInvisible(InvisibleOrigin::MetaVar(MetaVarKind::Block)) => true,
736                _ => false,
737            })
738    }
739
740    /// Checks to see if the next token is either `+` or `+=`.
741    /// Otherwise returns `false`.
742    #[inline]
743    fn check_plus(&mut self) -> bool {
744        self.check_or_expected(self.token.is_like_plus(), TokenType::Plus)
745    }
746
747    /// Eats the expected token if it's present possibly breaking
748    /// compound tokens like multi-character operators in process.
749    /// Returns `true` if the token was eaten.
750    fn break_and_eat(&mut self, exp: ExpTokenPair) -> bool {
751        if self.token == exp.tok {
752            self.bump();
753            return true;
754        }
755        match self.token.kind.break_two_token_op(1) {
756            Some((first, second)) if first == exp.tok => {
757                let first_span = self.psess.source_map().start_point(self.token.span);
758                let second_span = self.token.span.with_lo(first_span.hi());
759                self.token = Token::new(first, first_span);
760                // Keep track of this token - if we end token capturing now,
761                // we'll want to append this token to the captured stream.
762                //
763                // If we consume any additional tokens, then this token
764                // is not needed (we'll capture the entire 'glued' token),
765                // and `bump` will set this field to 0.
766                self.break_last_token += 1;
767                // Use the spacing of the glued token as the spacing of the
768                // unglued second token.
769                self.bump_with((Token::new(second, second_span), self.token_spacing));
770                true
771            }
772            _ => {
773                self.expected_token_types.insert(exp.token_type);
774                false
775            }
776        }
777    }
778
779    /// Eats `+` possibly breaking tokens like `+=` in process.
780    fn eat_plus(&mut self) -> bool {
781        self.break_and_eat(exp!(Plus))
782    }
783
784    /// Eats `&` possibly breaking tokens like `&&` in process.
785    /// Signals an error if `&` is not eaten.
786    fn expect_and(&mut self) -> PResult<'a, ()> {
787        if self.break_and_eat(exp!(And)) { Ok(()) } else { self.unexpected() }
788    }
789
790    /// Eats `|` possibly breaking tokens like `||` in process.
791    /// Signals an error if `|` was not eaten.
792    fn expect_or(&mut self) -> PResult<'a, ()> {
793        if self.break_and_eat(exp!(Or)) { Ok(()) } else { self.unexpected() }
794    }
795
796    /// Eats `<` possibly breaking tokens like `<<` in process.
797    fn eat_lt(&mut self) -> bool {
798        let ate = self.break_and_eat(exp!(Lt));
799        if ate {
800            // See doc comment for `unmatched_angle_bracket_count`.
801            self.unmatched_angle_bracket_count += 1;
802            debug!("eat_lt: (increment) count={:?}", self.unmatched_angle_bracket_count);
803        }
804        ate
805    }
806
807    /// Eats `<` possibly breaking tokens like `<<` in process.
808    /// Signals an error if `<` was not eaten.
809    fn expect_lt(&mut self) -> PResult<'a, ()> {
810        if self.eat_lt() { Ok(()) } else { self.unexpected() }
811    }
812
813    /// Eats `>` possibly breaking tokens like `>>` in process.
814    /// Signals an error if `>` was not eaten.
815    fn expect_gt(&mut self) -> PResult<'a, ()> {
816        if self.break_and_eat(exp!(Gt)) {
817            // See doc comment for `unmatched_angle_bracket_count`.
818            if self.unmatched_angle_bracket_count > 0 {
819                self.unmatched_angle_bracket_count -= 1;
820                debug!("expect_gt: (decrement) count={:?}", self.unmatched_angle_bracket_count);
821            }
822            Ok(())
823        } else {
824            self.unexpected()
825        }
826    }
827
828    /// Checks if the next token is contained within `closes`, and returns `true` if so.
829    fn expect_any_with_type(
830        &mut self,
831        closes_expected: &[ExpTokenPair],
832        closes_not_expected: &[&TokenKind],
833    ) -> bool {
834        closes_expected.iter().any(|&close| self.check(close))
835            || closes_not_expected.iter().any(|k| self.check_noexpect(k))
836    }
837
838    /// Parses a sequence until the specified delimiters. The function
839    /// `f` must consume tokens until reaching the next separator or
840    /// closing bracket.
