ostd/mm/page_table/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// SPDX-License-Identifier: MPL-2.0
use core::{
fmt::Debug,
intrinsics::transmute_unchecked,
ops::{Range, RangeInclusive},
sync::atomic::{AtomicUsize, Ordering},
};
use safety::safety;
use super::{
kspace::KernelPtConfig, nr_subpage_per_huge, page_prop::PageProperty, page_size,
vm_space::UserPtConfig, Paddr, PagingConstsTrait, PagingLevel, PodOnce, Vaddr,
};
use crate::{
arch::mm::{PageTableEntry, PagingConsts},
task::{atomic_mode::AsAtomicModeGuard, disable_preempt},
Pod,
};
mod node;
use node::*;
mod cursor;
pub(crate) use cursor::{Cursor, CursorMut, PageTableFrag};
#[cfg(ktest)]
mod test;
pub(crate) mod boot_pt;
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum PageTableError {
/// The provided virtual address range is invalid.
InvalidVaddrRange(Vaddr, Vaddr),
/// The provided virtual address is invalid.
InvalidVaddr(Vaddr),
/// Using virtual address not aligned.
UnalignedVaddr,
}
/// The configurations of a page table.
///
/// It abstracts away both the usage and the architecture specifics from the
/// general page table implementation. For examples:
/// - the managed virtual address range;
/// - the trackedness of physical mappings;
/// - the PTE layout;
/// - the number of page table levels, etc.
///
/// # Safety
///
/// The implementor must ensure that the `item_into_raw` and `item_from_raw`
/// are implemented correctly so that:
/// - `item_into_raw` consumes the ownership of the item;
/// - if the provided raw form matches the item that was consumed by
/// `item_into_raw`, `item_from_raw` restores the exact item that was
/// consumed by `item_into_raw`.
pub(crate) unsafe trait PageTableConfig:
Clone + Debug + Send + Sync + 'static
{
/// The index range at the top level (`C::NR_LEVELS`) page table.
///
/// When configured with this value, the [`PageTable`] instance will only
/// be allowed to manage the virtual address range that is covered by
/// this range. The range can be smaller than the actual allowed range
/// specified by the hardware MMU (limited by `C::ADDRESS_WIDTH`).
const TOP_LEVEL_INDEX_RANGE: Range<usize>;
/// If we can remove the top-level page table entries.
///
/// This is for the kernel page table, whose second-top-level page
/// tables need `'static` lifetime to be shared with user page tables.
/// Other page tables do not need to set this to `false`.
const TOP_LEVEL_CAN_UNMAP: bool = true;
/// The type of the page table entry.
type E: PageTableEntryTrait;
/// The paging constants.
type C: PagingConstsTrait;
/// The item that can be mapped into the virtual memory space using the
/// page table.
///
/// Usually, this item is a [`crate::mm::Frame`], which we call a "tracked"
/// frame. The page table can also do "untracked" mappings that only maps
/// to certain physical addresses without tracking the ownership of the
/// mapped physical frame. The user of the page table APIs can choose by
/// defining this type and the corresponding methods [`item_into_raw`] and
/// [`item_from_raw`].
///
/// [`item_from_raw`]: PageTableConfig::item_from_raw
/// [`item_into_raw`]: PageTableConfig::item_into_raw
type Item: Clone;
/// Consumes the item and returns the physical address, the paging level,
/// and the page property.
///
/// The ownership of the item will be consumed, i.e., the item will be
/// forgotten after this function is called.
fn item_into_raw(item: Self::Item) -> (Paddr, PagingLevel, PageProperty);
/// Restores the item from the physical address and the paging level.
///
/// There could be transformations after [`PageTableConfig::item_into_raw`]
/// and before [`PageTableConfig::item_from_raw`], which include:
/// - splitting and coalescing the items, for example, splitting one item
/// into 512 `level - 1` items with and contiguous physical addresses;
/// - protecting the items, for example, changing the page property.
///
/// Splitting and coalescing maintains ownership rules, i.e., if one
/// physical address is within the range of one item, after splitting/
/// coalescing, there should be exactly one item that contains the address.
