ostd/mm/dma/
dma_coherent.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// SPDX-License-Identifier: MPL-2.0

use alloc::sync::Arc;
use core::ops::Deref;

use cfg_if::cfg_if;

use super::{check_and_insert_dma_mapping, remove_dma_mapping, DmaError, HasDaddr};
use crate::{
    arch::iommu,
    mm::{
        dma::{dma_type, Daddr, DmaType},
        io::VmIoOnce,
        kspace::{paddr_to_vaddr, KERNEL_PAGE_TABLE},
        page_prop::CachePolicy,
        HasPaddr, Infallible, Paddr, PodOnce, USegment, UntypedMem, VmIo, VmReader, VmWriter,
        PAGE_SIZE,
    },
    prelude::*,
};

cfg_if! {
    if #[cfg(all(target_arch = "x86_64", feature = "cvm_guest"))] {
        use crate::arch::tdx_guest;
    }
}

/// A coherent (or consistent) DMA mapping,
/// which guarantees that the device and the CPU can
/// access the data in parallel.
///
/// The mapping will be destroyed automatically when
/// the object is dropped.
#[derive(Debug, Clone)]
pub struct DmaCoherent {
    inner: Arc<DmaCoherentInner>,
}

#[derive(Debug)]
struct DmaCoherentInner {
    segment: USegment,
    start_daddr: Daddr,
    is_cache_coherent: bool,
}

impl DmaCoherent {
    /// Creates a coherent DMA mapping backed by `segment`.
    ///
    /// The `is_cache_coherent` argument specifies whether
    /// the target device that the DMA mapping is prepared for
    /// can access the main memory in a CPU cache coherent way
    /// or not.
    ///
    /// The method fails if any part of the given `segment`
    /// already belongs to a DMA mapping.
    pub fn map(segment: USegment, is_cache_coherent: bool) -> core::result::Result<Self, DmaError> {
        let start_paddr = segment.start_paddr();
        let frame_count = segment.size() / PAGE_SIZE;

        if !check_and_insert_dma_mapping(start_paddr, frame_count) {
            return Err(DmaError::AlreadyMapped);
        }

        if !is_cache_coherent {
            let page_table = KERNEL_PAGE_TABLE.get().unwrap();
            let vaddr = paddr_to_vaddr(start_paddr);
            let va_range = vaddr..vaddr + (frame_count * PAGE_SIZE);
            // SAFETY: the physical mappings is only used by DMA so protecting it is safe.
            unsafe {
                page_table
                    .protect_flush_tlb(&va_range, |p| p.cache = CachePolicy::Uncacheable)
                    .unwrap();
            }
        }

        let start_daddr = match dma_type() {
            DmaType::Direct => {
                #[cfg(target_arch = "x86_64")]
                crate::arch::if_tdx_enabled!({
                    // SAFETY:
                    //  - The address of a `USegment` is always page aligned.
                    //  - A `USegment` always points to normal physical memory, so the address
                    //    range falls in the GPA limit.
                    //  - A `USegment` always points to normal physical memory, so all the pages
                    //    are contained in the linear mapping.
                    //  - The pages belong to a `USegment`, so they're all untyped memory.
                    unsafe {
                        tdx_guest::unprotect_gpa_range(start_paddr, frame_count).unwrap();
                    }
                });
                start_paddr as Daddr
            }
            DmaType::Iommu => {
                for i in 0..frame_count {
                    let paddr = start_paddr + (i * PAGE_SIZE);
                    // SAFETY: the `paddr` is restricted by the `start_paddr` and `frame_count` of the `segment`.
                    unsafe {
                        iommu::map(paddr as Daddr, paddr).unwrap();
                    }
                }
                start_paddr as Daddr
            }
        };

        Ok(Self {
            inner: Arc::new(DmaCoherentInner {
                segment,
                start_daddr,
                is_cache_coherent,
            }),
        })
    }

    /// Returns the number of bytes in the DMA mapping.
    pub fn nbytes(&self) -> usize {
        self.inner.segment.size()
    }
}

impl HasDaddr for DmaCoherent {
    fn daddr(&self) -> Daddr {
        self.inner.start_daddr
    }
}

impl Deref for DmaCoherent {
    type Target = USegment;
    fn deref(&self) -> &Self::Target {
        &self.inner.segment
    }
}

impl Drop for DmaCoherentInner {
    fn drop(&mut self) {
        let start_paddr = self.segment.start_paddr();
        let frame_count = self.segment.size() / PAGE_SIZE;

        match dma_type() {
            DmaType::Direct => {
                #[cfg(target_arch = "x86_64")]
                crate::arch::if_tdx_enabled!({
                    // SAFETY:
                    //  - The address of a `USegment` is always page aligned.
                    //  - A `USegment` always points to normal physical memory, so the address
                    //    range falls in the GPA limit.
                    //  - A `USegment` always points to normal physical memory, so all the pages
                    //    are contained in the linear mapping.
                    //  - The pages belong to a `USegment`, so they're all untyped memory.
                    unsafe {
                        tdx_guest::protect_gpa_range(start_paddr, frame_count).unwrap();
                    }
                });
            }
            DmaType::Iommu => {
                for i in 0..frame_count {
                    let paddr = start_paddr + (i * PAGE_SIZE);
                    iommu::unmap(paddr as Daddr).unwrap();
                    // FIXME: After dropping it could be reused. IOTLB needs to be flushed.
                }
            }
        }

        if !self.is_cache_coherent {
            let page_table = KERNEL_PAGE_TABLE.get().unwrap();
            let vaddr = paddr_to_vaddr(start_paddr);
            let va_range = vaddr..vaddr + (frame_count * PAGE_SIZE);
            // SAFETY: the physical mappings is only used by DMA so protecting it is safe.
            unsafe {
                page_table
                    .protect_flush_tlb(&va_range, |p| p.cache = CachePolicy::Writeback)
                    .unwrap();
            }
        }

        remove_dma_mapping(start_paddr, frame_count);
    }
}

impl VmIo for DmaCoherent {
    fn read(&self, offset: usize, writer: &mut VmWriter) -> Result<()> {
        self.inner.segment.read(offset, writer)
    }

    fn write(&self, offset: usize, reader: &mut VmReader) -> Result<()> {
        self.inner.segment.write(offset, reader)
    }
}

impl VmIoOnce for DmaCoherent {
    fn read_once<T: PodOnce>(&self, offset: usize) -> Result<T> {
        self.inner.segment.reader().skip(offset).read_once()
    }

    fn write_once<T: PodOnce>(&self, offset: usize, new_val: &T) -> Result<()> {
        self.inner.segment.writer().skip(offset).write_once(new_val)
    }
}

impl<'a> DmaCoherent {
    /// Returns a reader to read data from it.
    pub fn reader(&'a self) -> VmReader<'a, Infallible> {
        self.inner.segment.reader()
    }

    /// Returns a writer to write data into it.
    pub fn writer(&'a self) -> VmWriter<'a, Infallible> {
        self.inner.segment.writer()
    }
}

impl HasPaddr for DmaCoherent {
    fn paddr(&self) -> Paddr {
        self.inner.segment.start_paddr()
    }
}