rustc_middle/mir/mod.rs
1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
4
5use std::borrow::Cow;
6use std::fmt::{self, Debug, Formatter};
7use std::iter;
8use std::ops::{Index, IndexMut};
9
10pub use basic_blocks::{BasicBlocks, SwitchTargetValue};
11use either::Either;
12use polonius_engine::Atom;
13use rustc_abi::{FieldIdx, VariantIdx};
14pub use rustc_ast::Mutability;
15use rustc_data_structures::fx::{FxHashMap, FxHashSet};
16use rustc_data_structures::graph::dominators::Dominators;
17use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
18use rustc_hir::def::{CtorKind, Namespace};
19use rustc_hir::def_id::{CRATE_DEF_ID, DefId};
20use rustc_hir::{
21 self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
22};
23use rustc_index::bit_set::DenseBitSet;
24use rustc_index::{Idx, IndexSlice, IndexVec};
25use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
26use rustc_serialize::{Decodable, Encodable};
27use rustc_span::source_map::Spanned;
28use rustc_span::{DUMMY_SP, Span, Symbol};
29use tracing::{debug, trace};
30
31pub use self::query::*;
32use crate::mir::interpret::{AllocRange, Scalar};
33use crate::ty::codec::{TyDecoder, TyEncoder};
34use crate::ty::print::{FmtPrinter, Printer, pretty_print_const, with_no_trimmed_paths};
35use crate::ty::{
36 self, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt, TypeVisitableExt,
37 TypingEnv, UserTypeAnnotationIndex,
38};
39
40mod basic_blocks;
41mod consts;
42pub mod coverage;
43mod generic_graph;
44pub mod generic_graphviz;
45pub mod graphviz;
46pub mod interpret;
47pub mod mono;
48pub mod pretty;
49mod query;
50mod statement;
51mod syntax;
52mod terminator;
53
54pub mod traversal;
55pub mod visit;
56
57pub use consts::*;
58use pretty::pretty_print_const_value;
59pub use statement::*;
60pub use syntax::*;
61pub use terminator::*;
62
63pub use self::generic_graph::graphviz_safe_def_name;
64pub use self::graphviz::write_mir_graphviz;
65pub use self::pretty::{
66 PassWhere, create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty,
67};
68
69/// Types for locals
70pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;
71
72pub trait HasLocalDecls<'tcx> {
73 fn local_decls(&self) -> &LocalDecls<'tcx>;
74}
75
76impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
77 #[inline]
78 fn local_decls(&self) -> &LocalDecls<'tcx> {
79 self
80 }
81}
82
83impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
84 #[inline]
85 fn local_decls(&self) -> &LocalDecls<'tcx> {
86 self
87 }
88}
89
90impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
91 #[inline]
92 fn local_decls(&self) -> &LocalDecls<'tcx> {
93 &self.local_decls
94 }
95}
96
97impl MirPhase {
98 pub fn name(&self) -> &'static str {
99 match *self {
100 MirPhase::Built => "built",
101 MirPhase::Analysis(AnalysisPhase::Initial) => "analysis",
102 MirPhase::Analysis(AnalysisPhase::PostCleanup) => "analysis-post-cleanup",
103 MirPhase::Runtime(RuntimePhase::Initial) => "runtime",
104 MirPhase::Runtime(RuntimePhase::PostCleanup) => "runtime-post-cleanup",
105 MirPhase::Runtime(RuntimePhase::Optimized) => "runtime-optimized",
106 }
107 }
108
109 /// Gets the (dialect, phase) index of the current `MirPhase`. Both numbers
110 /// are 1-indexed.
111 pub fn index(&self) -> (usize, usize) {
112 match *self {
113 MirPhase::Built => (1, 1),
114 MirPhase::Analysis(analysis_phase) => (2, 1 + analysis_phase as usize),
115 MirPhase::Runtime(runtime_phase) => (3, 1 + runtime_phase as usize),
116 }
117 }
118}
119
120/// Where a specific `mir::Body` comes from.
121#[derive(Copy, Clone, Debug, PartialEq, Eq)]
122#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
123pub struct MirSource<'tcx> {
124 pub instance: InstanceKind<'tcx>,
125
126 /// If `Some`, this is a promoted rvalue within the parent function.
127 pub promoted: Option<Promoted>,
128}
129
130impl<'tcx> MirSource<'tcx> {
131 pub fn item(def_id: DefId) -> Self {
132 MirSource { instance: InstanceKind::Item(def_id), promoted: None }
133 }
134
135 pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
136 MirSource { instance, promoted: None }
137 }
138
139 #[inline]
140 pub fn def_id(&self) -> DefId {
141 self.instance.def_id()
142 }
143}
144
145/// Additional information carried by a MIR body when it is lowered from a coroutine.
146/// This information is modified as it is lowered during the `StateTransform` MIR pass,
147/// so not all fields will be active at a given time. For example, the `yield_ty` is
148/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
149/// body is only populated after the state transform pass.
150#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
151pub struct CoroutineInfo<'tcx> {
152 /// The yield type of the function. This field is removed after the state transform pass.
153 pub yield_ty: Option<Ty<'tcx>>,
154
155 /// The resume type of the function. This field is removed after the state transform pass.
156 pub resume_ty: Option<Ty<'tcx>>,
157
158 /// Coroutine drop glue. This field is populated after the state transform pass.
159 pub coroutine_drop: Option<Body<'tcx>>,
160
161 /// Coroutine async drop glue.
162 pub coroutine_drop_async: Option<Body<'tcx>>,
163
164 /// When coroutine has sync drop, this is async proxy calling `coroutine_drop` sync impl.
165 pub coroutine_drop_proxy_async: Option<Body<'tcx>>,
166
167 /// The layout of a coroutine. Produced by the state transformation.
168 pub coroutine_layout: Option<CoroutineLayout<'tcx>>,
169
170 /// If this is a coroutine then record the type of source expression that caused this coroutine
171 /// to be created.
172 pub coroutine_kind: CoroutineKind,
173}
174
175impl<'tcx> CoroutineInfo<'tcx> {
176 // Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
177 pub fn initial(
178 coroutine_kind: CoroutineKind,
179 yield_ty: Ty<'tcx>,
180 resume_ty: Ty<'tcx>,
181 ) -> CoroutineInfo<'tcx> {
182 CoroutineInfo {
183 coroutine_kind,
184 yield_ty: Some(yield_ty),
185 resume_ty: Some(resume_ty),
186 coroutine_drop: None,
187 coroutine_drop_async: None,
188 coroutine_drop_proxy_async: None,
189 coroutine_layout: None,
190 }
191 }
192}
193
194/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
195#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
196#[derive(TypeFoldable, TypeVisitable)]
197pub enum MentionedItem<'tcx> {
198 /// A function that gets called. We don't necessarily know its precise type yet, since it can be
199 /// hidden behind a generic.
200 Fn(Ty<'tcx>),
201 /// A type that has its drop shim called.
