ostd/mm/frame/meta.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
// SPDX-License-Identifier: MPL-2.0
//! Metadata management of frames.
//!
//! You can picture a globally shared, static, gigantic array of metadata
//! initialized for each frame.
//! Each entry in this array holds the metadata for a single frame.
//! There would be a dedicated small
//! "heap" space in each slot for dynamic metadata. You can store anything as
//! the metadata of a frame as long as it's [`Sync`].
//!
//! # Implementation
//!
//! The slots are placed in the metadata pages mapped to a certain virtual
//! address in the kernel space. So finding the metadata of a frame often
//! comes with no costs since the translation is a simple arithmetic operation.
pub(crate) mod mapping {
//! The metadata of each physical page is linear mapped to fixed virtual addresses
//! in [`FRAME_METADATA_RANGE`].
use core::mem::size_of;
use super::MetaSlot;
use crate::mm::{kspace::FRAME_METADATA_RANGE, Paddr, PagingConstsTrait, Vaddr, PAGE_SIZE};
/// Converts a physical address of a base frame to the virtual address of the metadata slot.
pub(crate) const fn frame_to_meta<C: PagingConstsTrait>(paddr: Paddr) -> Vaddr {
let base = FRAME_METADATA_RANGE.start;
let offset = paddr / PAGE_SIZE;
base + offset * size_of::<MetaSlot>()
}
/// Converts a virtual address of the metadata slot to the physical address of the frame.
pub(crate) const fn meta_to_frame<C: PagingConstsTrait>(vaddr: Vaddr) -> Paddr {
let base = FRAME_METADATA_RANGE.start;
let offset = (vaddr - base) / size_of::<MetaSlot>();
offset * PAGE_SIZE
}
}
use core::{
alloc::Layout,
any::Any,
cell::UnsafeCell,
fmt::Debug,
mem::{size_of, ManuallyDrop, MaybeUninit},
result::Result,
sync::atomic::{AtomicU64, Ordering},
};
use align_ext::AlignExt;
use log::info;
use crate::{
arch::mm::PagingConsts,
boot::memory_region::MemoryRegionType,
const_assert,
mm::{
frame::allocator::{self, EarlyAllocatedFrameMeta},
kspace::LINEAR_MAPPING_BASE_VADDR,
paddr_to_vaddr, page_size,
page_table::boot_pt,
CachePolicy, Infallible, Paddr, PageFlags, PageProperty, PrivilegedPageFlags, Segment,
Vaddr, VmReader, PAGE_SIZE,
},
panic::abort,
util::ops::range_difference,
};
use safety::safety;
/// The maximum number of bytes of the metadata of a frame.
pub const FRAME_METADATA_MAX_SIZE: usize = META_SLOT_SIZE
- size_of::<AtomicU64>()
- size_of::<FrameMetaVtablePtr>()
- size_of::<AtomicU64>();
/// The maximum alignment in bytes of the metadata of a frame.
pub const FRAME_METADATA_MAX_ALIGN: usize = META_SLOT_SIZE;
const META_SLOT_SIZE: usize = 64;
#[repr(C)]
pub(in crate::mm) struct MetaSlot {
/// The metadata of a frame.
///
/// It is placed at the beginning of a slot because:
/// - the implementation can simply cast a `*const MetaSlot`
/// to a `*const AnyFrameMeta` for manipulation;
/// - if the metadata need special alignment, we can provide
/// at most `PAGE_METADATA_ALIGN` bytes of alignment;
/// - the subsequent fields can utilize the padding of the
/// reference count to save space.
///
/// Don't interpret this field as an array of bytes. It is a
/// placeholder for the metadata of a frame.
storage: UnsafeCell<[u8; FRAME_METADATA_MAX_SIZE]>,
/// The reference count of the page.
///
/// Specifically, the reference count has the following meaning:
/// - `REF_COUNT_UNUSED`: The page is not in use.
/// - `REF_COUNT_UNIQUE`: The page is owned by a [`UniqueFrame`].
/// - `0`: The page is being constructed ([`Frame::from_unused`])
/// or destructured ([`drop_last_in_place`]).
/// - `1..REF_COUNT_MAX`: The page is in use.