841    fn parse_seq_to_before_tokens<T>(
842        &mut self,
843        closes_expected: &[ExpTokenPair],
844        closes_not_expected: &[&TokenKind],
845        sep: SeqSep,
846        mut f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
847    ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
848        let mut first = true;
849        let mut recovered = Recovered::No;
850        let mut trailing = Trailing::No;
851        let mut v = ThinVec::new();
852
853        while !self.expect_any_with_type(closes_expected, closes_not_expected) {
854            if self.token.kind.is_close_delim_or_eof() {
855                break;
856            }
857            if let Some(exp) = sep.sep {
858                if first {
859                    // no separator for the first element
860                    first = false;
861                } else {
862                    // check for separator
863                    match self.expect(exp) {
864                        Ok(Recovered::No) => {
865                            self.current_closure.take();
866                        }
867                        Ok(Recovered::Yes(guar)) => {
868                            self.current_closure.take();
869                            recovered = Recovered::Yes(guar);
870                            break;
871                        }
872                        Err(mut expect_err) => {
873                            let sp = self.prev_token.span.shrink_to_hi();
874                            let token_str = pprust::token_kind_to_string(&exp.tok);
875
876                            match self.current_closure.take() {
877                                Some(closure_spans) if self.token == TokenKind::Semi => {
878                                    // Finding a semicolon instead of a comma
879                                    // after a closure body indicates that the
880                                    // closure body may be a block but the user
881                                    // forgot to put braces around its
882                                    // statements.
883
884                                    self.recover_missing_braces_around_closure_body(
885                                        closure_spans,
886                                        expect_err,
887                                    )?;
888
889                                    continue;
890                                }
891
892                                _ => {
893                                    // Attempt to keep parsing if it was a similar separator.
894                                    if exp.tok.similar_tokens().contains(&self.token.kind) {
895                                        self.bump();
896                                    }
897                                }
898                            }
899
900                            // If this was a missing `@` in a binding pattern
901                            // bail with a suggestion
902                            // https://github.com/rust-lang/rust/issues/72373
903                            if self.prev_token.is_ident() && self.token == token::DotDot {
904                                let msg = format!(
905                                    "if you meant to bind the contents of the rest of the array \
906                                     pattern into `{}`, use `@`",
907                                    pprust::token_to_string(&self.prev_token)
908                                );
909                                expect_err
910                                    .with_span_suggestion_verbose(
911                                        self.prev_token.span.shrink_to_hi().until(self.token.span),
912                                        msg,
913                                        " @ ",
914                                        Applicability::MaybeIncorrect,
915                                    )
916                                    .emit();
917                                break;
918                            }
919
920                            // Attempt to keep parsing if it was an omitted separator.
921                            self.last_unexpected_token_span = None;
922                            match f(self) {
923                                Ok(t) => {
924                                    // Parsed successfully, therefore most probably the code only
925                                    // misses a separator.
926                                    expect_err
927                                        .with_span_suggestion_short(
928                                            sp,
929                                            format!("missing `{token_str}`"),
930                                            token_str,
931                                            Applicability::MaybeIncorrect,
932                                        )
933                                        .emit();
934
935                                    v.push(t);
936                                    continue;
937                                }
938                                Err(e) => {
939                                    // Parsing failed, therefore it must be something more serious
940                                    // than just a missing separator.
941                                    for xx in &e.children {
942                                        // Propagate the help message from sub error `e` to main
943                                        // error `expect_err`.
944                                        expect_err.children.push(xx.clone());
945                                    }
946                                    e.cancel();
947                                    if self.token == token::Colon {
948                                        // We will try to recover in
949                                        // `maybe_recover_struct_lit_bad_delims`.
950                                        return Err(expect_err);
951                                    } else if let [exp] = closes_expected
952                                        && exp.token_type == TokenType::CloseParen
953                                    {
954                                        return Err(expect_err);
955                                    } else {
956                                        expect_err.emit();
957                                        break;
958                                    }
959                                }
960                            }
961                        }
962                    }
963                }
964            }
965            if sep.trailing_sep_allowed
966                && self.expect_any_with_type(closes_expected, closes_not_expected)
967            {
968                trailing = Trailing::Yes;
969                break;
970            }
971
972            let t = f(self)?;
973            v.push(t);
974        }
975
976        Ok((v, trailing, recovered))
977    }
978
979    fn recover_missing_braces_around_closure_body(
980        &mut self,
981        closure_spans: ClosureSpans,
982        mut expect_err: Diag<'_>,
983    ) -> PResult<'a, ()> {
984        let initial_semicolon = self.token.span;
985
986        while self.eat(exp!(Semi)) {
987            let _ = self
988                .parse_stmt_without_recovery(false, ForceCollect::No, false)
989                .unwrap_or_else(|e| {
990                    e.cancel();
991                    None
992                });
993        }
994
995        expect_err
996            .primary_message("closure bodies that contain statements must be surrounded by braces");
997
998        let preceding_pipe_span = closure_spans.closing_pipe;
999        let following_token_span = self.token.span;
1000
1001        let mut first_note = MultiSpan::from(vec![initial_semicolon]);
1002        first_note.push_span_label(
1003            initial_semicolon,
1004            "this `;` turns the preceding closure into a statement",
1005        );
1006        first_note.push_span_label(
1007            closure_spans.body,
1008            "this expression is a statement because of the trailing semicolon",
1009        );
1010        expect_err.span_note(first_note, "statement found outside of a block");
1011
1012        let mut second_note = MultiSpan::from(vec![closure_spans.whole_closure]);
1013        second_note.push_span_label(closure_spans.whole_closure, "this is the parsed closure...");
1014        second_note.push_span_label(
1015            following_token_span,
1016            "...but likely you meant the closure to end here",
1017        );
1018        expect_err.span_note(second_note, "the closure body may be incorrectly delimited");
1019
1020        expect_err.span(vec![preceding_pipe_span, following_token_span]);
1021
1022        let opening_suggestion_str = " {".to_string();
1023        let closing_suggestion_str = "}".to_string();
1024
1025        expect_err.multipart_suggestion(
1026            "try adding braces",
1027            vec![
1028                (preceding_pipe_span.shrink_to_hi(), opening_suggestion_str),
1029                (following_token_span.shrink_to_lo(), closing_suggestion_str),
1030            ],
1031            Applicability::MaybeIncorrect,
1032        );
1033
1034        expect_err.emit();
1035
1036        Ok(())
1037    }
1038
1039    /// Parses a sequence, not including the delimiters. The function
1040    /// `f` must consume tokens until reaching the next separator or
1041    /// closing bracket.