202 Drop(Ty<'tcx>),
203 /// Unsizing casts might require vtables, so we have to record them.
204 UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
205 /// A closure that is coerced to a function pointer.
206 Closure(Ty<'tcx>),
207}
208
209/// The lowered representation of a single function.
210#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
211pub struct Body<'tcx> {
212 /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
213 /// that indexes into this vector.
214 pub basic_blocks: BasicBlocks<'tcx>,
215
216 /// Records how far through the "desugaring and optimization" process this particular
217 /// MIR has traversed. This is particularly useful when inlining, since in that context
218 /// we instantiate the promoted constants and add them to our promoted vector -- but those
219 /// promoted items have already been optimized, whereas ours have not. This field allows
220 /// us to see the difference and forego optimization on the inlined promoted items.
221 pub phase: MirPhase,
222
223 /// How many passes we have executed since starting the current phase. Used for debug output.
224 pub pass_count: usize,
225
226 pub source: MirSource<'tcx>,
227
228 /// A list of source scopes; these are referenced by statements
229 /// and used for debuginfo. Indexed by a `SourceScope`.
230 pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
231
232 /// Additional information carried by a MIR body when it is lowered from a coroutine.
233 ///
234 /// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
235 /// bodies that come from processing a coroutine body are not typically coroutines
236 /// themselves, and should probably set this to `None` to avoid carrying redundant
237 /// information.
238 pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,
239
240 /// Declarations of locals.
241 ///
242 /// The first local is the return value pointer, followed by `arg_count`
243 /// locals for the function arguments, followed by any user-declared
244 /// variables and temporaries.
245 pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,
246
247 /// User type annotations.
248 pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
249
250 /// The number of arguments this function takes.
251 ///
252 /// Starting at local 1, `arg_count` locals will be provided by the caller
253 /// and can be assumed to be initialized.
254 ///
255 /// If this MIR was built for a constant, this will be 0.
256 pub arg_count: usize,
257
258 /// Mark an argument local (which must be a tuple) as getting passed as
259 /// its individual components at the LLVM level.
260 ///
261 /// This is used for the "rust-call" ABI.
262 pub spread_arg: Option<Local>,
263
264 /// Debug information pertaining to user variables, including captures.
265 pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
266
267 /// A span representing this MIR, for error reporting.
268 pub span: Span,
269
270 /// Constants that are required to evaluate successfully for this MIR to be well-formed.
271 /// We hold in this field all the constants we are not able to evaluate yet.
272 /// `None` indicates that the list has not been computed yet.
273 ///
274 /// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
275 /// function have successfully evaluated if the function ever gets executed at runtime.
276 pub required_consts: Option<Vec<ConstOperand<'tcx>>>,
277
278 /// Further items that were mentioned in this function and hence *may* become monomorphized,
279 /// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
280 /// collector recursively traverses all "mentioned" items and evaluates all their
281 /// `required_consts`.
282 /// `None` indicates that the list has not been computed yet.
283 ///
284 /// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
285 /// All that's relevant is that this set is optimization-level-independent, and that it includes
286 /// everything that the collector would consider "used". (For example, we currently compute this
287 /// set after drop elaboration, so some drop calls that can never be reached are not considered
288 /// "mentioned".) See the documentation of `CollectionMode` in
289 /// `compiler/rustc_monomorphize/src/collector.rs` for more context.
290 pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,
291
292 /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
293 ///
294 /// Note that this does not actually mean that this body is not computable right now.
295 /// The repeat count in the following example is polymorphic, but can still be evaluated
296 /// without knowing anything about the type parameter `T`.
297 ///
298 /// ```rust
299 /// fn test<T>() {
300 /// let _ = [0; size_of::<*mut T>()];
301 /// }
302 /// ```
303 ///
304 /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
305 /// removed the last mention of all generic params. We do not want to rely on optimizations and
306 /// potentially allow things like `[u8; size_of::<T>() * 0]` due to this.
307 pub is_polymorphic: bool,
308
309 /// The phase at which this MIR should be "injected" into the compilation process.
310 ///
311 /// Everything that comes before this `MirPhase` should be skipped.
312 ///
313 /// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
314 pub injection_phase: Option<MirPhase>,
315
316 pub tainted_by_errors: Option<ErrorGuaranteed>,
317
318 /// Coverage information collected from THIR/MIR during MIR building,
319 /// to be used by the `InstrumentCoverage` pass.
320 ///
321 /// Only present if coverage is enabled and this function is eligible.
322 /// Boxed to limit space overhead in non-coverage builds.
323 #[type_foldable(identity)]
324 #[type_visitable(ignore)]
325 pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,
326
327 /// Per-function coverage information added by the `InstrumentCoverage`
328 /// pass, to be used in conjunction with the coverage statements injected
329 /// into this body's blocks.
330 ///
331 /// If `-Cinstrument-coverage` is not active, or if an individual function
332 /// is not eligible for coverage, then this should always be `None`.
333 #[type_foldable(identity)]
334 #[type_visitable(ignore)]
335 pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
336}
337
338impl<'tcx> Body<'tcx> {
339 pub fn new(
340 source: MirSource<'tcx>,
341 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
342 source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
343 local_decls: IndexVec<Local, LocalDecl<'tcx>>,
344 user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
345 arg_count: usize,
346 var_debug_info: Vec<VarDebugInfo<'tcx>>,
347 span: Span,
348 coroutine: Option<Box<CoroutineInfo<'tcx>>>,
349 tainted_by_errors: Option<ErrorGuaranteed>,
350 ) -> Self {
351 // We need `arg_count` locals, and one for the return place.
352 assert!(
353 local_decls.len() > arg_count,
354 "expected at least {} locals, got {}",
355 arg_count + 1,
356 local_decls.len()
357 );
358
359 let mut body = Body {
360 phase: MirPhase::Built,
361 pass_count: 0,
362 source,
363 basic_blocks: BasicBlocks::new(basic_blocks),
364 source_scopes,
365 coroutine,
366 local_decls,
367 user_type_annotations,
368 arg_count,
369 spread_arg: None,
370 var_debug_info,
371 span,
372 required_consts: None,
373 mentioned_items: None,
374 is_polymorphic: false,
375 injection_phase: None,
376 tainted_by_errors,
377 coverage_info_hi: None,
378 function_coverage_info: None,
379 };
380 body.is_polymorphic = body.has_non_region_param();
381 body
382 }
383
384 /// Returns a partially initialized MIR body containing only a list of basic blocks.
385 ///
386 /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
387 /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
388 /// crate.