/// - `REF_COUNT_MAX..REF_COUNT_UNIQUE`: Illegal values to
/// prevent the reference count from overflowing. Otherwise,
/// overflowing the reference count will cause soundness issue.
///
/// [`Frame::from_unused`]: super::Frame::from_unused
/// [`UniqueFrame`]: super::unique::UniqueFrame
/// [`drop_last_in_place`]: Self::drop_last_in_place
//
// Other than this field the fields should be `MaybeUninit`.
// See initialization in `alloc_meta_frames`.
pub(super) ref_count: AtomicU64,
/// The virtual table that indicates the type of the metadata.
pub(super) vtable_ptr: UnsafeCell<MaybeUninit<FrameMetaVtablePtr>>,
/// This is only accessed by [`crate::mm::frame::linked_list`].
/// It stores 0 if the frame is not in any list, otherwise it stores the
/// ID of the list.
///
/// It is ugly but allows us to tell if a frame is in a specific list by
/// one relaxed read. Otherwise, if we store it conditionally in `storage`
/// we would have to ensure that the type is correct before the read, which
/// costs a synchronization.
pub(super) in_list: AtomicU64,
}
pub(super) const REF_COUNT_UNUSED: u64 = u64::MAX;
pub(super) const REF_COUNT_UNIQUE: u64 = u64::MAX - 1;
pub(super) const REF_COUNT_MAX: u64 = i64::MAX as u64;
type FrameMetaVtablePtr = core::ptr::DynMetadata<dyn AnyFrameMeta>;
const_assert!(PAGE_SIZE % META_SLOT_SIZE == 0);
const_assert!(size_of::<MetaSlot>() == META_SLOT_SIZE);
/// All frame metadata types must implement this trait.
///
/// If a frame type needs specific drop behavior, it should specify
/// when implementing this trait. When we drop the last handle to
/// this frame, the `on_drop` method will be called. The `on_drop`
/// method is called with the physical address of the frame.
///
/// The implemented structure should have a size less than or equal to
/// [`FRAME_METADATA_MAX_SIZE`] and an alignment less than or equal to
/// [`FRAME_METADATA_MAX_ALIGN`]. Otherwise, the metadata type cannot
/// be used because storing it will fail compile-time assertions.
///
/// # Safety
///
/// If `on_drop` reads the page using the provided `VmReader`, the
/// implementer must ensure that the frame is safe to read.
pub unsafe trait AnyFrameMeta: Any + Send + Sync {
/// Called when the last handle to the frame is dropped.
fn on_drop(&mut self, _reader: &mut VmReader<Infallible>) {}
/// Whether the metadata's associated frame is untyped.
///
/// If a type implements [`AnyUFrameMeta`], this should be `true`.
/// Otherwise, it should be `false`.
///
/// [`AnyUFrameMeta`]: super::untyped::AnyUFrameMeta
fn is_untyped(&self) -> bool {
false
}
}
/// Makes a structure usable as a frame metadata.
#[macro_export]
macro_rules! impl_frame_meta_for {
// Implement without specifying the drop behavior.
($t:ty) => {
// SAFETY: `on_drop` won't read the page.
unsafe impl $crate::mm::frame::meta::AnyFrameMeta for $t {}
$crate::const_assert!(
core::mem::size_of::<$t>() <= $crate::mm::frame::meta::FRAME_METADATA_MAX_SIZE
);
$crate::const_assert!(
$crate::mm::frame::meta::FRAME_METADATA_MAX_ALIGN % core::mem::align_of::<$t>() == 0
);
};
}
pub use impl_frame_meta_for;
/// The error type for getting the frame from a physical address.
#[derive(Debug)]
pub enum GetFrameError {
/// The frame is in use.
InUse,
/// The frame is not in use.
Unused,
/// The frame is being initialized or destructed.
Busy,
/// The frame is private to an owner of [`UniqueFrame`].
///
/// [`UniqueFrame`]: super::unique::UniqueFrame
Unique,
/// The provided physical address is out of bound.
OutOfBound,
/// The provided physical address is not aligned.