1042    fn parse_seq_to_before_end<T>(
1043        &mut self,
1044        close: ExpTokenPair,
1045        sep: SeqSep,
1046        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1047    ) -> PResult<'a, (ThinVec<T>, Trailing, Recovered)> {
1048        self.parse_seq_to_before_tokens(&[close], &[], sep, f)
1049    }
1050
1051    /// Parses a sequence, including only the closing delimiter. The function
1052    /// `f` must consume tokens until reaching the next separator or
1053    /// closing bracket.
1054    fn parse_seq_to_end<T>(
1055        &mut self,
1056        close: ExpTokenPair,
1057        sep: SeqSep,
1058        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1059    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1060        let (val, trailing, recovered) = self.parse_seq_to_before_end(close, sep, f)?;
1061        if matches!(recovered, Recovered::No) && !self.eat(close) {
1062            self.dcx().span_delayed_bug(
1063                self.token.span,
1064                "recovered but `parse_seq_to_before_end` did not give us the close token",
1065            );
1066        }
1067        Ok((val, trailing))
1068    }
1069
1070    /// Parses a sequence, including both delimiters. The function
1071    /// `f` must consume tokens until reaching the next separator or
1072    /// closing bracket.
1073    fn parse_unspanned_seq<T>(
1074        &mut self,
1075        open: ExpTokenPair,
1076        close: ExpTokenPair,
1077        sep: SeqSep,
1078        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1079    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1080        self.expect(open)?;
1081        self.parse_seq_to_end(close, sep, f)
1082    }
1083
1084    /// Parses a comma-separated sequence, including both delimiters.
1085    /// The function `f` must consume tokens until reaching the next separator or
1086    /// closing bracket.
1087    fn parse_delim_comma_seq<T>(
1088        &mut self,
1089        open: ExpTokenPair,
1090        close: ExpTokenPair,
1091        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1092    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1093        self.parse_unspanned_seq(open, close, SeqSep::trailing_allowed(exp!(Comma)), f)
1094    }
1095
1096    /// Parses a comma-separated sequence delimited by parentheses (e.g. `(x, y)`).
1097    /// The function `f` must consume tokens until reaching the next separator or
1098    /// closing bracket.
1099    pub fn parse_paren_comma_seq<T>(
1100        &mut self,
1101        f: impl FnMut(&mut Parser<'a>) -> PResult<'a, T>,
1102    ) -> PResult<'a, (ThinVec<T>, Trailing)> {
1103        self.parse_delim_comma_seq(exp!(OpenParen), exp!(CloseParen), f)
1104    }
1105
1106    /// Advance the parser by one token using provided token as the next one.
1107    fn bump_with(&mut self, next: (Token, Spacing)) {
1108        self.inlined_bump_with(next)
1109    }
1110
1111    /// This always-inlined version should only be used on hot code paths.
1112    #[inline(always)]
1113    fn inlined_bump_with(&mut self, (next_token, next_spacing): (Token, Spacing)) {
1114        // Update the current and previous tokens.
1115        self.prev_token = mem::replace(&mut self.token, next_token);
1116        self.token_spacing = next_spacing;
1117
1118        // Diagnostics.
1119        self.expected_token_types.clear();
1120    }
1121
1122    /// Advance the parser by one token.
1123    pub fn bump(&mut self) {
1124        // Note: destructuring here would give nicer code, but it was found in #96210 to be slower
1125        // than `.0`/`.1` access.