#[safety {
ValidBy("`paddr` and `level`", "representing a page table node")
}]
#[safety {
Memo("Either the ownership of the item is properly transferred to the return value, or the return value is wrapped in a [`core::mem::ManuallyDrop`] that won't outlive the original item")
}]
/// A concrete trait implementation may require the caller to ensure that
/// - the [`super::PageFlags::AVAIL1`] flag is the same as that returned
/// from [`PageTableConfig::item_into_raw`].
unsafe fn item_from_raw(paddr: Paddr, level: PagingLevel, prop: PageProperty) -> Self::Item;
}
// Implement it so that we can comfortably use low level functions
// like `page_size::<C>` without typing `C::C` everywhere.
impl<C: PageTableConfig> PagingConstsTrait for C {
const BASE_PAGE_SIZE: usize = C::C::BASE_PAGE_SIZE;
const NR_LEVELS: PagingLevel = C::C::NR_LEVELS;
const HIGHEST_TRANSLATION_LEVEL: PagingLevel = C::C::HIGHEST_TRANSLATION_LEVEL;
const PTE_SIZE: usize = C::C::PTE_SIZE;
const ADDRESS_WIDTH: usize = C::C::ADDRESS_WIDTH;
const VA_SIGN_EXT: bool = C::C::VA_SIGN_EXT;
}
/// Splits the address range into largest page table items.
///
/// Each of the returned items is a tuple of the physical address and the
/// paging level. It is helpful when you want to map a physical address range
/// into the provided virtual address.
///
/// For example, on x86-64, `C: PageTableConfig` may specify level 1 page as
/// 4KiB, level 2 page as 2MiB, and level 3 page as 1GiB. Suppose that the
/// supplied physical address range is from `0x3fdff000` to `0x80002000`,
/// and the virtual address is also `0x3fdff000`, the following 5 items will
/// be returned:
///
/// ```text
/// 0x3fdff000 0x80002000
/// start end
/// |----|----------------|--------------------------------|----|----|
/// 4KiB 2MiB 1GiB 4KiB 4KiB
/// ```
///
/// # Panics
///
/// Panics if:
/// - any of `va`, `pa`, or `len` is not aligned to the base page size;
/// - the range `va..(va + len)` is not valid for the page table.
pub(crate) fn largest_pages<C: PageTableConfig>(
mut va: Vaddr,
mut pa: Paddr,
mut len: usize,
) -> impl Iterator<Item = (Paddr, PagingLevel)> {
assert_eq!(va % C::BASE_PAGE_SIZE, 0);
assert_eq!(pa % C::BASE_PAGE_SIZE, 0);
assert_eq!(len % C::BASE_PAGE_SIZE, 0);
assert!(is_valid_range::<C>(&(va..(va + len))));
core::iter::from_fn(move || {
if len == 0 {
return None;
}
let mut level = C::HIGHEST_TRANSLATION_LEVEL;
while page_size::<C>(level) > len
|| va % page_size::<C>(level) != 0
|| pa % page_size::<C>(level) != 0
{
level -= 1;
}
let item_start = pa;
va += page_size::<C>(level);
pa += page_size::<C>(level);
len -= page_size::<C>(level);
Some((item_start, level))
})
}
/// Gets the managed virtual addresses range for the page table.
///
/// It returns a [`RangeInclusive`] because the end address, if being
/// [`Vaddr::MAX`], overflows [`Range<Vaddr>`].
const fn vaddr_range<C: PageTableConfig>() -> RangeInclusive<Vaddr> {
const fn top_level_index_width<C: PageTableConfig>() -> usize {
C::ADDRESS_WIDTH - pte_index_bit_offset::<C>(C::NR_LEVELS)
}
const {
assert!(C::TOP_LEVEL_INDEX_RANGE.start < C::TOP_LEVEL_INDEX_RANGE.end);
assert!(top_level_index_width::<C>() <= nr_pte_index_bits::<C>(),);
assert!(C::TOP_LEVEL_INDEX_RANGE.start < 1 << top_level_index_width::<C>());
assert!(C::TOP_LEVEL_INDEX_RANGE.end <= 1 << top_level_index_width::<C>());
};
const fn pt_va_range_start<C: PageTableConfig>() -> Vaddr {
C::TOP_LEVEL_INDEX_RANGE.start << pte_index_bit_offset::<C>(C::NR_LEVELS)
}
const fn pt_va_range_end<C: PageTableConfig>() -> Vaddr {
C::TOP_LEVEL_INDEX_RANGE
.end
.unbounded_shl(pte_index_bit_offset::<C>(C::NR_LEVELS) as u32)
.wrapping_sub(1) // Inclusive end.