NotAligned,
}
/// Gets the reference to a metadata slot.
pub(super) fn get_slot(paddr: Paddr) -> Result<&'static MetaSlot, GetFrameError> {
if paddr % PAGE_SIZE != 0 {
return Err(GetFrameError::NotAligned);
}
if paddr >= super::max_paddr() {
return Err(GetFrameError::OutOfBound);
}
let vaddr = mapping::frame_to_meta::<PagingConsts>(paddr);
let ptr = vaddr as *mut MetaSlot;
// SAFETY: `ptr` points to a valid `MetaSlot` that will never be
// mutably borrowed, so taking an immutable reference to it is safe.
Ok(unsafe { &*ptr })
}
impl MetaSlot {
/// Initializes the metadata slot of a frame assuming it is unused.
///
/// If successful, the function returns a pointer to the metadata slot.
/// And the slot is initialized with the given metadata.
///
/// The resulting reference count held by the returned pointer is
/// [`REF_COUNT_UNIQUE`] if `as_unique_ptr` is `true`, otherwise `1`.
pub(super) fn get_from_unused<M: AnyFrameMeta>(
paddr: Paddr,
metadata: M,
as_unique_ptr: bool,
) -> Result<*const Self, GetFrameError> {
let slot = get_slot(paddr)?;
// `Acquire` pairs with the `Release` in `drop_last_in_place` and ensures the metadata
// initialization won't be reordered before this memory compare-and-exchange.
slot.ref_count
.compare_exchange(REF_COUNT_UNUSED, 0, Ordering::Acquire, Ordering::Relaxed)
.map_err(|val| match val {
REF_COUNT_UNIQUE => GetFrameError::Unique,
0 => GetFrameError::Busy,
_ => GetFrameError::InUse,
})?;
// SAFETY: The slot now has a reference count of `0`, other threads will
// not access the metadata slot so it is safe to have a mutable reference.
unsafe { slot.write_meta(metadata) };
if as_unique_ptr {
// No one can create a `Frame` instance directly from the page
// address, so `Relaxed` is fine here.
slot.ref_count.store(REF_COUNT_UNIQUE, Ordering::Relaxed);
} else {
// `Release` is used to ensure that the metadata initialization
// won't be reordered after this memory store.
slot.ref_count.store(1, Ordering::Release);
}
Ok(slot as *const MetaSlot)
}
/// Gets another owning pointer to the metadata slot from the given page.
pub(super) fn get_from_in_use(paddr: Paddr) -> Result<*const Self, GetFrameError> {
let slot = get_slot(paddr)?;
// Try to increase the reference count for an in-use frame. Otherwise fail.
loop {
match slot.ref_count.load(Ordering::Relaxed) {
REF_COUNT_UNUSED => return Err(GetFrameError::Unused),
REF_COUNT_UNIQUE => return Err(GetFrameError::Unique),
0 => return Err(GetFrameError::Busy),
last_ref_cnt => {
if last_ref_cnt >= REF_COUNT_MAX {
// See `Self::inc_ref_count` for the explanation.
abort();
}
// Using `Acquire` here to pair with `get_from_unused` or
// `<Frame<M> as From<UniqueFrame<M>>>::from` (who must be
// performed after writing the metadata).
//
// It ensures that the written metadata will be visible to us.
if slot
.ref_count
.compare_exchange_weak(
last_ref_cnt,
last_ref_cnt + 1,
Ordering::Acquire,
Ordering::Relaxed,
)
.is_ok()
{
return Ok(slot as *const MetaSlot);
}
}
}
core::hint::spin_loop();
}
}
/// Increases the frame reference count by one.
#[safety {
RefHeld("the frame"): "For a frame derived from Self"
}]
pub(super) unsafe fn inc_ref_count(&self) {
let last_ref_cnt = self.ref_count.fetch_add(1, Ordering::Relaxed);
debug_assert!(last_ref_cnt != 0 && last_ref_cnt != REF_COUNT_UNUSED);
if last_ref_cnt >= REF_COUNT_MAX {
// This follows the same principle as the `Arc::clone` implementation to prevent the
// reference count from overflowing. See also
// <https://doc.rust-lang.org/std/sync/struct.Arc.html#method.clone>.
abort();
}
}
/// Gets the corresponding frame's physical address.
pub(super) fn frame_paddr(&self) -> Paddr {
mapping::meta_to_frame::<PagingConsts>(self as *const MetaSlot as Vaddr)
}
/// Gets a dynamically typed pointer to the stored metadata.