389 pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
390 let mut body = Body {
391 phase: MirPhase::Built,
392 pass_count: 0,
393 source: MirSource::item(CRATE_DEF_ID.to_def_id()),
394 basic_blocks: BasicBlocks::new(basic_blocks),
395 source_scopes: IndexVec::new(),
396 coroutine: None,
397 local_decls: IndexVec::new(),
398 user_type_annotations: IndexVec::new(),
399 arg_count: 0,
400 spread_arg: None,
401 span: DUMMY_SP,
402 required_consts: None,
403 mentioned_items: None,
404 var_debug_info: Vec::new(),
405 is_polymorphic: false,
406 injection_phase: None,
407 tainted_by_errors: None,
408 coverage_info_hi: None,
409 function_coverage_info: None,
410 };
411 body.is_polymorphic = body.has_non_region_param();
412 body
413 }
414
415 #[inline]
416 pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
417 self.basic_blocks.as_mut()
418 }
419
420 pub fn typing_env(&self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
421 match self.phase {
422 // FIXME(#132279): we should reveal the opaques defined in the body during analysis.
423 MirPhase::Built | MirPhase::Analysis(_) => TypingEnv {
424 typing_mode: ty::TypingMode::non_body_analysis(),
425 param_env: tcx.param_env(self.source.def_id()),
426 },
427 MirPhase::Runtime(_) => TypingEnv::post_analysis(tcx, self.source.def_id()),
428 }
429 }
430
431 #[inline]
432 pub fn local_kind(&self, local: Local) -> LocalKind {
433 let index = local.as_usize();
434 if index == 0 {
435 debug_assert!(
436 self.local_decls[local].mutability == Mutability::Mut,
437 "return place should be mutable"
438 );
439
440 LocalKind::ReturnPointer
441 } else if index < self.arg_count + 1 {
442 LocalKind::Arg
443 } else {
444 LocalKind::Temp
445 }
446 }
447
448 /// Returns an iterator over all user-declared mutable locals.
449 #[inline]
450 pub fn mut_vars_iter(&self) -> impl Iterator<Item = Local> {
451 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
452 let local = Local::new(index);
453 let decl = &self.local_decls[local];
454 (decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
455 })
456 }
457
458 /// Returns an iterator over all user-declared mutable arguments and locals.
459 #[inline]
460 pub fn mut_vars_and_args_iter(&self) -> impl Iterator<Item = Local> {
461 (1..self.local_decls.len()).filter_map(move |index| {
462 let local = Local::new(index);
463 let decl = &self.local_decls[local];
464 if (decl.is_user_variable() || index < self.arg_count + 1)
465 && decl.mutability == Mutability::Mut
466 {
467 Some(local)
468 } else {
469 None
470 }
471 })
472 }
473
474 /// Returns an iterator over all function arguments.
475 #[inline]
476 pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
477 (1..self.arg_count + 1).map(Local::new)
478 }
479
480 /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
481 /// locals that are neither arguments nor the return place).
482 #[inline]
483 pub fn vars_and_temps_iter(
484 &self,
485 ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
486 (self.arg_count + 1..self.local_decls.len()).map(Local::new)
487 }
488
489 #[inline]
490 pub fn drain_vars_and_temps(&mut self) -> impl Iterator<Item = LocalDecl<'tcx>> {
491 self.local_decls.drain(self.arg_count + 1..)
492 }
493
494 /// Returns the source info associated with `location`.
495 pub fn source_info(&self, location: Location) -> &SourceInfo {
496 let block = &self[location.block];
497 let stmts = &block.statements;
498 let idx = location.statement_index;
499 if idx < stmts.len() {
500 &stmts[idx].source_info
501 } else {
502 assert_eq!(idx, stmts.len());
503 &block.terminator().source_info
504 }
505 }
506
507 /// Returns the return type; it always return first element from `local_decls` array.
508 #[inline]
509 pub fn return_ty(&self) -> Ty<'tcx> {
510 self.local_decls[RETURN_PLACE].ty
511 }
512
513 /// Returns the return type; it always return first element from `local_decls` array.
514 #[inline]
515 pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
516 ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
517 }
518
519 /// Gets the location of the terminator for the given block.
520 #[inline]
521 pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
522 Location { block: bb, statement_index: self[bb].statements.len() }
523 }
524
525 pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
526 let Location { block, statement_index } = location;
527 let block_data = &self.basic_blocks[block];
528 block_data
529 .statements
530 .get(statement_index)
531 .map(Either::Left)
532 .unwrap_or_else(|| Either::Right(block_data.terminator()))
533 }
534
535 #[inline]
536 pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
537 self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
538 }
539
540 #[inline]
541 pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
542 self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
543 }
544
545 /// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
546 #[inline]
547 pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
548 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
549 }
550
551 #[inline]
552 pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
553 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
554 }
555
556 #[inline]
557 pub fn coroutine_drop_async(&self) -> Option<&Body<'tcx>> {
558 self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop_async.as_ref())
559 }
560
561 #[inline]
562 pub fn coroutine_requires_async_drop(&self) -> bool {
563 self.coroutine_drop_async().is_some()
564 }
565
566 #[inline]
567 pub fn future_drop_poll(&self) -> Option<&Body<'tcx>> {
568 self.coroutine.as_ref().and_then(|coroutine| {
569 coroutine
570 .coroutine_drop_async
571 .as_ref()
572 .or(coroutine.coroutine_drop_proxy_async.as_ref())
573 })
574 }
575
576 #[inline]
577 pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
578 self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
579 }
580
581 #[inline]
582 pub fn should_skip(&self) -> bool {
583 let Some(injection_phase) = self.injection_phase else {
584 return false;
585 };
586 injection_phase > self.phase
587 }
588
589 #[inline]
590 pub fn is_custom_mir(&self) -> bool {
591 self.injection_phase.is_some()
592 }
593
594 /// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
595 /// discriminant in monomorphization, we return the discriminant bits and the
596 /// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
597 fn try_const_mono_switchint<'a>(
598 tcx: TyCtxt<'tcx>,
599 instance: Instance<'tcx>,
600 block: &'a BasicBlockData<'tcx>,
601 ) -> Option<(u128, &'a SwitchTargets)> {
602 // There are two places here we need to evaluate a constant.
603 let eval_mono_const = |constant: &ConstOperand<'tcx>| {
604 // FIXME(#132279): what is this, why are we using an empty environment here.
605 let typing_env = ty::TypingEnv::fully_monomorphized();
606 let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
607 tcx,
608 typing_env,
609 crate::ty::EarlyBinder::bind(constant.const_),
610 );
611 mono_literal.try_eval_bits(tcx, typing_env)
612 };
613
614 let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
615 return None;
616 };
617
618 // If this is a SwitchInt(const _), then we can just evaluate the constant and return.
619 let discr = match discr {
620 Operand::Constant(constant) => {
621 let bits = eval_mono_const(constant)?;
622 return Some((bits, targets));
623 }
624 Operand::Move(place) | Operand::Copy(place) => place,
625 };
626
627 // MIR for `if false` actually looks like this:
628 // _1 = const _
629 // SwitchInt(_1)
630 //
631 // And MIR for if intrinsics::ub_checks() looks like this:
632 // _1 = UbChecks()
633 // SwitchInt(_1)
634 //
635 // So we're going to try to recognize this pattern.
