ostd/mm/
vm_space.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// SPDX-License-Identifier: MPL-2.0

//! Virtual memory space management.
//!
//! The [`VmSpace`] struct is provided to manage the virtual memory space of a
//! user. Cursors are used to traverse and modify over the virtual memory space
//! concurrently. The VM space cursor [`self::Cursor`] is just a wrapper over
//! the page table cursor, providing efficient, powerful concurrent accesses
//! to the page table.

use core::{ops::Range, sync::atomic::Ordering};

use crate::{
    arch::mm::{current_page_table_paddr, PageTableEntry, PagingConsts},
    cpu::{AtomicCpuSet, CpuSet, PinCurrentCpu},
    cpu_local_cell,
    mm::{
        io::Fallible,
        kspace::KERNEL_PAGE_TABLE,
        page_table::{self, PageTable, PageTableConfig, PageTableFrag},
        tlb::{TlbFlushOp, TlbFlusher},
        AnyUFrameMeta, Frame, PageProperty, PagingLevel, UFrame, VmReader, VmWriter,
        MAX_USERSPACE_VADDR,
    },
    prelude::*,
    task::{atomic_mode::AsAtomicModeGuard, disable_preempt, DisabledPreemptGuard},
    Error,
};

/// A virtual address space for user-mode tasks, enabling safe manipulation of user-space memory.
///
/// The `VmSpace` type provides memory isolation guarantees between user-space and
/// kernel-space. For example, given an arbitrary user-space pointer, one can read and
/// write the memory location referred to by the user-space pointer without the risk of
/// breaking the memory safety of the kernel space.
///
/// # Task Association Semantics
///
/// As far as OSTD is concerned, a `VmSpace` is not necessarily associated with a task. Once a
/// `VmSpace` is activated (see [`VmSpace::activate`]), it remains activated until another
/// `VmSpace` is activated **possibly by another task running on the same CPU**.
///
/// This means that it's up to the kernel to ensure that a task's `VmSpace` is always activated
/// while the task is running. This can be done by using the injected post schedule handler
/// (see [`inject_post_schedule_handler`]) to always activate the correct `VmSpace` after each
/// context switch.
///
/// If the kernel otherwise decides not to ensure that the running task's `VmSpace` is always
/// activated, the kernel must deal with race conditions when calling methods that require the
/// `VmSpace` to be activated, e.g., [`UserMode::execute`], [`VmSpace::reader`],
/// [`VmSpace::writer`]. Otherwise, the behavior is unspecified, though it's guaranteed _not_ to
/// compromise the kernel's memory safety.
///
/// # Memory Backing
///
/// A newly-created `VmSpace` is not backed by any physical memory pages. To
/// provide memory pages for a `VmSpace`, one can allocate and map physical
/// memory ([`UFrame`]s) to the `VmSpace` using the cursor.
///
/// A `VmSpace` can also attach a page fault handler, which will be invoked to
/// handle page faults generated from user space.
///
/// [`inject_post_schedule_handler`]: crate::task::inject_post_schedule_handler
/// [`UserMode::execute`]: crate::user::UserMode::execute
#[derive(Debug)]
pub struct VmSpace {
    pt: PageTable<UserPtConfig>,
    cpus: AtomicCpuSet,
}

impl VmSpace {
    /// Creates a new VM address space.
    pub fn new() -> Self {
        Self {
            pt: KERNEL_PAGE_TABLE.get().unwrap().create_user_page_table(),
            cpus: AtomicCpuSet::new(CpuSet::new_empty()),
        }
    }

    /// Gets an immutable cursor in the virtual address range.
    ///
    /// The cursor behaves like a lock guard, exclusively owning a sub-tree of
    /// the page table, preventing others from creating a cursor in it. So be
    /// sure to drop the cursor as soon as possible.
    ///
    /// The creation of the cursor may block if another cursor having an
    /// overlapping range is alive.
    pub fn cursor<'a, G: AsAtomicModeGuard>(
        &'a self,
        guard: &'a G,
        va: &Range<Vaddr>,
    ) -> Result<Cursor<'a>> {
        Ok(self.pt.cursor(guard, va).map(Cursor)?)
    }