#[safety {
ValDerived("The stored metadata", Self::write_meta),
MutExclusive("The metadata slot", "mutating through the returned pointer")
}]
pub(super) unsafe fn dyn_meta_ptr(&self) -> *mut dyn AnyFrameMeta {
// SAFETY: The page metadata is valid to be borrowed immutably, since
// it will never be borrowed mutably after initialization.
let vtable_ptr = unsafe { *self.vtable_ptr.get() };
// SAFETY: The page metadata is initialized and valid.
let vtable_ptr = *unsafe { vtable_ptr.assume_init_ref() };
let meta_ptr: *mut dyn AnyFrameMeta =
core::ptr::from_raw_parts_mut(self as *const MetaSlot as *mut MetaSlot, vtable_ptr);
meta_ptr
}
/// Gets the stored metadata as type `M`.
///
/// Calling the method should be safe, but using the returned pointer would
/// be unsafe. Specifically, the derefernecer should ensure that:
/// - the stored metadata is initialized (by [`Self::write_meta`]) and
/// valid;
/// - the initialized metadata is of type `M`;
/// - the returned pointer should not be dereferenced as mutable unless
/// having exclusive access to the metadata slot.
//#[safety::postcond::PriorToFunc(MetaSlot::write_meta::<M>)]
//#[safety::postcond::MutExclusive(RETURN_VALUE)]
pub(super) fn as_meta_ptr<M: AnyFrameMeta>(&self) -> *mut M {
self.storage.get() as *mut M
}
/// Writes the metadata to the slot without reading or dropping the previous value.
#[safety {
MutExclusive(self.vtable_ptr, ""),
MutExclusive(self.storage, "")
}]
pub(super) unsafe fn write_meta<M: AnyFrameMeta>(&self, metadata: M) {
const { assert!(size_of::<M>() <= FRAME_METADATA_MAX_SIZE) };
const { assert!(align_of::<M>() <= FRAME_METADATA_MAX_ALIGN) };
// SAFETY: Caller ensures that the access to the fields are exclusive.
let vtable_ptr = unsafe { &mut *self.vtable_ptr.get() };
vtable_ptr.write(core::ptr::metadata(&metadata as &dyn AnyFrameMeta));
let ptr = self.storage.get();
// SAFETY:
// 1. `ptr` points to the metadata storage.
// 2. The size and the alignment of the metadata storage is large enough to hold `M`
// (guaranteed by the const assertions above).
// 3. We have exclusive access to the metadata storage (guaranteed by the caller).
unsafe { ptr.cast::<M>().write(metadata) };
}
/// Drops the metadata and deallocates the frame.
#[safety {
Eq(self.ref_count, 0),
ValDerived("the meta data", Self::write_meta)
}]
pub(super) unsafe fn drop_last_in_place(&self) {
// This should be guaranteed as a safety requirement.
debug_assert_eq!(self.ref_count.load(Ordering::Relaxed), 0);
// SAFETY: The caller ensures safety.
unsafe { self.drop_meta_in_place() };
// `Release` pairs with the `Acquire` in `Frame::from_unused` and ensures
// `drop_meta_in_place` won't be reordered after this memory store.
self.ref_count.store(REF_COUNT_UNUSED, Ordering::Release);
}
/// Drops the metadata of a slot in place.
///
/// After this operation, the metadata becomes uninitialized. Any access to the
/// metadata is undefined behavior unless it is re-initialized by [`Self::write_meta`].