636 //
637 // If we have a SwitchInt on a non-const place, we find the most recent statement that
638 // isn't a storage marker. If that statement is an assignment of a const to our
639 // discriminant place, we evaluate and return the const, as if we've const-propagated it
640 // into the SwitchInt.
641
642 let last_stmt = block.statements.iter().rev().find(|stmt| {
643 !matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
644 })?;
645
646 let (place, rvalue) = last_stmt.kind.as_assign()?;
647
648 if discr != place {
649 return None;
650 }
651
652 match rvalue {
653 Rvalue::NullaryOp(NullOp::UbChecks, _) => Some((tcx.sess.ub_checks() as u128, targets)),
654 Rvalue::Use(Operand::Constant(constant)) => {
655 let bits = eval_mono_const(constant)?;
656 Some((bits, targets))
657 }
658 _ => None,
659 }
660 }
661
662 /// For a `Location` in this scope, determine what the "caller location" at that point is. This
663 /// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
664 /// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
665 /// or the function's scope.
666 pub fn caller_location_span<T>(
667 &self,
668 mut source_info: SourceInfo,
669 caller_location: Option<T>,
670 tcx: TyCtxt<'tcx>,
671 from_span: impl FnOnce(Span) -> T,
672 ) -> T {
673 loop {
674 let scope_data = &self.source_scopes[source_info.scope];
675
676 if let Some((callee, callsite_span)) = scope_data.inlined {
677 // Stop inside the most nested non-`#[track_caller]` function,
678 // before ever reaching its caller (which is irrelevant).
679 if !callee.def.requires_caller_location(tcx) {
680 return from_span(source_info.span);
681 }
682 source_info.span = callsite_span;
683 }
684
685 // Skip past all of the parents with `inlined: None`.
686 match scope_data.inlined_parent_scope {
687 Some(parent) => source_info.scope = parent,
688 None => break,
689 }
690 }
691
692 // No inlined `SourceScope`s, or all of them were `#[track_caller]`.
693 caller_location.unwrap_or_else(|| from_span(source_info.span))
694 }
695
696 #[track_caller]
697 pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
698 assert!(
699 self.required_consts.is_none(),
700 "required_consts for {:?} have already been set",
701 self.source.def_id()
702 );
703 self.required_consts = Some(required_consts);
704 }
705 #[track_caller]
706 pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
707 match &self.required_consts {
708 Some(l) => l,
709 None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
710 }
711 }
712
713 #[track_caller]
714 pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
715 assert!(
716 self.mentioned_items.is_none(),
717 "mentioned_items for {:?} have already been set",
718 self.source.def_id()
719 );
720 self.mentioned_items = Some(mentioned_items);
721 }
722 #[track_caller]
723 pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
724 match &self.mentioned_items {
725 Some(l) => l,
726 None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
727 }
728 }
729}
730
731impl<'tcx> Index<BasicBlock> for Body<'tcx> {
732 type Output = BasicBlockData<'tcx>;
733
734 #[inline]
735 fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
736 &self.basic_blocks[index]
737 }
738}
739
740impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
741 #[inline]
742 fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
743 &mut self.basic_blocks.as_mut()[index]
744 }
745}
746
747#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
748pub enum ClearCrossCrate<T> {
749 Clear,
750 Set(T),
751}
752
753impl<T> ClearCrossCrate<T> {
754 pub fn as_ref(&self) -> ClearCrossCrate<&T> {
755 match self {
756 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
757 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
758 }
759 }
760
761 pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
762 match self {
763 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
764 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
765 }
766 }
767
768 pub fn unwrap_crate_local(self) -> T {
769 match self {
770 ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
771 ClearCrossCrate::Set(v) => v,
772 }
773 }
774}
775
776const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
777const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
778
779impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
780 #[inline]
781 fn encode(&self, e: &mut E) {
782 if E::CLEAR_CROSS_CRATE {
783 return;
784 }
785
786 match *self {
787 ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
788 ClearCrossCrate::Set(ref val) => {
789 TAG_CLEAR_CROSS_CRATE_SET.encode(e);
790 val.encode(e);
791 }
792 }
793 }
794}
795impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
796 #[inline]
797 fn decode(d: &mut D) -> ClearCrossCrate<T> {
798 if D::CLEAR_CROSS_CRATE {
799 return ClearCrossCrate::Clear;
800 }
801
802 let discr = u8::decode(d);
803
804 match discr {
805 TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
806 TAG_CLEAR_CROSS_CRATE_SET => {
807 let val = T::decode(d);
808 ClearCrossCrate::Set(val)
809 }
810 tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
811 }
812 }
813}
814
815/// Grouped information about the source code origin of a MIR entity.
816/// Intended to be inspected by diagnostics and debuginfo.
817/// Most passes can work with it as a whole, within a single function.
818// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
819// `Hash`. Please ping @bjorn3 if removing them.
820#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
821pub struct SourceInfo {
822 /// The source span for the AST pertaining to this MIR entity.
823 pub span: Span,
824
825 /// The source scope, keeping track of which bindings can be
826 /// seen by debuginfo, active lint levels, etc.
827 pub scope: SourceScope,
828}
829
830impl SourceInfo {
831 #[inline]
832 pub fn outermost(span: Span) -> Self {
833 SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
834 }
835}
836
837///////////////////////////////////////////////////////////////////////////
838// Variables and temps
839
840rustc_index::newtype_index! {
841 #[derive(HashStable)]
842 #[encodable]
843 #[orderable]
844 #[debug_format = "_{}"]
845 pub struct Local {
846 const RETURN_PLACE = 0;
847 }
848}
849
850impl Atom for Local {
851 fn index(self) -> usize {
852 Idx::index(self)
853 }
854}
855
856/// Classifies locals into categories. See `Body::local_kind`.
857#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
858pub enum LocalKind {
859 /// User-declared variable binding or compiler-introduced temporary.
860 Temp,
861 /// Function argument.
862 Arg,
863 /// Location of function's return value.
864 ReturnPointer,
865}
866
867#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
868pub struct VarBindingForm<'tcx> {
869 /// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
870 pub binding_mode: BindingMode,
871 /// If an explicit type was provided for this variable binding,
872 /// this holds the source Span of that type.
873 ///
874 /// NOTE: if you want to change this to a `HirId`, be wary that
875 /// doing so breaks incremental compilation (as of this writing),
876 /// while a `Span` does not cause our tests to fail.
877 pub opt_ty_info: Option<Span>,
878 /// Place of the RHS of the =, or the subject of the `match` where this
879 /// variable is initialized. None in the case of `let PATTERN;`.
880 /// Some((None, ..)) in the case of and `let [mut] x = ...` because
881 /// (a) the right-hand side isn't evaluated as a place expression.
882 /// (b) it gives a way to separate this case from the remaining cases
883 /// for diagnostics.
884 pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
885 /// The span of the pattern in which this variable was bound.