    /// Gets an mutable cursor in the virtual address range.
    ///
    /// The same as [`Self::cursor`], the cursor behaves like a lock guard,
    /// exclusively owning a sub-tree of the page table, preventing others
    /// from creating a cursor in it. So be sure to drop the cursor as soon as
    /// possible.
    ///
    /// The creation of the cursor may block if another cursor having an
    /// overlapping range is alive. The modification to the mapping by the
    /// cursor may also block or be overridden the mapping of another cursor.
    pub fn cursor_mut<'a, G: AsAtomicModeGuard>(
        &'a self,
        guard: &'a G,
        va: &Range<Vaddr>,
    ) -> Result<CursorMut<'a>> {
        Ok(self.pt.cursor_mut(guard, va).map(|pt_cursor| CursorMut {
            pt_cursor,
            flusher: TlbFlusher::new(&self.cpus, disable_preempt()),
        })?)
    }

    /// Activates the page table on the current CPU.
    pub fn activate(self: &Arc<Self>) {
        let preempt_guard = disable_preempt();
        let cpu = preempt_guard.current_cpu();

        let last_ptr = ACTIVATED_VM_SPACE.load();

        if last_ptr == Arc::as_ptr(self) {
            return;
        }

        // Record ourselves in the CPU set and the activated VM space pointer.
        // `Acquire` to ensure the modification to the PT is visible by this CPU.
        self.cpus.add(cpu, Ordering::Acquire);

        let self_ptr = Arc::into_raw(Arc::clone(self)) as *mut VmSpace;
        ACTIVATED_VM_SPACE.store(self_ptr);

        if !last_ptr.is_null() {
            // SAFETY: The pointer is cast from an `Arc` when it's activated
            // the last time, so it can be restored and only restored once.
            let last = unsafe { Arc::from_raw(last_ptr) };
            last.cpus.remove(cpu, Ordering::Relaxed);
        }

        self.pt.activate();
    }

    /// Creates a reader to read data from the user space of the current task.
    ///
    /// Returns `Err` if this `VmSpace` is not belonged to the user space of the current task
    /// or the `vaddr` and `len` do not represent a user space memory range.
    ///
    /// Users must ensure that no other page table is activated in the current task during the
    /// lifetime of the created `VmReader`. This guarantees that the `VmReader` can operate correctly.
    pub fn reader(&self, vaddr: Vaddr, len: usize) -> Result<VmReader<'_, Fallible>> {
        if current_page_table_paddr() != self.pt.root_paddr() {
            return Err(Error::AccessDenied);
        }

        if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
            return Err(Error::AccessDenied);
        }

        // SAFETY: The memory range is in user space, as checked above.
        Ok(unsafe { VmReader::<Fallible>::from_user_space(vaddr as *const u8, len) })
    }

    /// Creates a writer to write data into the user space.
    ///
    /// Returns `Err` if this `VmSpace` is not belonged to the user space of the current task
    /// or the `vaddr` and `len` do not represent a user space memory range.
    ///
    /// Users must ensure that no other page table is activated in the current task during the
    /// lifetime of the created `VmWriter`. This guarantees that the `VmWriter` can operate correctly.
    pub fn writer(&self, vaddr: Vaddr, len: usize) -> Result<VmWriter<'_, Fallible>> {
        if current_page_table_paddr() != self.pt.root_paddr() {
            return Err(Error::AccessDenied);
        }

        if vaddr.checked_add(len).unwrap_or(usize::MAX) > MAX_USERSPACE_VADDR {
            return Err(Error::AccessDenied);
        }

        // `VmWriter` is neither `Sync` nor `Send`, so it will not live longer than the current
        // task. This ensures that the correct page table is activated during the usage period of
        // the `VmWriter`.
        //
        // SAFETY: The memory range is in user space, as checked above.
        Ok(unsafe { VmWriter::<Fallible>::from_user_space(vaddr as *mut u8, len) })
    }
}

impl Default for VmSpace {
    fn default() -> Self {
        Self::new()
    }
}

/// The cursor for querying over the VM space without modifying it.
///
/// It exclusively owns a sub-tree of the page table, preventing others from
/// reading or modifying the same sub-tree. Two read-only cursors can not be
/// created from the same virtual address range either.
pub struct Cursor<'a>(page_table::Cursor<'a, UserPtConfig>);

impl Iterator for Cursor<'_> {
    type Item = (Range<Vaddr>, Option<MappedItem>);