}
const fn sign_bit_of_va<C: PageTableConfig>(va: Vaddr) -> bool {
(va >> (C::ADDRESS_WIDTH - 1)) & 1 != 0
}
let mut start = pt_va_range_start::<C>();
let mut end = pt_va_range_end::<C>();
const {
assert!(
!C::VA_SIGN_EXT
|| sign_bit_of_va::<C>(pt_va_range_start::<C>())
== sign_bit_of_va::<C>(pt_va_range_end::<C>()),
"The sign bit of both range endpoints must be the same if sign extension is enabled"
)
}
if C::VA_SIGN_EXT && sign_bit_of_va::<C>(pt_va_range_start::<C>()) {
start |= !0 ^ ((1 << C::ADDRESS_WIDTH) - 1);
end |= !0 ^ ((1 << C::ADDRESS_WIDTH) - 1);
}
start..=end
}
/// Checks if the given range is covered by the valid range of the page table.
const fn is_valid_range<C: PageTableConfig>(r: &Range<Vaddr>) -> bool {
let va_range = vaddr_range::<C>();
(r.start == 0 && r.end == 0) || (*va_range.start() <= r.start && r.end - 1 <= *va_range.end())
}
// Here are some const values that are determined by the paging constants.
/// The number of virtual address bits used to index a PTE in a page.
const fn nr_pte_index_bits<C: PagingConstsTrait>() -> usize {
nr_subpage_per_huge::<C>().ilog2() as usize
}
/// The index of a VA's PTE in a page table node at the given level.
const fn pte_index<C: PagingConstsTrait>(va: Vaddr, level: PagingLevel) -> usize {
(va >> pte_index_bit_offset::<C>(level)) & (nr_subpage_per_huge::<C>() - 1)
}
/// The bit offset of the entry offset part in a virtual address.
///
/// This function returns the bit offset of the least significant bit. Take
/// x86-64 as an example, the `pte_index_bit_offset(2)` should return 21, which
/// is 12 (the 4KiB in-page offset) plus 9 (index width in the level-1 table).
const fn pte_index_bit_offset<C: PagingConstsTrait>(level: PagingLevel) -> usize {
C::BASE_PAGE_SIZE.ilog2() as usize + nr_pte_index_bits::<C>() * (level as usize - 1)
}
/// A handle to a page table.
/// A page table can track the lifetime of the mapped physical pages.
#[derive(Debug)]
pub struct PageTable<C: PageTableConfig> {
root: PageTableNode<C>,
}
impl PageTable<UserPtConfig> {
pub fn activate(&self) {
// SAFETY: The user mode page table is safe to activate since the kernel
// mappings are shared.
unsafe {
self.root.activate();
}
}
}
impl PageTable<KernelPtConfig> {
/// Create a new kernel page table.
pub(crate) fn new_kernel_page_table() -> Self {
let kpt = Self::empty();
// Make shared the page tables mapped by the root table in the kernel space.
{
let preempt_guard = disable_preempt();
let mut root_node = kpt.root.borrow().lock(&preempt_guard);
for i in KernelPtConfig::TOP_LEVEL_INDEX_RANGE {
let mut root_entry = root_node.entry(i);
let _ = root_entry.alloc_if_none(&preempt_guard).unwrap();
}
}
kpt
}
/// Create a new user page table.
///
/// This should be the only way to create the user page table, that is to
/// duplicate the kernel page table with all the kernel mappings shared.
pub(in crate::mm) fn create_user_page_table(&'static self) -> PageTable<UserPtConfig> {
let new_root = PageTableNode::alloc(PagingConsts::NR_LEVELS);
let preempt_guard = disable_preempt();
let mut root_node = self.root.borrow().lock(&preempt_guard);
let mut new_node = new_root.borrow().lock(&preempt_guard);
const {
assert!(!KernelPtConfig::TOP_LEVEL_CAN_UNMAP);
assert!(
UserPtConfig::TOP_LEVEL_INDEX_RANGE.end
<= KernelPtConfig::TOP_LEVEL_INDEX_RANGE.start
);
}
for i in KernelPtConfig::TOP_LEVEL_INDEX_RANGE {
let root_entry = root_node.entry(i);
let child = root_entry.to_ref();
let ChildRef::PageTable(pt) = child else {
panic!("The kernel page table doesn't contain shared nodes");
};
// We do not add additional reference count specifically for the
// shared kernel page tables. It requires user page tables to
// outlive the kernel page table, which is trivially true.
// See also `<PageTablePageMeta as AnyFrameMeta>::on_drop`.
let pt_addr = pt.start_paddr();
let pte = PageTableEntry::new_pt(pt_addr);
// SAFETY: The index is within the bounds and the PTE is at the
// correct paging level. However, neither it's a `UserPtConfig`
// child nor the node has the ownership of the child. It is
// still safe because `UserPtConfig::TOP_LEVEL_INDEX_RANGE`
// guarantees that the cursor won't access it.
unsafe { new_node.write_pte(i, pte) };
}
drop(new_node);
PageTable::<UserPtConfig> { root: new_root }
}
/// Protect the given virtual address range in the kernel page table.