#[safety {
Eq(self.ref_count, 0),
ValDerived("the meta data", Self::write_meta)
}]
pub(super) unsafe fn drop_meta_in_place(&self) {
let paddr = self.frame_paddr();
// SAFETY: We have exclusive access to the frame metadata.
let vtable_ptr = unsafe { &mut *self.vtable_ptr.get() };
// SAFETY: The frame metadata is initialized and valid.
let vtable_ptr = unsafe { vtable_ptr.assume_init_read() };
let meta_ptr: *mut dyn AnyFrameMeta =
core::ptr::from_raw_parts_mut(self.storage.get(), vtable_ptr);
// SAFETY: The implementer of the frame metadata decides that if the frame
// is safe to be read or not.
let mut reader =
unsafe { VmReader::from_kernel_space(paddr_to_vaddr(paddr) as *const u8, PAGE_SIZE) };
// SAFETY: `ptr` points to the metadata storage which is valid to be mutably borrowed under
// `vtable_ptr` because the metadata is valid, the vtable is correct, and we have the exclusive
// access to the frame metadata.
unsafe {
// Invoke the custom `on_drop` handler.
(*meta_ptr).on_drop(&mut reader);
// Drop the frame metadata.
core::ptr::drop_in_place(meta_ptr);
}
}
}
/// The metadata of frames that holds metadata of frames.
#[derive(Debug, Default)]
pub struct MetaPageMeta {}
impl_frame_meta_for!(MetaPageMeta);
/// Initializes the metadata of all physical frames.
///
/// The function returns a list of `Frame`s containing the metadata.
#[safety {
CallOnce(system),
Context("BSP has booted", "APs have not booted")
}]
pub(crate) unsafe fn init() -> Segment<MetaPageMeta> {
let max_paddr = {
let regions = &crate::boot::EARLY_INFO.get().unwrap().memory_regions;
regions
.iter()
.filter(|r| r.typ() == MemoryRegionType::Usable)
.map(|r| r.base() + r.len())
.max()
.unwrap()
};
info!(
"Initializing frame metadata for physical memory up to {:x}",
max_paddr
);
add_temp_linear_mapping(max_paddr);
let tot_nr_frames = max_paddr / page_size::<PagingConsts>(1);
let (nr_meta_pages, meta_pages) = alloc_meta_frames(tot_nr_frames);
// Map the metadata frames.
boot_pt::with_borrow(|boot_pt| {
for i in 0..nr_meta_pages {
let frame_paddr = meta_pages + i * PAGE_SIZE;
let vaddr = mapping::frame_to_meta::<PagingConsts>(0) + i * PAGE_SIZE;
let prop = PageProperty {
flags: PageFlags::RW,
cache: CachePolicy::Writeback,
priv_flags: PrivilegedPageFlags::GLOBAL,
};
// SAFETY: we are doing the metadata mappings for the kernel.
unsafe { boot_pt.map_base_page(vaddr, frame_paddr / PAGE_SIZE, prop) };
}
})
.unwrap();
// Now the metadata frames are mapped, we can initialize the metadata.
super::MAX_PADDR.store(max_paddr, Ordering::Relaxed);
let meta_page_range = meta_pages..meta_pages + nr_meta_pages * PAGE_SIZE;
let (range_1, range_2) = allocator::EARLY_ALLOCATOR
.lock()
.as_ref()
.unwrap()
.allocated_regions();
for r in range_difference(&range_1, &meta_page_range) {
let early_seg = Segment::from_unused(r, |_| EarlyAllocatedFrameMeta).unwrap();
let _ = ManuallyDrop::new(early_seg);
}
for r in range_difference(&range_2, &meta_page_range) {
let early_seg = Segment::from_unused(r, |_| EarlyAllocatedFrameMeta).unwrap();
let _ = ManuallyDrop::new(early_seg);
}
mark_unusable_ranges();
Segment::from_unused(meta_page_range, |_| MetaPageMeta {}).unwrap()
}
/// Returns whether the global frame allocator is initialized.
pub(in crate::mm) fn is_initialized() -> bool {
// `init` sets it with relaxed ordering somewhere in the middle. But due
// to the safety requirement of the `init` function, we can assume that
// there is no race conditions.
super::MAX_PADDR.load(Ordering::Relaxed) != 0
}
fn alloc_meta_frames(tot_nr_frames: usize) -> (usize, Paddr) {
let nr_meta_pages = tot_nr_frames
.checked_mul(size_of::<MetaSlot>())
.unwrap()
.div_ceil(PAGE_SIZE);
let start_paddr = allocator::early_alloc(
Layout::from_size_align(nr_meta_pages * PAGE_SIZE, PAGE_SIZE).unwrap(),
)
.unwrap();
let slots = paddr_to_vaddr(start_paddr) as *mut MetaSlot;
// Initialize the metadata slots.