1126        let mut next = self.token_cursor.inlined_next();
1127        self.num_bump_calls += 1;
1128        // We got a token from the underlying cursor and no longer need to
1129        // worry about an unglued token. See `break_and_eat` for more details.
1130        self.break_last_token = 0;
1131        if next.0.span.is_dummy() {
1132            // Tweak the location for better diagnostics, but keep syntactic context intact.
1133            let fallback_span = self.token.span;
1134            next.0.span = fallback_span.with_ctxt(next.0.span.ctxt());
1135        }
1136        debug_assert!(!matches!(
1137            next.0.kind,
1138            token::OpenInvisible(origin) | token::CloseInvisible(origin) if origin.skip()
1139        ));
1140        self.inlined_bump_with(next)
1141    }
1142
1143    /// Look-ahead `dist` tokens of `self.token` and get access to that token there.
1144    /// When `dist == 0` then the current token is looked at. `Eof` will be
1145    /// returned if the look-ahead is any distance past the end of the tokens.
1146    pub fn look_ahead<R>(&self, dist: usize, looker: impl FnOnce(&Token) -> R) -> R {
1147        if dist == 0 {
1148            return looker(&self.token);
1149        }
1150
1151        // Typically around 98% of the `dist > 0` cases have `dist == 1`, so we
1152        // have a fast special case for that.
1153        if dist == 1 {
1154            // The index is zero because the tree cursor's index always points
1155            // to the next token to be gotten.
1156            match self.token_cursor.curr.curr() {
1157                Some(tree) => {
1158                    // Indexing stayed within the current token tree.
1159                    match tree {
1160                        TokenTree::Token(token, _) => return looker(token),
1161                        &TokenTree::Delimited(dspan, _, delim, _) => {
1162                            if !delim.skip() {
1163                                return looker(&Token::new(delim.as_open_token_kind(), dspan.open));
1164                            }
1165                        }
1166                    }
1167                }
1168                None => {
1169                    // The tree cursor lookahead went (one) past the end of the
1170                    // current token tree. Try to return a close delimiter.
1171                    if let Some(last) = self.token_cursor.stack.last()
1172                        && let Some(&TokenTree::Delimited(span, _, delim, _)) = last.curr()
1173                        && !delim.skip()
1174                    {
1175                        // We are not in the outermost token stream, so we have
1176                        // delimiters. Also, those delimiters are not skipped.
1177                        return looker(&Token::new(delim.as_close_token_kind(), span.close));
1178                    }
1179                }
1180            }
1181        }
1182
1183        // Just clone the token cursor and use `next`, skipping delimiters as
1184        // necessary. Slow but simple.
1185        let mut cursor = self.token_cursor.clone();
1186        let mut i = 0;
1187        let mut token = Token::dummy();
1188        while i < dist {
1189            token = cursor.next().0;
1190            if matches!(
1191                token.kind,
1192                token::OpenInvisible(origin) | token::CloseInvisible(origin) if origin.skip()
1193            ) {
1194                continue;
1195            }
1196            i += 1;
1197        }
1198        looker(&token)
1199    }
1200
1201    /// Like `lookahead`, but skips over token trees rather than tokens. Useful
1202    /// when looking past possible metavariable pasting sites.
1203    pub fn tree_look_ahead<R>(
1204        &self,
1205        dist: usize,
1206        looker: impl FnOnce(&TokenTree) -> R,
1207    ) -> Option<R> {
1208        assert_ne!(dist, 0);
1209        self.token_cursor.curr.look_ahead(dist - 1).map(looker)
1210    }
1211
1212    /// Returns whether any of the given keywords are `dist` tokens ahead of the current one.
1213    pub(crate) fn is_keyword_ahead(&self, dist: usize, kws: &[Symbol]) -> bool {
1214        self.look_ahead(dist, |t| kws.iter().any(|&kw| t.is_keyword(kw)))
1215    }
1216
1217    /// Parses asyncness: `async` or nothing.
1218    fn parse_coroutine_kind(&mut self, case: Case) -> Option<CoroutineKind> {
1219        let span = self.token_uninterpolated_span();
1220        if self.eat_keyword_case(exp!(Async), case) {
1221            // FIXME(gen_blocks): Do we want to unconditionally parse `gen` and then
1222            // error if edition <= 2024, like we do with async and edition <= 2018?