886 pub pat_span: Span,
887}
888
889#[derive(Clone, Debug, TyEncodable, TyDecodable)]
890pub enum BindingForm<'tcx> {
891 /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
892 Var(VarBindingForm<'tcx>),
893 /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
894 ImplicitSelf(ImplicitSelfKind),
895 /// Reference used in a guard expression to ensure immutability.
896 RefForGuard,
897}
898
899mod binding_form_impl {
900 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
901 use rustc_query_system::ich::StableHashingContext;
902
903 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
904 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
905 use super::BindingForm::*;
906 std::mem::discriminant(self).hash_stable(hcx, hasher);
907
908 match self {
909 Var(binding) => binding.hash_stable(hcx, hasher),
910 ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
911 RefForGuard => (),
912 }
913 }
914 }
915}
916
917/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
918/// created during evaluation of expressions in a block tail
919/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
920///
921/// It is used to improve diagnostics when such temporaries are
922/// involved in borrow_check errors, e.g., explanations of where the
923/// temporaries come from, when their destructors are run, and/or how
924/// one might revise the code to satisfy the borrow checker's rules.
925#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
926pub struct BlockTailInfo {
927 /// If `true`, then the value resulting from evaluating this tail
928 /// expression is ignored by the block's expression context.
929 ///
930 /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
931 /// but not e.g., `let _x = { ...; tail };`
932 pub tail_result_is_ignored: bool,
933
934 /// `Span` of the tail expression.
935 pub span: Span,
936}
937
938/// A MIR local.
939///
940/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
941/// argument, or the return place.
942#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
943pub struct LocalDecl<'tcx> {
944 /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
945 ///
946 /// Temporaries and the return place are always mutable.
947 pub mutability: Mutability,
948
949 pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,
950
951 /// The type of this local.
952 pub ty: Ty<'tcx>,
953
954 /// If the user manually ascribed a type to this variable,
955 /// e.g., via `let x: T`, then we carry that type here. The MIR
956 /// borrow checker needs this information since it can affect
957 /// region inference.
958 pub user_ty: Option<Box<UserTypeProjections>>,
959
960 /// The *syntactic* (i.e., not visibility) source scope the local is defined
961 /// in. If the local was defined in a let-statement, this
962 /// is *within* the let-statement, rather than outside
963 /// of it.
964 ///
965 /// This is needed because the visibility source scope of locals within
966 /// a let-statement is weird.
967 ///
968 /// The reason is that we want the local to be *within* the let-statement
969 /// for lint purposes, but we want the local to be *after* the let-statement
970 /// for names-in-scope purposes.
971 ///
972 /// That's it, if we have a let-statement like the one in this
973 /// function:
974 ///
975 /// ```
976 /// fn foo(x: &str) {
977 /// #[allow(unused_mut)]
978 /// let mut x: u32 = {
979 /// //^ one unused mut
980 /// let mut y: u32 = x.parse().unwrap();
981 /// y + 2
982 /// };
983 /// drop(x);
984 /// }
985 /// ```
986 ///
987 /// Then, from a lint point of view, the declaration of `x: u32`
988 /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
989 /// lint scopes are the same as the AST/HIR nesting.
990 ///
991 /// However, from a name lookup point of view, the scopes look more like
992 /// as if the let-statements were `match` expressions:
993 ///
994 /// ```
995 /// fn foo(x: &str) {
996 /// match {
997 /// match x.parse::<u32>().unwrap() {
998 /// y => y + 2
999 /// }
1000 /// } {
1001 /// x => drop(x)
1002 /// };
1003 /// }
1004 /// ```
1005 ///
1006 /// We care about the name-lookup scopes for debuginfo - if the
1007 /// debuginfo instruction pointer is at the call to `x.parse()`, we
1008 /// want `x` to refer to `x: &str`, but if it is at the call to
1009 /// `drop(x)`, we want it to refer to `x: u32`.
1010 ///
1011 /// To allow both uses to work, we need to have more than a single scope
1012 /// for a local. We have the `source_info.scope` represent the "syntactic"
1013 /// lint scope (with a variable being under its let block) while the
1014 /// `var_debug_info.source_info.scope` represents the "local variable"
1015 /// scope (where the "rest" of a block is under all prior let-statements).
1016 ///
1017 /// The end result looks like this:
1018 ///
1019 /// ```text
1020 /// ROOT SCOPE
1021 /// │{ argument x: &str }
1022 /// │
1023 /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
1024 /// │ │ // in practice because I'm lazy.
1025 /// │ │
1026 /// │ │← x.source_info.scope
1027 /// │ │← `x.parse().unwrap()`
1028 /// │ │
1029 /// │ │ │← y.source_info.scope
1030 /// │ │
1031 /// │ │ │{ let y: u32 }
1032 /// │ │ │
1033 /// │ │ │← y.var_debug_info.source_info.scope
1034 /// │ │ │← `y + 2`
1035 /// │
1036 /// │ │{ let x: u32 }
1037 /// │ │← x.var_debug_info.source_info.scope
1038 /// │ │← `drop(x)` // This accesses `x: u32`.
1039 /// ```
1040 pub source_info: SourceInfo,
1041}
1042
1043/// Extra information about a some locals that's used for diagnostics and for
1044/// classifying variables into local variables, statics, etc, which is needed e.g.
1045/// for borrow checking.
1046///
1047/// Not used for non-StaticRef temporaries, the return place, or anonymous
1048/// function parameters.
1049#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1050pub enum LocalInfo<'tcx> {
1051 /// A user-defined local variable or function parameter
1052 ///
1053 /// The `BindingForm` is solely used for local diagnostics when generating
1054 /// warnings/errors when compiling the current crate, and therefore it need
1055 /// not be visible across crates.
1056 User(BindingForm<'tcx>),
1057 /// A temporary created that references the static with the given `DefId`.
1058 StaticRef { def_id: DefId, is_thread_local: bool },
1059 /// A temporary created that references the const with the given `DefId`
1060 ConstRef { def_id: DefId },
1061 /// A temporary created during the creation of an aggregate
1062 /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
1063 AggregateTemp,
1064 /// A temporary created for evaluation of some subexpression of some block's tail expression
1065 /// (with no intervening statement context).
1066 BlockTailTemp(BlockTailInfo),
1067 /// A temporary created during evaluating `if` predicate, possibly for pattern matching for `let`s,
1068 /// and subject to Edition 2024 temporary lifetime rules
1069 IfThenRescopeTemp { if_then: HirId },
1070 /// A temporary created during the pass `Derefer` to avoid it's retagging
1071 DerefTemp,
1072 /// A temporary created for borrow checking.
1073 FakeBorrow,
1074 /// A local without anything interesting about it.