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

impl Cursor<'_> {
    /// Queries the mapping at the current virtual address.
    ///
    /// If the cursor is pointing to a valid virtual address that is locked,
    /// it will return the virtual address range and the mapped item.
    pub fn query(&mut self) -> Result<(Range<Vaddr>, Option<MappedItem>)> {
        Ok(self.0.query()?)
    }

    /// Moves the cursor forward to the next mapped virtual address.
    ///
    /// If there is mapped virtual address following the current address within
    /// next `len` bytes, it will return that mapped address. In this case,
    /// the cursor will stop at the mapped address.
    ///
    /// Otherwise, it will return `None`. And the cursor may stop at any
    /// address after `len` bytes.
    ///
    /// # Panics
    ///
    /// Panics if the length is longer than the remaining range of the cursor.
    pub fn find_next(&mut self, len: usize) -> Option<Vaddr> {
        self.0.find_next(len)
    }

    /// Jump to the virtual address.
    pub fn jump(&mut self, va: Vaddr) -> Result<()> {
        self.0.jump(va)?;
        Ok(())
    }

    /// Get the virtual address of the current slot.
    pub fn virt_addr(&self) -> Vaddr {
        self.0.virt_addr()
    }
}

/// The cursor for modifying the mappings in VM space.
///
/// It exclusively owns a sub-tree of the page table, preventing others from
/// reading or modifying the same sub-tree.
pub struct CursorMut<'a> {
    pt_cursor: page_table::CursorMut<'a, UserPtConfig>,
    // We have a read lock so the CPU set in the flusher is always a superset
    // of actual activated CPUs.
    flusher: TlbFlusher<'a, DisabledPreemptGuard>,
}

impl<'a> CursorMut<'a> {
    /// Queries the mapping at the current virtual address.
    ///
    /// This is the same as [`Cursor::query`].
    ///
    /// If the cursor is pointing to a valid virtual address that is locked,
    /// it will return the virtual address range and the mapped item.
    pub fn query(&mut self) -> Result<(Range<Vaddr>, Option<MappedItem>)> {
        Ok(self.pt_cursor.query()?)
    }

    /// Moves the cursor forward to the next mapped virtual address.
    ///
    /// This is the same as [`Cursor::find_next`].
    pub fn find_next(&mut self, len: usize) -> Option<Vaddr> {
        self.pt_cursor.find_next(len)
    }

    /// Jump to the virtual address.
    ///
    /// This is the same as [`Cursor::jump`].
    pub fn jump(&mut self, va: Vaddr) -> Result<()> {
        self.pt_cursor.jump(va)?;
        Ok(())
    }

    /// Get the virtual address of the current slot.
    pub fn virt_addr(&self) -> Vaddr {
        self.pt_cursor.virt_addr()
    }

    /// Get the dedicated TLB flusher for this cursor.
    pub fn flusher(&mut self) -> &mut TlbFlusher<'a, DisabledPreemptGuard> {
        &mut self.flusher
    }

    /// Map a frame into the current slot.
    ///
    /// This method will bring the cursor to the next slot after the modification.
    pub fn map(&mut self, frame: UFrame, prop: PageProperty) {
        let start_va = self.virt_addr();
        let item = (frame, prop);

        // SAFETY: It is safe to map untyped memory into the userspace.
        let Err(frag) = (unsafe { self.pt_cursor.map(item) }) else {
            return; // No mapping exists at the current address.
        };

        match frag {
            PageTableFrag::Mapped { va, item } => {
                debug_assert_eq!(va, start_va);
                let (old_frame, _) = item;
                self.flusher
                    .issue_tlb_flush_with(TlbFlushOp::Address(start_va), old_frame.into());
                self.flusher.dispatch_tlb_flush();
            }
            PageTableFrag::StrayPageTable { .. } => {
                panic!("`UFrame` is base page sized but re-mapping out a child PT");
            }
        }
    }