1223            if self.token_uninterpolated_span().at_least_rust_2024()
1224                && self.eat_keyword_case(exp!(Gen), case)
1225            {
1226                let gen_span = self.prev_token_uninterpolated_span();
1227                Some(CoroutineKind::AsyncGen {
1228                    span: span.to(gen_span),
1229                    closure_id: DUMMY_NODE_ID,
1230                    return_impl_trait_id: DUMMY_NODE_ID,
1231                })
1232            } else {
1233                Some(CoroutineKind::Async {
1234                    span,
1235                    closure_id: DUMMY_NODE_ID,
1236                    return_impl_trait_id: DUMMY_NODE_ID,
1237                })
1238            }
1239        } else if self.token_uninterpolated_span().at_least_rust_2024()
1240            && self.eat_keyword_case(exp!(Gen), case)
1241        {
1242            Some(CoroutineKind::Gen {
1243                span,
1244                closure_id: DUMMY_NODE_ID,
1245                return_impl_trait_id: DUMMY_NODE_ID,
1246            })
1247        } else {
1248            None
1249        }
1250    }
1251
1252    /// Parses fn unsafety: `unsafe`, `safe` or nothing.
1253    fn parse_safety(&mut self, case: Case) -> Safety {
1254        if self.eat_keyword_case(exp!(Unsafe), case) {
1255            Safety::Unsafe(self.prev_token_uninterpolated_span())
1256        } else if self.eat_keyword_case(exp!(Safe), case) {
1257            Safety::Safe(self.prev_token_uninterpolated_span())
1258        } else {
1259            Safety::Default
1260        }
1261    }
1262
1263    /// Parses constness: `const` or nothing.
1264    fn parse_constness(&mut self, case: Case) -> Const {
1265        self.parse_constness_(case, false)
1266    }
1267
1268    /// Parses constness for closures (case sensitive, feature-gated)
1269    fn parse_closure_constness(&mut self) -> Const {
1270        let constness = self.parse_constness_(Case::Sensitive, true);
1271        if let Const::Yes(span) = constness {
1272            self.psess.gated_spans.gate(sym::const_closures, span);
1273        }
1274        constness
1275    }
1276
1277    fn parse_constness_(&mut self, case: Case, is_closure: bool) -> Const {
1278        // Avoid const blocks and const closures to be parsed as const items
1279        if (self.check_const_closure() == is_closure)
1280            && !self.look_ahead(1, |t| *t == token::OpenBrace || t.is_metavar_block())
1281            && self.eat_keyword_case(exp!(Const), case)
1282        {
1283            Const::Yes(self.prev_token_uninterpolated_span())
1284        } else {
1285            Const::No
1286        }
1287    }
1288
1289    /// Parses inline const expressions.
1290    fn parse_const_block(&mut self, span: Span, pat: bool) -> PResult<'a, Box<Expr>> {
1291        self.expect_keyword(exp!(Const))?;
1292        let (attrs, blk) = self.parse_inner_attrs_and_block(None)?;
1293        let anon_const = AnonConst {
1294            id: DUMMY_NODE_ID,
1295            value: self.mk_expr(blk.span, ExprKind::Block(blk, None)),
1296        };
1297        let blk_span = anon_const.value.span;
1298        let kind = if pat {
1299            let guar = self
1300                .dcx()
1301                .struct_span_err(blk_span, "const blocks cannot be used as patterns")
1302                .with_help(
1303                    "use a named `const`-item or an `if`-guard (`x if x == const { ... }`) instead",
1304                )
1305                .emit();
1306            ExprKind::Err(guar)
1307        } else {
1308            ExprKind::ConstBlock(anon_const)
1309        };
1310        Ok(self.mk_expr_with_attrs(span.to(blk_span), kind, attrs))
1311    }
1312
1313    /// Parses mutability (`mut` or nothing).
1314    fn parse_mutability(&mut self) -> Mutability {
1315        if self.eat_keyword(exp!(Mut)) { Mutability::Mut } else { Mutability::Not }
1316    }
1317
1318    /// Parses reference binding mode (`ref`, `ref mut`, or nothing).
1319    fn parse_byref(&mut self) -> ByRef {
1320        if self.eat_keyword(exp!(Ref)) { ByRef::Yes(self.parse_mutability()) } else { ByRef::No }
1321    }
1322
1323    /// Possibly parses mutability (`const` or `mut`).