1075 Boring,
1076}
1077
1078impl<'tcx> LocalDecl<'tcx> {
1079 pub fn local_info(&self) -> &LocalInfo<'tcx> {
1080 self.local_info.as_ref().unwrap_crate_local()
1081 }
1082
1083 /// Returns `true` only if local is a binding that can itself be
1084 /// made mutable via the addition of the `mut` keyword, namely
1085 /// something like the occurrences of `x` in:
1086 /// - `fn foo(x: Type) { ... }`,
1087 /// - `let x = ...`,
1088 /// - or `match ... { C(x) => ... }`
1089 pub fn can_be_made_mutable(&self) -> bool {
1090 matches!(
1091 self.local_info(),
1092 LocalInfo::User(
1093 BindingForm::Var(VarBindingForm {
1094 binding_mode: BindingMode(ByRef::No, _),
1095 opt_ty_info: _,
1096 opt_match_place: _,
1097 pat_span: _,
1098 }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
1099 )
1100 )
1101 }
1102
1103 /// Returns `true` if local is definitely not a `ref ident` or
1104 /// `ref mut ident` binding. (Such bindings cannot be made into
1105 /// mutable bindings, but the inverse does not necessarily hold).
1106 pub fn is_nonref_binding(&self) -> bool {
1107 matches!(
1108 self.local_info(),
1109 LocalInfo::User(
1110 BindingForm::Var(VarBindingForm {
1111 binding_mode: BindingMode(ByRef::No, _),
1112 opt_ty_info: _,
1113 opt_match_place: _,
1114 pat_span: _,
1115 }) | BindingForm::ImplicitSelf(_),
1116 )
1117 )
1118 }
1119
1120 /// Returns `true` if this variable is a named variable or function
1121 /// parameter declared by the user.
1122 #[inline]
1123 pub fn is_user_variable(&self) -> bool {
1124 matches!(self.local_info(), LocalInfo::User(_))
1125 }
1126
1127 /// Returns `true` if this is a reference to a variable bound in a `match`
1128 /// expression that is used to access said variable for the guard of the
1129 /// match arm.
1130 pub fn is_ref_for_guard(&self) -> bool {
1131 matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard))
1132 }
1133
1134 /// Returns `Some` if this is a reference to a static item that is used to
1135 /// access that static.
1136 pub fn is_ref_to_static(&self) -> bool {
1137 matches!(self.local_info(), LocalInfo::StaticRef { .. })
1138 }
1139
1140 /// Returns `Some` if this is a reference to a thread-local static item that is used to
1141 /// access that static.
1142 pub fn is_ref_to_thread_local(&self) -> bool {
1143 match self.local_info() {
1144 LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
1145 _ => false,
1146 }
1147 }
1148
1149 /// Returns `true` if this is a DerefTemp
1150 pub fn is_deref_temp(&self) -> bool {
1151 match self.local_info() {
1152 LocalInfo::DerefTemp => true,
1153 _ => false,
1154 }
1155 }
1156
1157 /// Returns `true` is the local is from a compiler desugaring, e.g.,
1158 /// `__next` from a `for` loop.
1159 #[inline]
1160 pub fn from_compiler_desugaring(&self) -> bool {
1161 self.source_info.span.desugaring_kind().is_some()
1162 }
1163
1164 /// Creates a new `LocalDecl` for a temporary, mutable.
1165 #[inline]
1166 pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1167 Self::with_source_info(ty, SourceInfo::outermost(span))
1168 }
1169
1170 /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1171 #[inline]
1172 pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1173 LocalDecl {
1174 mutability: Mutability::Mut,
1175 local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
1176 ty,
1177 user_ty: None,
1178 source_info,
1179 }
1180 }
1181
1182 /// Converts `self` into same `LocalDecl` except tagged as immutable.
1183 #[inline]
1184 pub fn immutable(mut self) -> Self {
1185 self.mutability = Mutability::Not;
1186 self
1187 }
1188}
1189
1190#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1191pub enum VarDebugInfoContents<'tcx> {
1192 /// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
1193 Place(Place<'tcx>),
1194 Const(ConstOperand<'tcx>),
1195}
1196
1197impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1198 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1199 match self {
1200 VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
1201 VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
1202 }
1203 }
1204}
1205
1206#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1207pub struct VarDebugInfoFragment<'tcx> {
1208 /// Type of the original user variable.
1209 /// This cannot contain a union or an enum.
1210 pub ty: Ty<'tcx>,
1211
1212 /// Where in the composite user variable this fragment is,
1213 /// represented as a "projection" into the composite variable.
1214 /// At lower levels, this corresponds to a byte/bit range.
1215 ///
1216 /// This can only contain `PlaceElem::Field`.
1217 // FIXME support this for `enum`s by either using DWARF's
1218 // more advanced control-flow features (unsupported by LLVM?)
1219 // to match on the discriminant, or by using custom type debuginfo
1220 // with non-overlapping variants for the composite variable.
1221 pub projection: Vec<PlaceElem<'tcx>>,
1222}
1223
1224/// Debug information pertaining to a user variable.
1225#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1226pub struct VarDebugInfo<'tcx> {
1227 pub name: Symbol,
1228
1229 /// Source info of the user variable, including the scope
1230 /// within which the variable is visible (to debuginfo)
1231 /// (see `LocalDecl`'s `source_info` field for more details).
1232 pub source_info: SourceInfo,
1233
1234 /// The user variable's data is split across several fragments,
1235 /// each described by a `VarDebugInfoFragment`.
1236 /// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
1237 /// and LLVM's `DW_OP_LLVM_fragment` for more details on
1238 /// the underlying debuginfo feature this relies on.
1239 pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,
1240
1241 /// Where the data for this user variable is to be found.
1242 pub value: VarDebugInfoContents<'tcx>,
1243
1244 /// When present, indicates what argument number this variable is in the function that it
1245 /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
1246 /// argument number in the original function before it was inlined.
1247 pub argument_index: Option<u16>,
1248}
1249
1250///////////////////////////////////////////////////////////////////////////
1251// BasicBlock
1252
1253rustc_index::newtype_index! {
1254 /// A node in the MIR [control-flow graph][CFG].
1255 ///
1256 /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1257 /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1258 /// as an edge in a graph between basic blocks.
1259 ///
1260 /// Basic blocks consist of a series of [statements][Statement], ending with a
1261 /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1262 /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1263 /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1264 /// needed because some analyses require that there are no critical edges in the CFG.
1265 ///
1266 /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1267 /// the actual data that a basic block holds is in [`BasicBlockData`].
1268 ///
1269 /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1270 ///
1271 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1272 /// [data-flow analyses]:
1273 /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
1274 /// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1275 /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
1276 #[derive(HashStable)]
1277 #[encodable]
1278 #[orderable]
1279 #[debug_format = "bb{}"]
1280 pub struct BasicBlock {
1281 const START_BLOCK = 0;
1282 }
1283}
1284
1285impl BasicBlock {
1286 pub fn start_location(self) -> Location {
1287 Location { block: self, statement_index: 0 }
1288 }
1289}
1290
1291///////////////////////////////////////////////////////////////////////////
1292// BasicBlockData
1293
1294/// Data for a basic block, including a list of its statements.
1295///
1296/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
1297#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1298#[non_exhaustive]
1299pub struct BasicBlockData<'tcx> {
1300 /// List of statements in this block.