for i in 0..tot_nr_frames {
// SAFETY: The memory is successfully allocated with `tot_nr_frames`
// slots so the index must be within the range.
let slot = unsafe { slots.add(i) };
// SAFETY: The memory is just allocated so we have exclusive access and
// it's valid for writing.
unsafe {
slot.write(MetaSlot {
storage: UnsafeCell::new([0; FRAME_METADATA_MAX_SIZE]),
ref_count: AtomicU64::new(REF_COUNT_UNUSED),
vtable_ptr: UnsafeCell::new(MaybeUninit::uninit()),
in_list: AtomicU64::new(0),
})
};
}
(nr_meta_pages, start_paddr)
}
/// Unusable memory metadata. Cannot be used for any purposes.
#[derive(Debug)]
pub struct UnusableMemoryMeta;
impl_frame_meta_for!(UnusableMemoryMeta);
/// Reserved memory metadata. Maybe later used as I/O memory.
#[derive(Debug)]
pub struct ReservedMemoryMeta;
impl_frame_meta_for!(ReservedMemoryMeta);
/// The metadata of physical pages that contains the kernel itself.
#[derive(Debug, Default)]
pub struct KernelMeta;
impl_frame_meta_for!(KernelMeta);
macro_rules! mark_ranges {
($region: expr, $typ: expr) => {{
debug_assert!($region.base() % PAGE_SIZE == 0);
debug_assert!($region.len() % PAGE_SIZE == 0);
let seg = Segment::from_unused($region.base()..$region.end(), |_| $typ).unwrap();
let _ = ManuallyDrop::new(seg);
}};
}
fn mark_unusable_ranges() {
let regions = &crate::boot::EARLY_INFO.get().unwrap().memory_regions;
for region in regions
.iter()
.rev()
.skip_while(|r| r.typ() != MemoryRegionType::Usable)
{
match region.typ() {
MemoryRegionType::BadMemory => mark_ranges!(region, UnusableMemoryMeta),
MemoryRegionType::Unknown => mark_ranges!(region, ReservedMemoryMeta),
MemoryRegionType::NonVolatileSleep => mark_ranges!(region, UnusableMemoryMeta),
MemoryRegionType::Reserved => mark_ranges!(region, ReservedMemoryMeta),
MemoryRegionType::Kernel => mark_ranges!(region, KernelMeta),
MemoryRegionType::Module => mark_ranges!(region, UnusableMemoryMeta),
MemoryRegionType::Framebuffer => mark_ranges!(region, ReservedMemoryMeta),
MemoryRegionType::Reclaimable => mark_ranges!(region, UnusableMemoryMeta),
MemoryRegionType::Usable => {} // By default it is initialized as usable.
}
}
}
/// Adds a temporary linear mapping for the metadata frames.
///
/// We only assume boot page table to contain 4G linear mapping. Thus if the
/// physical memory is huge we end up depleted of linear virtual memory for
/// initializing metadata.
fn add_temp_linear_mapping(max_paddr: Paddr) {
const PADDR4G: Paddr = 0x1_0000_0000;
if max_paddr <= PADDR4G {
return;
}
// TODO: We don't know if the allocator would allocate from low to high or
// not. So we prepare all linear mappings in the boot page table. Hope it
// won't drag the boot performance much.
let end_paddr = max_paddr.align_up(PAGE_SIZE);
let prange = PADDR4G..end_paddr;
let prop = PageProperty {
flags: PageFlags::RW,
cache: CachePolicy::Writeback,
priv_flags: PrivilegedPageFlags::GLOBAL,
};
// SAFETY: we are doing the linear mapping for the kernel.
unsafe {
boot_pt::with_borrow(|boot_pt| {
for paddr in prange.step_by(PAGE_SIZE) {
let vaddr = LINEAR_MAPPING_BASE_VADDR + paddr;
boot_pt.map_base_page(vaddr, paddr / PAGE_SIZE, prop);
}
})
.unwrap();
}
}