///
/// This method flushes the TLB entries when doing protection.
#[safety {
KernelMemorySafe("The protecting operation")
}]
pub unsafe fn protect_flush_tlb(
&self,
vaddr: &Range<Vaddr>,
mut op: impl FnMut(&mut PageProperty),
) -> Result<(), PageTableError> {
let preempt_guard = disable_preempt();
let mut cursor = CursorMut::new(self, &preempt_guard, vaddr)?;
// SAFETY: The safety is upheld by the caller.
while let Some(range) =
unsafe { cursor.protect_next(vaddr.end - cursor.virt_addr(), &mut op) }
{
crate::arch::mm::tlb_flush_addr(range.start);
}
Ok(())
}
}
impl<C: PageTableConfig> PageTable<C> {
/// Create a new empty page table.
///
/// Useful for the IOMMU page tables only.
pub fn empty() -> Self {
PageTable {
root: PageTableNode::<C>::alloc(C::NR_LEVELS),
}
}
#[safety {
CallOnce(system)
}]
pub(in crate::mm) unsafe fn first_activate_unchecked(&self) {
// SAFETY: The safety is upheld by the caller.
unsafe { self.root.first_activate() };
}
/// The physical address of the root page table.
///
/// Obtaining the physical address of the root page table is safe, however, using it or
/// providing it to the hardware will be unsafe since the page table node may be dropped,
/// resulting in UAF.
pub fn root_paddr(&self) -> Paddr {
self.root.start_paddr()
}
/// Query about the mapping of a single byte at the given virtual address.
///
/// Note that this function may fail reflect an accurate result if there are
/// cursors concurrently accessing the same virtual address range, just like what
/// happens for the hardware MMU walk.
#[cfg(ktest)]
pub fn page_walk(&self, vaddr: Vaddr) -> Option<(Paddr, PageProperty)> {
// SAFETY: The root node is a valid page table node so the address is valid.
unsafe { page_walk::<C>(self.root_paddr(), vaddr) }
}
/// Create a new cursor exclusively accessing the virtual address range for mapping.
///
/// If another cursor is already accessing the range, the new cursor may wait until the
/// previous cursor is dropped.
pub fn cursor_mut<'rcu, G: AsAtomicModeGuard>(
&'rcu self,
guard: &'rcu G,
va: &Range<Vaddr>,
) -> Result<CursorMut<'rcu, C>, PageTableError> {
CursorMut::new(self, guard.as_atomic_mode_guard(), va)
}
/// Create a new cursor exclusively accessing the virtual address range for querying.
///
/// If another cursor is already accessing the range, the new cursor may wait until the
/// previous cursor is dropped. The modification to the mapping by the cursor may also
/// block or be overridden by the mapping of another cursor.
pub fn cursor<'rcu, G: AsAtomicModeGuard>(
&'rcu self,
guard: &'rcu G,
va: &Range<Vaddr>,
) -> Result<Cursor<'rcu, C>, PageTableError> {
Cursor::new(self, guard.as_atomic_mode_guard(), va)
}
/// Create a new reference to the same page table.
/// The caller must ensure that the kernel page table is not copied.
/// This is only useful for IOMMU page tables. Think twice before using it in other cases.
#[safety {
NotPostToFunc("copying the page table")
}]
pub unsafe fn shallow_copy(&self) -> Self {
PageTable {
root: self.root.clone(),
}
}
}
/// A software emulation of the MMU address translation process.
///
/// This method returns the physical address of the given virtual address and
/// the page property if a valid mapping exists for the given virtual address.
///
/// # Safety
///
/// The caller must ensure that the `root_paddr` is a pointer to a valid root
/// page table node.
///
/// # Notes on the page table use-after-free problem
///
/// Neither the hardware MMU nor the software page walk method acquires the page
/// table locks while reading. They can enter a to-be-recycled page table node
/// and read the page table entries after the node is recycled and reused.
///
/// For the hardware MMU page walk, we mitigate this problem by dropping the page
/// table nodes only after the TLBs have been flushed on all the CPUs that
/// activate the page table.
///
/// For the software page walk, we only need to disable preemption at the beginning
/// since the page table nodes won't be recycled in the RCU critical section.