1301 pub statements: Vec<Statement<'tcx>>,
1302
1303 /// Terminator for this block.
1304 ///
1305 /// N.B., this should generally ONLY be `None` during construction.
1306 /// Therefore, you should generally access it via the
1307 /// `terminator()` or `terminator_mut()` methods. The only
1308 /// exception is that certain passes, such as `simplify_cfg`, swap
1309 /// out the terminator temporarily with `None` while they continue
1310 /// to recurse over the set of basic blocks.
1311 pub terminator: Option<Terminator<'tcx>>,
1312
1313 /// If true, this block lies on an unwind path. This is used
1314 /// during codegen where distinct kinds of basic blocks may be
1315 /// generated (particularly for MSVC cleanup). Unwind blocks must
1316 /// only branch to other unwind blocks.
1317 pub is_cleanup: bool,
1318}
1319
1320impl<'tcx> BasicBlockData<'tcx> {
1321 pub fn new(terminator: Option<Terminator<'tcx>>, is_cleanup: bool) -> BasicBlockData<'tcx> {
1322 BasicBlockData::new_stmts(Vec::new(), terminator, is_cleanup)
1323 }
1324
1325 pub fn new_stmts(
1326 statements: Vec<Statement<'tcx>>,
1327 terminator: Option<Terminator<'tcx>>,
1328 is_cleanup: bool,
1329 ) -> BasicBlockData<'tcx> {
1330 BasicBlockData { statements, terminator, is_cleanup }
1331 }
1332
1333 /// Accessor for terminator.
1334 ///
1335 /// Terminator may not be None after construction of the basic block is complete. This accessor
1336 /// provides a convenient way to reach the terminator.
1337 #[inline]
1338 pub fn terminator(&self) -> &Terminator<'tcx> {
1339 self.terminator.as_ref().expect("invalid terminator state")
1340 }
1341
1342 #[inline]
1343 pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1344 self.terminator.as_mut().expect("invalid terminator state")
1345 }
1346
1347 /// Does the block have no statements and an unreachable terminator?
1348 #[inline]
1349 pub fn is_empty_unreachable(&self) -> bool {
1350 self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
1351 }
1352
1353 /// Like [`Terminator::successors`] but tries to use information available from the [`Instance`]
1354 /// to skip successors like the `false` side of an `if const {`.
1355 ///
1356 /// This is used to implement [`traversal::mono_reachable`] and
1357 /// [`traversal::mono_reachable_reverse_postorder`].
1358 pub fn mono_successors(&self, tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Successors<'_> {
1359 if let Some((bits, targets)) = Body::try_const_mono_switchint(tcx, instance, self) {
1360 targets.successors_for_value(bits)
1361 } else {
1362 self.terminator().successors()
1363 }
1364 }
1365}
1366
1367///////////////////////////////////////////////////////////////////////////
1368// Scopes
1369
1370rustc_index::newtype_index! {
1371 #[derive(HashStable)]
1372 #[encodable]
1373 #[debug_format = "scope[{}]"]
1374 pub struct SourceScope {
1375 const OUTERMOST_SOURCE_SCOPE = 0;
1376 }
1377}
1378
1379impl SourceScope {
1380 /// Finds the original HirId this MIR item came from.
1381 /// This is necessary after MIR optimizations, as otherwise we get a HirId
1382 /// from the function that was inlined instead of the function call site.
1383 pub fn lint_root(
1384 self,
1385 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
1386 ) -> Option<HirId> {
1387 let mut data = &source_scopes[self];
1388 // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
1389 // does not work as I thought it would. Needs more investigation and documentation.
1390 while data.inlined.is_some() {
1391 trace!(?data);
1392 data = &source_scopes[data.parent_scope.unwrap()];
1393 }
1394 trace!(?data);
1395 match &data.local_data {
1396 ClearCrossCrate::Set(data) => Some(data.lint_root),
1397 ClearCrossCrate::Clear => None,
1398 }
1399 }
1400
1401 /// The instance this source scope was inlined from, if any.
1402 #[inline]
1403 pub fn inlined_instance<'tcx>(
1404 self,
1405 source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
1406 ) -> Option<ty::Instance<'tcx>> {
1407 let scope_data = &source_scopes[self];
1408 if let Some((inlined_instance, _)) = scope_data.inlined {
1409 Some(inlined_instance)
1410 } else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
1411 Some(source_scopes[inlined_scope].inlined.unwrap().0)
1412 } else {
1413 None
1414 }
1415 }
1416}
1417
1418#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1419pub struct SourceScopeData<'tcx> {
1420 pub span: Span,
1421 pub parent_scope: Option<SourceScope>,
1422
1423 /// Whether this scope is the root of a scope tree of another body,
1424 /// inlined into this body by the MIR inliner.
1425 /// `ty::Instance` is the callee, and the `Span` is the call site.
1426 pub inlined: Option<(ty::Instance<'tcx>, Span)>,
1427
1428 /// Nearest (transitive) parent scope (if any) which is inlined.
1429 /// This is an optimization over walking up `parent_scope`
1430 /// until a scope with `inlined: Some(...)` is found.
1431 pub inlined_parent_scope: Option<SourceScope>,
1432
1433 /// Crate-local information for this source scope, that can't (and
1434 /// needn't) be tracked across crates.
1435 pub local_data: ClearCrossCrate<SourceScopeLocalData>,
1436}
1437
1438#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
1439pub struct SourceScopeLocalData {
1440 /// An `HirId` with lint levels equivalent to this scope's lint levels.
1441 pub lint_root: HirId,
1442}
1443
1444/// A collection of projections into user types.
1445///
1446/// They are projections because a binding can occur a part of a
1447/// parent pattern that has been ascribed a type.
1448///
1449/// It's a collection because there can be multiple type ascriptions on
1450/// the path from the root of the pattern down to the binding itself.
1451///
1452/// An example:
1453///
1454/// ```ignore (illustrative)
1455/// struct S<'a>((i32, &'a str), String);
1456/// let S((_, w): (i32, &'static str), _): S = ...;
1457/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
1458/// // --------------------------------- ^ (2)
1459/// ```
1460///
1461/// The highlights labelled `(1)` show the subpattern `(_, w)` being
1462/// ascribed the type `(i32, &'static str)`.
1463///
1464/// The highlights labelled `(2)` show the whole pattern being
1465/// ascribed the type `S`.
1466///
1467/// In this example, when we descend to `w`, we will have built up the
1468/// following two projected types:
1469///
1470/// * base: `S`, projection: `(base.0).1`
1471/// * base: `(i32, &'static str)`, projection: `base.1`
1472///
1473/// The first will lead to the constraint `w: &'1 str` (for some
1474/// inferred region `'1`). The second will lead to the constraint `w:
1475/// &'static str`.