1324    fn parse_const_or_mut(&mut self) -> Option<Mutability> {
1325        if self.eat_keyword(exp!(Mut)) {
1326            Some(Mutability::Mut)
1327        } else if self.eat_keyword(exp!(Const)) {
1328            Some(Mutability::Not)
1329        } else {
1330            None
1331        }
1332    }
1333
1334    fn parse_field_name(&mut self) -> PResult<'a, Ident> {
1335        if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = self.token.kind
1336        {
1337            if let Some(suffix) = suffix {
1338                self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex {
1339                    span: self.token.span,
1340                    suffix,
1341                });
1342            }
1343            self.bump();
1344            Ok(Ident::new(symbol, self.prev_token.span))
1345        } else {
1346            self.parse_ident_common(true)
1347        }
1348    }
1349
1350    fn parse_delim_args(&mut self) -> PResult<'a, Box<DelimArgs>> {
1351        if let Some(args) = self.parse_delim_args_inner() {
1352            Ok(Box::new(args))
1353        } else {
1354            self.unexpected_any()
1355        }
1356    }
1357
1358    fn parse_attr_args(&mut self) -> PResult<'a, AttrArgs> {
1359        Ok(if let Some(args) = self.parse_delim_args_inner() {
1360            AttrArgs::Delimited(args)
1361        } else if self.eat(exp!(Eq)) {
1362            let eq_span = self.prev_token.span;
1363            let expr = self.parse_expr_force_collect()?;
1364            AttrArgs::Eq { eq_span, expr }
1365        } else {
1366            AttrArgs::Empty
1367        })
1368    }
1369
1370    fn parse_delim_args_inner(&mut self) -> Option<DelimArgs> {
1371        let delimited = self.check(exp!(OpenParen))
1372            || self.check(exp!(OpenBracket))
1373            || self.check(exp!(OpenBrace));
1374
1375        delimited.then(|| {
1376            let TokenTree::Delimited(dspan, _, delim, tokens) = self.parse_token_tree() else {
1377                unreachable!()
1378            };
1379            DelimArgs { dspan, delim, tokens }
1380        })
1381    }
1382
1383    /// Parses a single token tree from the input.
1384    pub fn parse_token_tree(&mut self) -> TokenTree {
1385        if self.token.kind.open_delim().is_some() {
1386            // Clone the `TokenTree::Delimited` that we are currently
1387            // within. That's what we are going to return.
1388            let tree = self.token_cursor.stack.last().unwrap().curr().unwrap().clone();
1389            debug_assert_matches!(tree, TokenTree::Delimited(..));
1390
1391            // Advance the token cursor through the entire delimited
1392            // sequence. After getting the `OpenDelim` we are *within* the
1393            // delimited sequence, i.e. at depth `d`. After getting the
1394            // matching `CloseDelim` we are *after* the delimited sequence,
1395            // i.e. at depth `d - 1`.
1396            let target_depth = self.token_cursor.stack.len() - 1;
1397
1398            if let Capturing::No = self.capture_state.capturing {
1399                // We are not capturing tokens, so skip to the end of the
1400                // delimited sequence. This is a perf win when dealing with
1401                // declarative macros that pass large `tt` fragments through
1402                // multiple rules, as seen in the uom-0.37.0 crate.
1403                self.token_cursor.curr.bump_to_end();
1404                self.bump();
1405                debug_assert_eq!(self.token_cursor.stack.len(), target_depth);
1406            } else {
1407                loop {
1408                    // Advance one token at a time, so `TokenCursor::next()`
1409                    // can capture these tokens if necessary.
1410                    self.bump();
1411                    if self.token_cursor.stack.len() == target_depth {
1412                        break;
1413                    }
1414                }
1415            }
1416            debug_assert!(self.token.kind.close_delim().is_some());
1417
1418            // Consume close delimiter
1419            self.bump();
1420            tree
1421        } else {
1422            assert!(!self.token.kind.is_close_delim_or_eof());
1423            let prev_spacing = self.token_spacing;
1424            self.bump();
1425            TokenTree::Token(self.prev_token, prev_spacing)
1426        }
1427    }
1428
1429    pub fn parse_tokens(&mut self) -> TokenStream {
1430        let mut result = Vec::new();
1431        loop {
1432            if self.token.kind.is_close_delim_or_eof() {
1433                break;
1434            } else {
1435                result.push(self.parse_token_tree());
1436            }
1437        }
1438        TokenStream::new(result)
1439    }
1440
1441    /// Evaluates the closure with restrictions in place.
1442    ///
1443    /// Afters the closure is evaluated, restrictions are reset.
1444    fn with_res<T>(&mut self, res: Restrictions, f: impl FnOnce(&mut Self) -> T) -> T {
1445        let old = self.restrictions;
1446        self.restrictions = res;
1447        let res = f(self);
1448        self.restrictions = old;
1449        res
1450    }
1451
1452    /// Parses `pub` and `pub(in path)` plus shortcuts `pub(crate)` for `pub(in crate)`, `pub(self)`
1453    /// for `pub(in self)` and `pub(super)` for `pub(in super)`.
1454    /// If the following element can't be a tuple (i.e., it's a function definition), then
1455    /// it's not a tuple struct field), and the contents within the parentheses aren't valid,
1456    /// so emit a proper diagnostic.
1457    // Public for rustfmt usage.
1458    pub fn parse_visibility(&mut self, fbt: FollowedByType) -> PResult<'a, Visibility> {
1459        if let Some(vis) = self
1460            .eat_metavar_seq(MetaVarKind::Vis, |this| this.parse_visibility(FollowedByType::Yes))
1461        {
1462            return Ok(vis);
1463        }
1464
1465        if !self.eat_keyword(exp!(Pub)) {
1466            // We need a span for our `Spanned<VisibilityKind>`, but there's inherently no
1467            // keyword to grab a span from for inherited visibility; an empty span at the
1468            // beginning of the current token would seem to be the "Schelling span".