#[safety {
ValidBy("`root_paddr`", "representing a root page table")
}]
#[cfg(ktest)]
pub(super) unsafe fn page_walk<C: PageTableConfig>(
root_paddr: Paddr,
vaddr: Vaddr,
) -> Option<(Paddr, PageProperty)> {
use super::paddr_to_vaddr;
let _rcu_guard = disable_preempt();
let mut pt_addr = paddr_to_vaddr(root_paddr);
for cur_level in (1..=C::NR_LEVELS).rev() {
let offset = pte_index::<C>(vaddr, cur_level);
// SAFETY:
// - The page table node is alive because (1) the root node is alive and
// (2) all child nodes cannot be recycled because we're in the RCU critical section.
// - The index is inside the bound, so the page table entry is valid.
// - All page table entries are aligned and accessed with atomic operations only.
let cur_pte = unsafe { load_pte((pt_addr as *mut C::E).add(offset), Ordering::Acquire) };
if !cur_pte.is_present() {
return None;
}
if cur_pte.is_last(cur_level) {
debug_assert!(cur_level <= C::HIGHEST_TRANSLATION_LEVEL);
return Some((
cur_pte.paddr() + (vaddr & (page_size::<C>(cur_level) - 1)),
cur_pte.prop(),
));
}
pt_addr = paddr_to_vaddr(cur_pte.paddr());
}
unreachable!("All present PTEs at the level 1 must be last-level PTEs");
}
/// A trait that abstracts architecture-specific page table entries (PTEs).
///
/// Note that a default PTE should be a PTE that points to nothing.
pub trait PageTableEntryTrait:
Clone + Copy + Debug + Default + Pod + PodOnce + Sized + Send + Sync + 'static
{
/// Creates a PTE that points to nothing.
///
/// Note that currently the implementation requires a zeroed PTE to be an absent PTE.
fn new_absent() -> Self {
Self::default()
}
/// Returns if the PTE points to something.
///
/// For PTEs created by [`Self::new_absent`], this method should return
/// false. For PTEs created by [`Self::new_page`] or [`Self::new_pt`]
/// and modified with [`Self::set_prop`], this method should return true.
fn is_present(&self) -> bool;
/// Creates a new PTE that maps to a page.
fn new_page(paddr: Paddr, level: PagingLevel, prop: PageProperty) -> Self;
/// Creates a new PTE that maps to a child page table.
fn new_pt(paddr: Paddr) -> Self;
/// Returns the physical address from the PTE.
///
/// The physical address recorded in the PTE is either:
/// - the physical address of the next-level page table, or
/// - the physical address of the page that the PTE maps to.
fn paddr(&self) -> Paddr;
/// Returns the page property of the PTE.
fn prop(&self) -> PageProperty;
/// Sets the page property of the PTE.
///
/// This methold has an impact only if the PTE is present. If not, this
/// method will do nothing.
fn set_prop(&mut self, prop: PageProperty);
/// Returns if the PTE maps a page rather than a child page table.
///
/// The method needs to know the level of the page table where the PTE resides,
/// since architectures like x86-64 have a huge bit only in intermediate levels.
fn is_last(&self, level: PagingLevel) -> bool;
/// Converts the PTE into a raw `usize` value.
fn as_usize(self) -> usize {
const { assert!(size_of::<Self>() == size_of::<usize>()) };
// SAFETY: `Self` is `Pod` and has the same memory representation as `usize`.
unsafe { transmute_unchecked(self) }
}
/// Converts the raw `usize` value into a PTE.
fn from_usize(pte_raw: usize) -> Self {
const { assert!(size_of::<Self>() == size_of::<usize>()) };
// SAFETY: `Self` is `Pod` and has the same memory representation as `usize`.
unsafe { transmute_unchecked(pte_raw) }
}
}
/// Loads a page table entry with an atomic instruction.
#[safety {
Memo("The safety preconditions are same as those of [`AtomicUsize::from_ptr`].")
}]
pub unsafe fn load_pte<E: PageTableEntryTrait>(ptr: *mut E, ordering: Ordering) -> E {
// SAFETY: The safety is upheld by the caller.
let atomic = unsafe { AtomicUsize::from_ptr(ptr.cast()) };
let pte_raw = atomic.load(ordering);
E::from_usize(pte_raw)
}
/// Stores a page table entry with an atomic instruction.
#[safety {
Memo("The safety preconditions are same as those of [`AtomicUsize::from_ptr`].")
}]
pub unsafe fn store_pte<E: PageTableEntryTrait>(ptr: *mut E, new_val: E, ordering: Ordering) {
let new_raw = new_val.as_usize();
// SAFETY: The safety is upheld by the caller.
let atomic = unsafe { AtomicUsize::from_ptr(ptr.cast()) };
atomic.store(new_raw, ordering)
}