1476#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
1477pub struct UserTypeProjections {
1478 pub contents: Vec<UserTypeProjection>,
1479}
1480
1481impl UserTypeProjections {
1482 pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
1483 self.contents.iter()
1484 }
1485}
1486
1487/// Encodes the effect of a user-supplied type annotation on the
1488/// subcomponents of a pattern. The effect is determined by applying the
1489/// given list of projections to some underlying base type. Often,
1490/// the projection element list `projs` is empty, in which case this
1491/// directly encodes a type in `base`. But in the case of complex patterns with
1492/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
1493/// in which case the `projs` vector is used.
1494///
1495/// Examples:
1496///
1497/// * `let x: T = ...` -- here, the `projs` vector is empty.
1498///
1499/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
1500/// `field[0]` (aka `.0`), indicating that the type of `s` is
1501/// determined by finding the type of the `.0` field from `T`.
1502#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
1503#[derive(TypeFoldable, TypeVisitable)]
1504pub struct UserTypeProjection {
1505 pub base: UserTypeAnnotationIndex,
1506 pub projs: Vec<ProjectionKind>,
1507}
1508
1509rustc_index::newtype_index! {
1510 #[derive(HashStable)]
1511 #[encodable]
1512 #[orderable]
1513 #[debug_format = "promoted[{}]"]
1514 pub struct Promoted {}
1515}
1516
1517/// `Location` represents the position of the start of the statement; or, if
1518/// `statement_index` equals the number of statements, then the start of the
1519/// terminator.
1520#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
1521pub struct Location {
1522 /// The block that the location is within.
1523 pub block: BasicBlock,
1524
1525 pub statement_index: usize,
1526}
1527
1528impl fmt::Debug for Location {
1529 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1530 write!(fmt, "{:?}[{}]", self.block, self.statement_index)
1531 }
1532}
1533
1534impl Location {
1535 pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
1536
1537 /// Returns the location immediately after this one within the enclosing block.
1538 ///
1539 /// Note that if this location represents a terminator, then the
1540 /// resulting location would be out of bounds and invalid.
1541 #[inline]
1542 pub fn successor_within_block(&self) -> Location {
1543 Location { block: self.block, statement_index: self.statement_index + 1 }
1544 }
1545
1546 /// Returns `true` if `other` is earlier in the control flow graph than `self`.
1547 pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
1548 // If we are in the same block as the other location and are an earlier statement
1549 // then we are a predecessor of `other`.
1550 if self.block == other.block && self.statement_index < other.statement_index {
1551 return true;
1552 }
1553
1554 let predecessors = body.basic_blocks.predecessors();
1555
1556 // If we're in another block, then we want to check that block is a predecessor of `other`.
1557 let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
1558 let mut visited = FxHashSet::default();
1559
1560 while let Some(block) = queue.pop() {
1561 // If we haven't visited this block before, then make sure we visit its predecessors.
1562 if visited.insert(block) {
1563 queue.extend(predecessors[block].iter().cloned());
1564 } else {
1565 continue;
1566 }
1567
1568 // If we found the block that `self` is in, then we are a predecessor of `other` (since
1569 // we found that block by looking at the predecessors of `other`).
1570 if self.block == block {
1571 return true;
1572 }
1573 }
1574
1575 false
1576 }
1577
1578 #[inline]
1579 pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
1580 if self.block == other.block {
1581 self.statement_index <= other.statement_index
1582 } else {
1583 dominators.dominates(self.block, other.block)
1584 }
1585 }
1586}
1587
1588/// `DefLocation` represents the location of a definition - either an argument or an assignment
1589/// within MIR body.
1590#[derive(Copy, Clone, Debug, PartialEq, Eq)]
1591pub enum DefLocation {
1592 Argument,
1593 Assignment(Location),
1594 CallReturn { call: BasicBlock, target: Option<BasicBlock> },
1595}
1596
1597impl DefLocation {
1598 #[inline]
1599 pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
1600 match self {
1601 DefLocation::Argument => true,
1602 DefLocation::Assignment(def) => {
1603 def.successor_within_block().dominates(location, dominators)
1604 }
1605 DefLocation::CallReturn { target: None, .. } => false,
1606 DefLocation::CallReturn { call, target: Some(target) } => {
1607 // The definition occurs on the call -> target edge. The definition dominates a use
1608 // if and only if the edge is on all paths from the entry to the use.
1609 //
1610 // Note that a call terminator has only one edge that can reach the target, so when
1611 // the call strongly dominates the target, all paths from the entry to the target
1612 // go through the call -> target edge.
1613 call != target
1614 && dominators.dominates(call, target)
1615 && dominators.dominates(target, location.block)
1616 }
1617 }
1618 }
1619}
1620
1621/// Checks if the specified `local` is used as the `self` parameter of a method call
1622/// in the provided `BasicBlock`. If it is, then the `DefId` of the called method is
1623/// returned.
1624pub fn find_self_call<'tcx>(
1625 tcx: TyCtxt<'tcx>,
1626 body: &Body<'tcx>,
1627 local: Local,
1628 block: BasicBlock,
1629) -> Option<(DefId, GenericArgsRef<'tcx>)> {
1630 debug!("find_self_call(local={:?}): terminator={:?}", local, body[block].terminator);
1631 if let Some(Terminator { kind: TerminatorKind::Call { func, args, .. }, .. }) =
1632 &body[block].terminator
1633 && let Operand::Constant(box ConstOperand { const_, .. }) = func
1634 && let ty::FnDef(def_id, fn_args) = *const_.ty().kind()
1635 && let Some(item) = tcx.opt_associated_item(def_id)
1636 && item.is_method()
1637 && let [Spanned { node: Operand::Move(self_place) | Operand::Copy(self_place), .. }, ..] =
1638 **args
1639 {
1640 if self_place.as_local() == Some(local) {
1641 return Some((def_id, fn_args));
1642 }
1643
1644 // Handle the case where `self_place` gets reborrowed.
1645 // This happens when the receiver is `&T`.
1646 for stmt in &body[block].statements {
1647 if let StatementKind::Assign(box (place, rvalue)) = &stmt.kind
1648 && let Some(reborrow_local) = place.as_local()
1649 && self_place.as_local() == Some(reborrow_local)
1650 && let Rvalue::Ref(_, _, deref_place) = rvalue
1651 && let PlaceRef { local: deref_local, projection: [ProjectionElem::Deref] } =
1652 deref_place.as_ref()
1653 && deref_local == local
1654 {
1655 return Some((def_id, fn_args));
1656 }
1657 }
1658 }
1659 None
1660}
1661
1662// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
1663#[cfg(target_pointer_width = "64")]
1664mod size_asserts {
1665 use rustc_data_structures::static_assert_size;
1666
1667 use super::*;
1668 // tidy-alphabetical-start
1669 static_assert_size!(BasicBlockData<'_>, 128);
1670 static_assert_size!(LocalDecl<'_>, 40);
1671 static_assert_size!(SourceScopeData<'_>, 64);
1672 static_assert_size!(Statement<'_>, 32);
1673 static_assert_size!(Terminator<'_>, 96);
1674 static_assert_size!(VarDebugInfo<'_>, 88);
1675 // tidy-alphabetical-end
1676}