1469            return Ok(Visibility {
1470                span: self.token.span.shrink_to_lo(),
1471                kind: VisibilityKind::Inherited,
1472                tokens: None,
1473            });
1474        }
1475        let lo = self.prev_token.span;
1476
1477        if self.check(exp!(OpenParen)) {
1478            // We don't `self.bump()` the `(` yet because this might be a struct definition where
1479            // `()` or a tuple might be allowed. For example, `struct Struct(pub (), pub (usize));`.
1480            // Because of this, we only `bump` the `(` if we're assured it is appropriate to do so
1481            // by the following tokens.
1482            if self.is_keyword_ahead(1, &[kw::In]) {
1483                // Parse `pub(in path)`.
1484                self.bump(); // `(`
1485                self.bump(); // `in`
1486                let path = self.parse_path(PathStyle::Mod)?; // `path`
1487                self.expect(exp!(CloseParen))?; // `)`
1488                let vis = VisibilityKind::Restricted {
1489                    path: Box::new(path),
1490                    id: ast::DUMMY_NODE_ID,
1491                    shorthand: false,
1492                };
1493                return Ok(Visibility {
1494                    span: lo.to(self.prev_token.span),
1495                    kind: vis,
1496                    tokens: None,
1497                });
1498            } else if self.look_ahead(2, |t| t == &token::CloseParen)
1499                && self.is_keyword_ahead(1, &[kw::Crate, kw::Super, kw::SelfLower])
1500            {
1501                // Parse `pub(crate)`, `pub(self)`, or `pub(super)`.
1502                self.bump(); // `(`
1503                let path = self.parse_path(PathStyle::Mod)?; // `crate`/`super`/`self`
1504                self.expect(exp!(CloseParen))?; // `)`
1505                let vis = VisibilityKind::Restricted {
1506                    path: Box::new(path),
1507                    id: ast::DUMMY_NODE_ID,
1508                    shorthand: true,
1509                };
1510                return Ok(Visibility {
1511                    span: lo.to(self.prev_token.span),
1512                    kind: vis,
1513                    tokens: None,
1514                });
1515            } else if let FollowedByType::No = fbt {
1516                // Provide this diagnostic if a type cannot follow;
1517                // in particular, if this is not a tuple struct.
1518                self.recover_incorrect_vis_restriction()?;
1519                // Emit diagnostic, but continue with public visibility.
1520            }
1521        }
1522
1523        Ok(Visibility { span: lo, kind: VisibilityKind::Public, tokens: None })
1524    }
1525
1526    /// Recovery for e.g. `pub(something) fn ...` or `struct X { pub(something) y: Z }`
1527    fn recover_incorrect_vis_restriction(&mut self) -> PResult<'a, ()> {
1528        self.bump(); // `(`
1529        let path = self.parse_path(PathStyle::Mod)?;
1530        self.expect(exp!(CloseParen))?; // `)`
1531
1532        let path_str = pprust::path_to_string(&path);
1533        self.dcx()
1534            .emit_err(IncorrectVisibilityRestriction { span: path.span, inner_str: path_str });
1535
1536        Ok(())
1537    }
1538
1539    /// Parses `extern string_literal?`.
1540    fn parse_extern(&mut self, case: Case) -> Extern {
1541        if self.eat_keyword_case(exp!(Extern), case) {
1542            let mut extern_span = self.prev_token.span;
1543            let abi = self.parse_abi();
1544            if let Some(abi) = abi {
1545                extern_span = extern_span.to(abi.span);
1546            }
1547            Extern::from_abi(abi, extern_span)
1548        } else {
1549            Extern::None
1550        }
1551    }
1552
1553    /// Parses a string literal as an ABI spec.
1554    fn parse_abi(&mut self) -> Option<StrLit> {
1555        match self.parse_str_lit() {
1556            Ok(str_lit) => Some(str_lit),
1557            Err(Some(lit)) => match lit.kind {
1558                ast::LitKind::Err(_) => None,
1559                _ => {
1560                    self.dcx().emit_err(NonStringAbiLiteral { span: lit.span });
1561                    None
1562                }
1563            },
1564            Err(None) => None,
1565        }
1566    }
1567
1568    fn collect_tokens_no_attrs<R: HasAttrs + HasTokens>(
1569        &mut self,
1570        f: impl FnOnce(&mut Self) -> PResult<'a, R>,
1571    ) -> PResult<'a, R> {
1572        // The only reason to call `collect_tokens_no_attrs` is if you want tokens, so use
1573        // `ForceCollect::Yes`
1574        self.collect_tokens(None, AttrWrapper::empty(), ForceCollect::Yes, |this, _attrs| {
1575            Ok((f(this)?, Trailing::No, UsePreAttrPos::No))
1576        })
1577    }
1578
1579    /// Checks for `::` or, potentially, `:::` and then look ahead after it.