    /// Clears the mapping starting from the current slot,
    /// and returns the number of unmapped pages.
    ///
    /// This method will bring the cursor forward by `len` bytes in the virtual
    /// address space after the modification.
    ///
    /// Already-absent mappings encountered by the cursor will be skipped. It
    /// is valid to unmap a range that is not mapped.
    ///
    /// It must issue and dispatch a TLB flush after the operation. Otherwise,
    /// the memory safety will be compromised. Please call this function less
    /// to avoid the overhead of TLB flush. Using a large `len` is wiser than
    /// splitting the operation into multiple small ones.
    ///
    /// # Panics
    /// Panics if:
    ///  - the length is longer than the remaining range of the cursor;
    ///  - the length is not page-aligned.
    pub fn unmap(&mut self, len: usize) -> usize {
        let end_va = self.virt_addr() + len;
        let mut num_unmapped: usize = 0;
        loop {
            // SAFETY: It is safe to un-map memory in the userspace.
            let Some(frag) = (unsafe { self.pt_cursor.take_next(end_va - self.virt_addr()) })
            else {
                break; // No more mappings in the range.
            };

            match frag {
                PageTableFrag::Mapped { va, item, .. } => {
                    let (frame, _) = item;
                    num_unmapped += 1;
                    self.flusher
                        .issue_tlb_flush_with(TlbFlushOp::Address(va), frame.into());
                }
                PageTableFrag::StrayPageTable {
                    pt,
                    va,
                    len,
                    num_frames,
                } => {
                    num_unmapped += num_frames;
                    self.flusher
                        .issue_tlb_flush_with(TlbFlushOp::Range(va..va + len), pt);
                }
            }
        }

        self.flusher.dispatch_tlb_flush();

        num_unmapped
    }

    /// Applies the operation to the next slot of mapping within the range.
    ///
    /// The range to be found in is the current virtual address with the
    /// provided length.
    ///
    /// The function stops and yields the actually protected range if it has
    /// actually protected a page, no matter if the following pages are also
    /// required to be protected.
    ///
    /// It also makes the cursor moves forward to the next page after the
    /// protected one. If no mapped pages exist in the following range, the
    /// cursor will stop at the end of the range and return [`None`].
    ///
    /// Note that it will **NOT** flush the TLB after the operation. Please
    /// make the decision yourself on when and how to flush the TLB using
    /// [`Self::flusher`].
    ///
    /// # Panics
    ///
    /// Panics if the length is longer than the remaining range of the cursor.
    pub fn protect_next(
        &mut self,
        len: usize,
        mut op: impl FnMut(&mut PageProperty),
    ) -> Option<Range<Vaddr>> {
        // SAFETY: It is safe to protect memory in the userspace.
        unsafe { self.pt_cursor.protect_next(len, &mut op) }
    }
}

cpu_local_cell! {
    /// The `Arc` pointer to the activated VM space on this CPU. If the pointer
    /// is NULL, it means that the activated page table is merely the kernel
    /// page table.
    // TODO: If we are enabling ASID, we need to maintain the TLB state of each
    // CPU, rather than merely the activated `VmSpace`. When ASID is enabled,
    // the non-active `VmSpace`s can still have their TLB entries in the CPU!
    static ACTIVATED_VM_SPACE: *const VmSpace = core::ptr::null();
}

#[cfg(ktest)]
pub(super) fn get_activated_vm_space() -> *const VmSpace {
    ACTIVATED_VM_SPACE.load()
}

/// The item that can be mapped into the [`VmSpace`].
pub type MappedItem = (UFrame, PageProperty);

#[derive(Clone, Debug)]
pub(crate) struct UserPtConfig {}

// SAFETY: `item_into_raw` and `item_from_raw` are implemented correctly,
unsafe impl PageTableConfig for UserPtConfig {
    const TOP_LEVEL_INDEX_RANGE: Range<usize> = 0..256;

    type E = PageTableEntry;
    type C = PagingConsts;

    type Item = MappedItem;

    fn item_into_raw(item: Self::Item) -> (Paddr, PagingLevel, PageProperty) {
        let (frame, prop) = item;
        let level = frame.map_level();
        let paddr = frame.into_raw();
        (paddr, level, prop)
    }

    unsafe fn item_from_raw(paddr: Paddr, level: PagingLevel, prop: PageProperty) -> Self::Item {
        debug_assert_eq!(level, 1);
        // SAFETY: The caller ensures safety.
        let frame = unsafe { Frame::<dyn AnyUFrameMeta>::from_raw(paddr) };
        (frame, prop)
    }
}