1580    fn check_path_sep_and_look_ahead(&mut self, looker: impl Fn(&Token) -> bool) -> bool {
1581        if self.check(exp!(PathSep)) {
1582            if self.may_recover() && self.look_ahead(1, |t| t.kind == token::Colon) {
1583                debug_assert!(!self.look_ahead(1, &looker), "Looker must not match on colon");
1584                self.look_ahead(2, looker)
1585            } else {
1586                self.look_ahead(1, looker)
1587            }
1588        } else {
1589            false
1590        }
1591    }
1592
1593    /// `::{` or `::*`
1594    fn is_import_coupler(&mut self) -> bool {
1595        self.check_path_sep_and_look_ahead(|t| matches!(t.kind, token::OpenBrace | token::Star))
1596    }
1597
1598    // Debug view of the parser's token stream, up to `{lookahead}` tokens.
1599    // Only used when debugging.
1600    #[allow(unused)]
1601    pub(crate) fn debug_lookahead(&self, lookahead: usize) -> impl fmt::Debug {
1602        fmt::from_fn(move |f| {
1603            let mut dbg_fmt = f.debug_struct("Parser"); // or at least, one view of
1604
1605            // we don't need N spans, but we want at least one, so print all of prev_token
1606            dbg_fmt.field("prev_token", &self.prev_token);
1607            let mut tokens = vec![];
1608            for i in 0..lookahead {
1609                let tok = self.look_ahead(i, |tok| tok.kind);
1610                let is_eof = tok == TokenKind::Eof;
1611                tokens.push(tok);
1612                if is_eof {
1613                    // Don't look ahead past EOF.
1614                    break;
1615                }
1616            }
1617            dbg_fmt.field_with("tokens", |field| field.debug_list().entries(tokens).finish());
1618            dbg_fmt.field("approx_token_stream_pos", &self.num_bump_calls);
1619
1620            // some fields are interesting for certain values, as they relate to macro parsing
1621            if let Some(subparser) = self.subparser_name {
1622                dbg_fmt.field("subparser_name", &subparser);
1623            }
1624            if let Recovery::Forbidden = self.recovery {
1625                dbg_fmt.field("recovery", &self.recovery);
1626            }
1627
1628            // imply there's "more to know" than this view
1629            dbg_fmt.finish_non_exhaustive()
1630        })
1631    }
1632
1633    pub fn clear_expected_token_types(&mut self) {
1634        self.expected_token_types.clear();
1635    }
1636
1637    pub fn approx_token_stream_pos(&self) -> u32 {
1638        self.num_bump_calls
1639    }
1640
1641    /// For interpolated `self.token`, returns a span of the fragment to which
1642    /// the interpolated token refers. For all other tokens this is just a
1643    /// regular span. It is particularly important to use this for identifiers
1644    /// and lifetimes for which spans affect name resolution and edition
1645    /// checks. Note that keywords are also identifiers, so they should use
1646    /// this if they keep spans or perform edition checks.
1647    pub fn token_uninterpolated_span(&self) -> Span {
1648        match &self.token.kind {
1649            token::NtIdent(ident, _) | token::NtLifetime(ident, _) => ident.span,
1650            token::OpenInvisible(InvisibleOrigin::MetaVar(_)) => self.look_ahead(1, |t| t.span),
1651            _ => self.token.span,
1652        }
1653    }
1654
1655    /// Like `token_uninterpolated_span`, but works on `self.prev_token`.
1656    pub fn prev_token_uninterpolated_span(&self) -> Span {
1657        match &self.prev_token.kind {
1658            token::NtIdent(ident, _) | token::NtLifetime(ident, _) => ident.span,
1659            token::OpenInvisible(InvisibleOrigin::MetaVar(_)) => self.look_ahead(0, |t| t.span),
1660            _ => self.prev_token.span,
1661        }
1662    }
1663}
1664
1665// Metavar captures of various kinds.
1666#[derive(Clone, Debug)]
1667pub enum ParseNtResult {
1668    Tt(TokenTree),
1669    Ident(Ident, IdentIsRaw),
1670    Lifetime(Ident, IdentIsRaw),
1671    Item(Box<ast::Item>),
1672    Block(Box<ast::Block>),
1673    Stmt(Box<ast::Stmt>),
1674    Pat(Box<ast::Pat>, NtPatKind),
1675    Expr(Box<ast::Expr>, NtExprKind),
1676    Literal(Box<ast::Expr>),
1677    Ty(Box<ast::Ty>),
1678    Meta(Box<ast::AttrItem>),
1679    Path(Box<ast::Path>),
1680    Vis(Box<ast::Visibility>),
1681}